/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file testSubgraphSolver.cpp * @brief Unit tests for SubgraphSolver * @author Yong-Dian Jian **/ #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace gtsam; static size_t N = 3; static SubgraphSolverParameters kParameters; static auto kOrdering = example::planarOrdering(N); /* ************************************************************************* */ /** unnormalized error */ static double error(const GaussianFactorGraph& fg, const VectorValues& x) { double total_error = 0.; for(const GaussianFactor::shared_ptr& factor: fg) total_error += factor->error(x); return total_error; } /* ************************************************************************* */ TEST( SubgraphSolver, Parameters ) { LONGS_EQUAL(SubgraphSolverParameters::SILENT, kParameters.verbosity()); LONGS_EQUAL(500, kParameters.maxIterations()); } /* ************************************************************************* */ TEST( SubgraphSolver, splitFactorGraph ) { // Build a planar graph GaussianFactorGraph Ab; VectorValues xtrue; std::tie(Ab, xtrue) = example::planarGraph(N); // A*x-b SubgraphBuilderParameters params; params.augmentationFactor = 0.0; SubgraphBuilder builder(params); auto subgraph = builder(Ab); EXPECT_LONGS_EQUAL(9, subgraph.size()); GaussianFactorGraph Ab1, Ab2; std::tie(Ab1, Ab2) = splitFactorGraph(Ab, subgraph); EXPECT_LONGS_EQUAL(9, Ab1.size()); EXPECT_LONGS_EQUAL(13, Ab2.size()); } /* ************************************************************************* */ TEST( SubgraphSolver, constructor1 ) { // Build a planar graph GaussianFactorGraph Ab; VectorValues xtrue; std::tie(Ab, xtrue) = example::planarGraph(N); // A*x-b // The first constructor just takes a factor graph (and kParameters) // and it will split the graph into A1 and A2, where A1 is a spanning tree SubgraphSolver solver(Ab, kParameters, kOrdering); VectorValues optimized = solver.optimize(); // does PCG optimization DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5); } /* ************************************************************************* */ TEST( SubgraphSolver, constructor2 ) { // Build a planar graph GaussianFactorGraph Ab; VectorValues xtrue; size_t N = 3; std::tie(Ab, xtrue) = example::planarGraph(N); // A*x-b // Get the spanning tree GaussianFactorGraph Ab1, Ab2; // A1*x-b1 and A2*x-b2 std::tie(Ab1, Ab2) = example::splitOffPlanarTree(N, Ab); // The second constructor takes two factor graphs, so the caller can specify // the preconditioner (Ab1) and the constraints that are left out (Ab2) SubgraphSolver solver(Ab1, Ab2, kParameters, kOrdering); VectorValues optimized = solver.optimize(); DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5); } /* ************************************************************************* */ TEST( SubgraphSolver, constructor3 ) { // Build a planar graph GaussianFactorGraph Ab; VectorValues xtrue; size_t N = 3; std::tie(Ab, xtrue) = example::planarGraph(N); // A*x-b // Get the spanning tree and corresponding kOrdering GaussianFactorGraph Ab1, Ab2; // A1*x-b1 and A2*x-b2 std::tie(Ab1, Ab2) = example::splitOffPlanarTree(N, Ab); // The caller solves |A1*x-b1|^2 == |R1*x-c1|^2, where R1 is square UT auto Rc1 = *Ab1.eliminateSequential(); // The third constructor allows the caller to pass an already solved preconditioner Rc1_ // as a Bayes net, in addition to the "loop closing constraints" Ab2, as before SubgraphSolver solver(Rc1, Ab2, kParameters); VectorValues optimized = solver.optimize(); DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5); } /* ************************************************************************* */ TEST(SubgraphBuilder, utilsAssignWeights) { const auto [g, _] = example::planarGraph(N); // A*x-b const auto weights = utils::assignWeights(g, gtsam::SubgraphBuilderParameters::SkeletonWeight::EQUAL); EXPECT(weights.size() == g.size()); for (const auto &i : weights) { EXPECT_DOUBLES_EQUAL(weights[i], 1.0, 1e-12); } } /* ************************************************************************* */ TEST(SubgraphBuilder, utilsKruskal) { const auto [g, _] = example::planarGraph(N); // A*x-b const FastMap forward_ordering = Ordering::Natural(g).invert(); const auto weights = utils::assignWeights(g, gtsam::SubgraphBuilderParameters::SkeletonWeight::EQUAL); const auto mstEdgeIndices = utils::kruskal(g, forward_ordering, weights); // auto PrintMst = [](const auto &graph, const auto &mst_edge_indices) // { // std::cout << "MST Edge indices are: \n"; // for (const auto &edge : mst_edge_indices) // { // std::cout << edge << " : "; // for (const auto &key : graph[edge]->keys()) // { // std::cout << gtsam::DefaultKeyFormatter(gtsam::Symbol(key)) << ", "; // } // std::cout << "\n"; // } // }; // PrintMst(g, mstEdgeIndices); EXPECT(mstEdgeIndices[0] == 1); EXPECT(mstEdgeIndices[1] == 2); EXPECT(mstEdgeIndices[2] == 3); EXPECT(mstEdgeIndices[3] == 4); EXPECT(mstEdgeIndices[4] == 5); EXPECT(mstEdgeIndices[5] == 6); EXPECT(mstEdgeIndices[6] == 7); EXPECT(mstEdgeIndices[7] == 8); } /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr); } /* ************************************************************************* */