186 lines
7.8 KiB
C++
186 lines
7.8 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file ImuFactor.cpp
|
|
* @author Luca Carlone
|
|
* @author Stephen Williams
|
|
* @author Richard Roberts
|
|
* @author Vadim Indelman
|
|
* @author David Jensen
|
|
* @author Frank Dellaert
|
|
**/
|
|
|
|
#include <gtsam/navigation/ImuFactor.h>
|
|
|
|
/* External or standard includes */
|
|
#include <ostream>
|
|
|
|
namespace gtsam {
|
|
|
|
using namespace std;
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Inner class PreintegratedMeasurements
|
|
//------------------------------------------------------------------------------
|
|
void PreintegratedImuMeasurements::print(const string& s) const {
|
|
PreintegrationBase::print(s);
|
|
cout << " preintMeasCov \n[" << preintMeasCov_ << "]" << endl;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
bool PreintegratedImuMeasurements::equals(
|
|
const PreintegratedImuMeasurements& other, double tol) const {
|
|
return PreintegrationBase::equals(other, tol)
|
|
&& equal_with_abs_tol(preintMeasCov_, other.preintMeasCov_, tol);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
void PreintegratedImuMeasurements::resetIntegration() {
|
|
PreintegrationBase::resetIntegration();
|
|
preintMeasCov_.setZero();
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
void PreintegratedImuMeasurements::integrateMeasurement(
|
|
const Vector3& measuredAcc, const Vector3& measuredOmega, double dt) {
|
|
|
|
static const Matrix93 Gi = (Matrix93() << Z_3x3, I_3x3, Z_3x3).finished();
|
|
|
|
// Update preintegrated measurements (also get Jacobian)
|
|
Matrix9 F; // overall Jacobian wrt preintegrated measurements (df/dx)
|
|
Matrix93 G1, G2;
|
|
Matrix3 D_incrR_integratedOmega;
|
|
PreintegrationBase::update(measuredAcc, measuredOmega, dt,
|
|
&D_incrR_integratedOmega, &F, &G1, &G2);
|
|
|
|
// first order covariance propagation:
|
|
// as in [2] we consider a first order propagation that can be seen as a prediction phase in EKF
|
|
/* --------------------------------------------------------------------------------------------*/
|
|
// preintMeasCov = F * preintMeasCov * F.transpose() + G * (1/deltaT) * measurementCovariance * G'
|
|
// NOTE 1: (1/deltaT) allows to pass from continuous time noise to discrete time noise
|
|
// measurementCovariance_discrete = measurementCovariance_contTime * (1/deltaT)
|
|
#ifdef OLD_JACOBIAN_CALCULATION
|
|
Matrix9 G;
|
|
G << G1, Gi, G2;
|
|
Matrix9 Cov;
|
|
Cov << p().accelerometerCovariance / dt, Z_3x3, Z_3x3,
|
|
Z_3x3, p().integrationCovariance * dt, Z_3x3,
|
|
Z_3x3, Z_3x3, p().gyroscopeCovariance / dt;
|
|
preintMeasCov_ = F * preintMeasCov_ * F.transpose() + G * Cov * G.transpose();
|
|
#else
|
|
preintMeasCov_ = F * preintMeasCov_ * F.transpose()
|
|
+ Gi * (p().integrationCovariance * dt) * Gi.transpose() // NOTE(frank): (Gi*dt)*(C/dt)*(Gi'*dt)
|
|
+ G1 * (p().accelerometerCovariance / dt) * G1.transpose()
|
|
+ G2 * (p().gyroscopeCovariance / dt) * G2.transpose();
|
|
#endif
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
PreintegratedImuMeasurements::PreintegratedImuMeasurements(
|
|
const imuBias::ConstantBias& biasHat, const Matrix3& measuredAccCovariance,
|
|
const Matrix3& measuredOmegaCovariance,
|
|
const Matrix3& integrationErrorCovariance, bool use2ndOrderIntegration) {
|
|
if (!use2ndOrderIntegration)
|
|
throw("PreintegratedImuMeasurements no longer supports first-order integration: it incorrectly compensated for gravity");
|
|
biasHat_ = biasHat;
|
|
boost::shared_ptr<Params> p = Params::MakeSharedD();
|
|
p->gyroscopeCovariance = measuredOmegaCovariance;
|
|
p->accelerometerCovariance = measuredAccCovariance;
|
|
p->integrationCovariance = integrationErrorCovariance;
|
|
p_ = p;
|
|
resetIntegration();
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
void PreintegratedImuMeasurements::integrateMeasurement(
|
|
const Vector3& measuredAcc, const Vector3& measuredOmega, double deltaT,
|
|
boost::optional<Pose3> body_P_sensor) {
|
|
// modify parameters to accommodate deprecated method:-(
|
|
p_->body_P_sensor = body_P_sensor;
|
|
integrateMeasurement(measuredAcc, measuredOmega, deltaT);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// ImuFactor methods
|
|
//------------------------------------------------------------------------------
|
|
ImuFactor::ImuFactor(Key pose_i, Key vel_i, Key pose_j, Key vel_j, Key bias,
|
|
const PreintegratedImuMeasurements& pim) :
|
|
Base(noiseModel::Gaussian::Covariance(pim.preintMeasCov_), pose_i, vel_i,
|
|
pose_j, vel_j, bias), _PIM_(pim) {
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
gtsam::NonlinearFactor::shared_ptr ImuFactor::clone() const {
|
|
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
|
|
gtsam::NonlinearFactor::shared_ptr(new This(*this)));
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
void ImuFactor::print(const string& s, const KeyFormatter& keyFormatter) const {
|
|
cout << s << "ImuFactor(" << keyFormatter(this->key1()) << ","
|
|
<< keyFormatter(this->key2()) << "," << keyFormatter(this->key3()) << ","
|
|
<< keyFormatter(this->key4()) << "," << keyFormatter(this->key5())
|
|
<< ")\n";
|
|
Base::print("");
|
|
_PIM_.print(" preintegrated measurements:");
|
|
// Print standard deviations on covariance only
|
|
cout << " noise model sigmas: " << this->noiseModel_->sigmas().transpose()
|
|
<< endl;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
bool ImuFactor::equals(const NonlinearFactor& other, double tol) const {
|
|
const This *e = dynamic_cast<const This*>(&other);
|
|
return e != NULL && Base::equals(*e, tol) && _PIM_.equals(e->_PIM_, tol)
|
|
&& Base::equals(*e, tol);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
Vector ImuFactor::evaluateError(const Pose3& pose_i, const Vector3& vel_i,
|
|
const Pose3& pose_j, const Vector3& vel_j,
|
|
const imuBias::ConstantBias& bias_i, boost::optional<Matrix&> H1,
|
|
boost::optional<Matrix&> H2, boost::optional<Matrix&> H3,
|
|
boost::optional<Matrix&> H4, boost::optional<Matrix&> H5) const {
|
|
return _PIM_.computeErrorAndJacobians(pose_i, vel_i, pose_j, vel_j, bias_i,
|
|
H1, H2, H3, H4, H5);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
ImuFactor::ImuFactor(Key pose_i, Key vel_i, Key pose_j, Key vel_j, Key bias,
|
|
const PreintegratedMeasurements& pim, const Vector3& n_gravity,
|
|
const Vector3& omegaCoriolis, const boost::optional<Pose3>& body_P_sensor,
|
|
const bool use2ndOrderCoriolis) :
|
|
Base(noiseModel::Gaussian::Covariance(pim.preintMeasCov_), pose_i, vel_i,
|
|
pose_j, vel_j, bias), _PIM_(pim) {
|
|
boost::shared_ptr<PreintegratedMeasurements::Params> p = boost::make_shared<
|
|
PreintegratedMeasurements::Params>(pim.p());
|
|
p->n_gravity = n_gravity;
|
|
p->omegaCoriolis = omegaCoriolis;
|
|
p->body_P_sensor = body_P_sensor;
|
|
p->use2ndOrderCoriolis = use2ndOrderCoriolis;
|
|
_PIM_.p_ = p;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
void ImuFactor::Predict(const Pose3& pose_i, const Vector3& vel_i,
|
|
Pose3& pose_j, Vector3& vel_j, const imuBias::ConstantBias& bias_i,
|
|
PreintegratedMeasurements& pim, const Vector3& n_gravity,
|
|
const Vector3& omegaCoriolis, const bool use2ndOrderCoriolis) {
|
|
// use deprecated predict
|
|
PoseVelocityBias pvb = pim.predict(pose_i, vel_i, bias_i, n_gravity,
|
|
omegaCoriolis, use2ndOrderCoriolis);
|
|
pose_j = pvb.pose;
|
|
vel_j = pvb.velocity;
|
|
}
|
|
|
|
} // namespace gtsam
|