168 lines
5.5 KiB
C++
168 lines
5.5 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file PartialPriorFactor.h
|
|
* @brief A simple prior factor that allows for setting a prior only on a part of linear parameters
|
|
* @author Alex Cunningham
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <gtsam/nonlinear/NonlinearFactor.h>
|
|
|
|
namespace gtsam {
|
|
|
|
/**
|
|
* A class for a soft partial prior on any Lie type, with a mask over Expmap
|
|
* parameters. Note that this will use Logmap() to find a tangent space parameterization
|
|
* for the variable attached, so this may fail for highly nonlinear manifolds.
|
|
*
|
|
* The prior vector used in this factor is stored in compressed form, such that
|
|
* it only contains values for measurements that are to be compared, and they are in
|
|
* the same order as T::Logmap(). The mask will determine which components to extract
|
|
* in the error function.
|
|
*
|
|
* It takes two template parameters:
|
|
* Key (typically TypedSymbol) is used to look up T's in a Values
|
|
* Values where the T's are stored, typically LieValues<Key> or a TupleValues<...>
|
|
*
|
|
* For practical use, it would be good to subclass this factor and have the class type
|
|
* construct the mask.
|
|
*/
|
|
template<class VALUES, class KEY>
|
|
class PartialPriorFactor: public NonlinearFactor1<VALUES, KEY> {
|
|
|
|
public:
|
|
typedef typename KEY::Value T;
|
|
|
|
protected:
|
|
|
|
typedef NonlinearFactor1<VALUES, KEY> Base;
|
|
typedef PartialPriorFactor<VALUES, KEY> This;
|
|
|
|
Vector prior_; /// measurement on logmap parameters, in compressed form
|
|
std::vector<bool> mask_; /// flags to mask all parameters not measured
|
|
|
|
/** default constructor - only use for serialization */
|
|
PartialPriorFactor() {}
|
|
|
|
/**
|
|
* constructor with just minimum requirements for a factor - allows more
|
|
* computation in the constructor. This should only be used by subclasses
|
|
* Sets the size of the mask with all values off
|
|
*/
|
|
PartialPriorFactor(const KEY& key, const SharedGaussian& model)
|
|
: Base(model, key), mask_(model->dim(), false) {}
|
|
|
|
public:
|
|
|
|
// shorthand for a smart pointer to a factor
|
|
typedef typename boost::shared_ptr<PartialPriorFactor> shared_ptr;
|
|
|
|
virtual ~PartialPriorFactor() {}
|
|
|
|
/** Full Constructor: requires mask and vector - not for typical use */
|
|
PartialPriorFactor(const KEY& key, const std::vector<bool>& mask,
|
|
const Vector& prior, const SharedGaussian& model) :
|
|
Base(model, key), prior_(prior), mask_(mask) {
|
|
assert(mask_.size() == T::Dim()); // NOTE: assumes constant size variable
|
|
assert(nrTrue() == model->dim());
|
|
assert(nrTrue() == prior_.size());
|
|
}
|
|
|
|
/** Single Element Constructor: acts on a single parameter specified by idx */
|
|
PartialPriorFactor(const KEY& key, size_t idx, double prior, const SharedGaussian& model) :
|
|
Base(model, key), prior_(Vector_(1, prior)), mask_(T::Dim(), false) {
|
|
assert(model->dim() == 1);
|
|
mask_[idx] = true;
|
|
assert(nrTrue() == 1);
|
|
}
|
|
|
|
/** Indices Constructor: specify the mask with a set of indices */
|
|
PartialPriorFactor(const KEY& key, const std::vector<size_t>& mask, const Vector& prior,
|
|
const SharedGaussian& model) :
|
|
Base(model, key), prior_(prior), mask_(T::Dim(), false) {
|
|
assert((size_t)prior_.size() == mask.size());
|
|
assert(model->dim() == (size_t) prior.size());
|
|
setMask(mask);
|
|
assert(nrTrue() == this->dim());
|
|
}
|
|
|
|
/** implement functions needed for Testable */
|
|
|
|
/** print */
|
|
virtual void print(const std::string& s) const {
|
|
Base::print(s);
|
|
gtsam::print(prior_, "prior");
|
|
}
|
|
|
|
/** equals */
|
|
virtual bool equals(const NonlinearFactor<VALUES>& expected, double tol=1e-9) const {
|
|
const This *e = dynamic_cast<const This*> (&expected);
|
|
return e != NULL && Base::equals(*e, tol) &&
|
|
gtsam::equal_with_abs_tol(this->prior_, e->prior_, tol) &&
|
|
this->mask_ == e->mask_;
|
|
}
|
|
|
|
/** implement functions needed to derive from Factor */
|
|
|
|
/** vector of errors */
|
|
Vector evaluateError(const T& p, boost::optional<Matrix&> H = boost::none) const {
|
|
if (H) (*H) = zeros(this->dim(), p.dim());
|
|
Vector full_logmap = T::Logmap(p);
|
|
Vector masked_logmap = zero(this->dim());
|
|
size_t masked_idx=0;
|
|
for (size_t i=0;i<mask_.size();++i)
|
|
if (mask_[i]) {
|
|
masked_logmap(masked_idx) = full_logmap(i);
|
|
if (H) (*H)(masked_idx, i) = 1.0;
|
|
++masked_idx;
|
|
}
|
|
return masked_logmap - prior_;
|
|
}
|
|
|
|
// access
|
|
const Vector& prior() const { return prior_; }
|
|
const std::vector<bool>& mask() const { return mask_; }
|
|
|
|
protected:
|
|
|
|
/** counts true elements in the mask */
|
|
size_t nrTrue() const {
|
|
size_t result=0;
|
|
for (size_t i=0; i<mask_.size(); ++i)
|
|
if (mask_[i]) ++result;
|
|
return result;
|
|
}
|
|
|
|
/** sets the mask using a set of indices */
|
|
void setMask(const std::vector<size_t>& mask) {
|
|
for (size_t i=0; i<mask.size(); ++i) {
|
|
assert(mask[i] < mask_.size());
|
|
mask_[mask[i]] = true;
|
|
}
|
|
}
|
|
|
|
private:
|
|
/** Serialization function */
|
|
friend class boost::serialization::access;
|
|
template<class ARCHIVE>
|
|
void serialize(ARCHIVE & ar, const unsigned int version) {
|
|
ar & boost::serialization::make_nvp("NonlinearFactor1",
|
|
boost::serialization::base_object<Base>(*this));
|
|
ar & BOOST_SERIALIZATION_NVP(prior_);
|
|
ar & BOOST_SERIALIZATION_NVP(mask_);
|
|
}
|
|
}; // \class PartialPriorFactor
|
|
|
|
} /// namespace gtsam
|