gtsam/gtsam/geometry/CalibratedCamera.h

212 lines
5.6 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file CalibratedCamera.h
* @brief Calibrated camera for which only pose is unknown
* @date Aug 17, 2009
* @author Frank Dellaert
*/
#pragma once
#include <gtsam/geometry/Pose3.h>
#include <gtsam/geometry/Point2.h>
namespace gtsam {
class GTSAM_EXPORT CheiralityException: public ThreadsafeException<
CheiralityException> {
public:
CheiralityException() :
ThreadsafeException<CheiralityException>("Cheirality Exception") {
}
};
/**
* A Calibrated camera class [R|-R't], calibration K=I.
* If calibration is known, it is more computationally efficient
* to calibrate the measurements rather than try to predict in pixels.
* @addtogroup geometry
* \nosubgrouping
*/
class GTSAM_EXPORT CalibratedCamera {
private:
Pose3 pose_; // 6DOF pose
public:
enum { dimension = 6 };
/// @name Standard Constructors
/// @{
/// default constructor
CalibratedCamera() {
}
/// construct with pose
explicit CalibratedCamera(const Pose3& pose);
/// @}
/// @name Advanced Constructors
/// @{
/// construct from vector
explicit CalibratedCamera(const Vector &v);
/// @}
/// @name Testable
/// @{
virtual void print(const std::string& s = "") const {
pose_.print(s);
}
/// check equality to another camera
bool equals(const CalibratedCamera &camera, double tol = 1e-9) const {
return pose_.equals(camera.pose(), tol);
}
/// @}
/// @name Standard Interface
/// @{
/// destructor
virtual ~CalibratedCamera() {
}
/// return pose
inline const Pose3& pose() const {
return pose_;
}
/**
* Create a level camera at the given 2D pose and height
* @param pose2 specifies the location and viewing direction
* @param height specifies the height of the camera (along the positive Z-axis)
* (theta 0 = looking in direction of positive X axis)
*/
static CalibratedCamera Level(const Pose2& pose2, double height);
/// @}
/// @name Manifold
/// @{
/// move a cameras pose according to d
CalibratedCamera retract(const Vector& d) const;
/// Return canonical coordinate
Vector localCoordinates(const CalibratedCamera& T2) const;
/// Lie group dimensionality
inline size_t dim() const {
return 6;
}
/// Lie group dimensionality
inline static size_t Dim() {
return 6;
}
/* ************************************************************************* */
// measurement functions and derivatives
/* ************************************************************************* */
/// @}
/// @name Transformations and mesaurement functions
/// @{
/**
* This function receives the camera pose and the landmark location and
* returns the location the point is supposed to appear in the image
* @param point a 3D point to be projected
* @param Dpose the optionally computed Jacobian with respect to pose
* @param Dpoint the optionally computed Jacobian with respect to the 3D point
* @return the intrinsic coordinates of the projected point
*/
Point2 project(const Point3& point,
OptionalJacobian<2, 6> Dpose = boost::none,
OptionalJacobian<2, 3> Dpoint = boost::none) const;
/**
* projects a 3-dimensional point in camera coordinates into the
* camera and returns a 2-dimensional point, no calibration applied
* With optional 2by3 derivative
*/
static Point2 project_to_camera(const Point3& cameraPoint,
OptionalJacobian<2, 3> H1 = boost::none);
/**
* backproject a 2-dimensional point to a 3-dimension point
*/
static Point3 backproject_from_camera(const Point2& p, const double scale);
/**
* Calculate range to a landmark
* @param point 3D location of landmark
* @param H1 optionally computed Jacobian with respect to pose
* @param H2 optionally computed Jacobian with respect to the 3D point
* @return range (double)
*/
double range(const Point3& point, OptionalJacobian<1, 6> H1 = boost::none,
OptionalJacobian<1, 3> H2 = boost::none) const {
return pose_.range(point, H1, H2);
}
/**
* Calculate range to another pose
* @param pose Other SO(3) pose
* @param H1 optionally computed Jacobian with respect to pose
* @param H2 optionally computed Jacobian with respect to the 3D point
* @return range (double)
*/
double range(const Pose3& pose, OptionalJacobian<1, 6> H1 = boost::none,
OptionalJacobian<1, 6> H2 = boost::none) const {
return pose_.range(pose, H1, H2);
}
/**
* Calculate range to another camera
* @param camera Other camera
* @param H1 optionally computed Jacobian with respect to pose
* @param H2 optionally computed Jacobian with respect to the 3D point
* @return range (double)
*/
double range(const CalibratedCamera& camera, OptionalJacobian<1, 6> H1 =
boost::none, OptionalJacobian<1, 6> H2 = boost::none) const {
return pose_.range(camera.pose_, H1, H2);
}
private:
/// @}
/// @name Advanced Interface
/// @{
/** Serialization function */
friend class boost::serialization::access;
template<class Archive>
void serialize(Archive & ar, const unsigned int version) {
ar & BOOST_SERIALIZATION_NVP(pose_);
}
/// @}
};
template<>
struct traits<CalibratedCamera> : public internal::Manifold<CalibratedCamera> {};
template<>
struct traits<const CalibratedCamera> : public internal::Manifold<CalibratedCamera> {};
}