gtsam/tests/testSubgraphSolver.cpp

185 lines
6.1 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testSubgraphSolver.cpp
* @brief Unit tests for SubgraphSolver
* @author Yong-Dian Jian
**/
#include <gtsam/linear/SubgraphSolver.h>
#include <tests/smallExample.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/iterative.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/SubgraphBuilder.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/inference/Ordering.h>
#include <gtsam/base/numericalDerivative.h>
#include <CppUnitLite/TestHarness.h>
using namespace std;
using namespace gtsam;
static size_t N = 3;
static SubgraphSolverParameters kParameters;
static auto kOrdering = example::planarOrdering(N);
/* ************************************************************************* */
/** unnormalized error */
static double error(const GaussianFactorGraph& fg, const VectorValues& x) {
double total_error = 0.;
for(const GaussianFactor::shared_ptr& factor: fg)
total_error += factor->error(x);
return total_error;
}
/* ************************************************************************* */
TEST( SubgraphSolver, Parameters )
{
LONGS_EQUAL(SubgraphSolverParameters::SILENT, kParameters.verbosity());
LONGS_EQUAL(500, kParameters.maxIterations());
}
/* ************************************************************************* */
TEST( SubgraphSolver, splitFactorGraph )
{
// Build a planar graph
GaussianFactorGraph Ab;
VectorValues xtrue;
std::tie(Ab, xtrue) = example::planarGraph(N); // A*x-b
SubgraphBuilderParameters params;
params.augmentationFactor = 0.0;
SubgraphBuilder builder(params);
auto subgraph = builder(Ab);
EXPECT_LONGS_EQUAL(9, subgraph.size());
GaussianFactorGraph Ab1, Ab2;
std::tie(Ab1, Ab2) = splitFactorGraph(Ab, subgraph);
EXPECT_LONGS_EQUAL(9, Ab1.size());
EXPECT_LONGS_EQUAL(13, Ab2.size());
}
/* ************************************************************************* */
TEST( SubgraphSolver, constructor1 )
{
// Build a planar graph
GaussianFactorGraph Ab;
VectorValues xtrue;
std::tie(Ab, xtrue) = example::planarGraph(N); // A*x-b
// The first constructor just takes a factor graph (and kParameters)
// and it will split the graph into A1 and A2, where A1 is a spanning tree
SubgraphSolver solver(Ab, kParameters, kOrdering);
VectorValues optimized = solver.optimize(); // does PCG optimization
DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5);
}
/* ************************************************************************* */
TEST( SubgraphSolver, constructor2 )
{
// Build a planar graph
GaussianFactorGraph Ab;
VectorValues xtrue;
size_t N = 3;
std::tie(Ab, xtrue) = example::planarGraph(N); // A*x-b
// Get the spanning tree
GaussianFactorGraph Ab1, Ab2; // A1*x-b1 and A2*x-b2
std::tie(Ab1, Ab2) = example::splitOffPlanarTree(N, Ab);
// The second constructor takes two factor graphs, so the caller can specify
// the preconditioner (Ab1) and the constraints that are left out (Ab2)
SubgraphSolver solver(Ab1, Ab2, kParameters, kOrdering);
VectorValues optimized = solver.optimize();
DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5);
}
/* ************************************************************************* */
TEST( SubgraphSolver, constructor3 )
{
// Build a planar graph
GaussianFactorGraph Ab;
VectorValues xtrue;
size_t N = 3;
std::tie(Ab, xtrue) = example::planarGraph(N); // A*x-b
// Get the spanning tree and corresponding kOrdering
GaussianFactorGraph Ab1, Ab2; // A1*x-b1 and A2*x-b2
std::tie(Ab1, Ab2) = example::splitOffPlanarTree(N, Ab);
// The caller solves |A1*x-b1|^2 == |R1*x-c1|^2, where R1 is square UT
auto Rc1 = *Ab1.eliminateSequential();
// The third constructor allows the caller to pass an already solved preconditioner Rc1_
// as a Bayes net, in addition to the "loop closing constraints" Ab2, as before
SubgraphSolver solver(Rc1, Ab2, kParameters);
VectorValues optimized = solver.optimize();
DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5);
}
/* ************************************************************************* */
TEST(SubgraphBuilder, utilsAssignWeights)
{
const auto [g, _] = example::planarGraph(N); // A*x-b
const auto weights = utils::assignWeights(g, gtsam::SubgraphBuilderParameters::SkeletonWeight::EQUAL);
EXPECT(weights.size() == g.size());
for (const auto &i : weights)
{
EXPECT_DOUBLES_EQUAL(weights[i], 1.0, 1e-12);
}
}
/* ************************************************************************* */
TEST(SubgraphBuilder, utilsKruskal)
{
const auto [g, _] = example::planarGraph(N); // A*x-b
const FastMap<Key, size_t> forward_ordering = Ordering::Natural(g).invert();
const auto weights = utils::assignWeights(g, gtsam::SubgraphBuilderParameters::SkeletonWeight::EQUAL);
const auto mstEdgeIndices = utils::kruskal(g, forward_ordering, weights);
// auto PrintMst = [](const auto &graph, const auto &mst_edge_indices)
// {
// std::cout << "MST Edge indices are: \n";
// for (const auto &edge : mst_edge_indices)
// {
// std::cout << edge << " : ";
// for (const auto &key : graph[edge]->keys())
// {
// std::cout << gtsam::DefaultKeyFormatter(gtsam::Symbol(key)) << ", ";
// }
// std::cout << "\n";
// }
// };
// PrintMst(g, mstEdgeIndices);
EXPECT(mstEdgeIndices[0] == 1);
EXPECT(mstEdgeIndices[1] == 2);
EXPECT(mstEdgeIndices[2] == 3);
EXPECT(mstEdgeIndices[3] == 4);
EXPECT(mstEdgeIndices[4] == 5);
EXPECT(mstEdgeIndices[5] == 6);
EXPECT(mstEdgeIndices[6] == 7);
EXPECT(mstEdgeIndices[7] == 8);
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */