gtsam/gtsam/slam/RegularImplicitSchurFactor.h

494 lines
15 KiB
C++

/**
* @file RegularImplicitSchurFactor.h
* @brief A new type of linear factor (GaussianFactor), which is subclass of GaussianFactor
* @author Frank Dellaert
* @author Luca Carlone
*/
#pragma once
#include <gtsam/geometry/CameraSet.h>
#include <gtsam/linear/JacobianFactor.h>
#include <gtsam/linear/VectorValues.h>
#include <iosfwd>
namespace gtsam {
/**
* RegularImplicitSchurFactor
*/
template<class CAMERA>
class RegularImplicitSchurFactor: public GaussianFactor {
public:
typedef RegularImplicitSchurFactor This; ///< Typedef to this class
typedef boost::shared_ptr<This> shared_ptr; ///< shared_ptr to this class
protected:
// This factor is closely related to a CameraSet
typedef CameraSet<CAMERA> Set;
typedef typename CAMERA::Measurement Z;
static const int D = traits<CAMERA>::dimension; ///< Camera dimension
static const int ZDim = traits<Z>::dimension; ///< Measurement dimension
typedef Eigen::Matrix<double, ZDim, D> MatrixZD; ///< type of an F block
typedef Eigen::Matrix<double, D, D> MatrixDD; ///< camera hessian
const std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD> > FBlocks_; ///< All ZDim*D F blocks (one for each camera)
const Matrix PointCovariance_; ///< the 3*3 matrix P = inv(E'E) (2*2 if degenerate)
const Matrix E_; ///< The 2m*3 E Jacobian with respect to the point
const Vector b_; ///< 2m-dimensional RHS vector
public:
/// Constructor
RegularImplicitSchurFactor() {
}
/// Construct from blocks of F, E, inv(E'*E), and RHS vector b
RegularImplicitSchurFactor(const FastVector<Key>& keys,
const std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD> >& FBlocks, const Matrix& E, const Matrix& P,
const Vector& b) :
GaussianFactor(keys), FBlocks_(FBlocks), PointCovariance_(P), E_(E), b_(b) {
}
/// Destructor
virtual ~RegularImplicitSchurFactor() {
}
std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD> >& FBlocks() const {
return FBlocks_;
}
const Matrix& E() const {
return E_;
}
const Vector& b() const {
return b_;
}
const Matrix& getPointCovariance() const {
return PointCovariance_;
}
/// print
void print(const std::string& s = "", const KeyFormatter& keyFormatter =
DefaultKeyFormatter) const {
std::cout << " RegularImplicitSchurFactor " << std::endl;
Factor::print(s);
for (size_t pos = 0; pos < size(); ++pos) {
std::cout << "Fblock:\n" << FBlocks_[pos] << std::endl;
}
std::cout << "PointCovariance:\n" << PointCovariance_ << std::endl;
std::cout << "E:\n" << E_ << std::endl;
std::cout << "b:\n" << b_.transpose() << std::endl;
}
/// equals
bool equals(const GaussianFactor& lf, double tol) const {
const This* f = dynamic_cast<const This*>(&lf);
if (!f)
return false;
for (size_t k = 0; k < FBlocks_.size(); ++k) {
if (keys_[k] != f->keys_[k])
return false;
if (!equal_with_abs_tol(FBlocks_[k], f->FBlocks_[k], tol))
return false;
}
return equal_with_abs_tol(PointCovariance_, f->PointCovariance_, tol)
&& equal_with_abs_tol(E_, f->E_, tol)
&& equal_with_abs_tol(b_, f->b_, tol);
}
/// Degrees of freedom of camera
virtual DenseIndex getDim(const_iterator variable) const {
return D;
}
virtual void updateHessian(const FastVector<Key>& keys,
SymmetricBlockMatrix* info) const {
throw std::runtime_error(
"RegularImplicitSchurFactor::updateHessian non implemented");
}
virtual Matrix augmentedJacobian() const {
throw std::runtime_error(
"RegularImplicitSchurFactor::augmentedJacobian non implemented");
return Matrix();
}
virtual std::pair<Matrix, Vector> jacobian() const {
throw std::runtime_error(
"RegularImplicitSchurFactor::jacobian non implemented");
return std::make_pair(Matrix(), Vector());
}
/// *Compute* full augmented information matrix
virtual Matrix augmentedInformation() const {
// Do the Schur complement
SymmetricBlockMatrix augmentedHessian = //
Set::SchurComplement(FBlocks_, E_, b_);
return augmentedHessian.selfadjointView();
}
/// *Compute* full information matrix
virtual Matrix information() const {
Matrix augmented = augmentedInformation();
int m = this->keys_.size();
size_t M = D * m;
return augmented.block(0, 0, M, M);
}
/// Return the diagonal of the Hessian for this factor
virtual VectorValues hessianDiagonal() const {
// diag(Hessian) = diag(F' * (I - E * PointCov * E') * F);
VectorValues d;
for (size_t k = 0; k < size(); ++k) { // for each camera
Key j = keys_[k];
// Calculate Fj'*Ej for the current camera (observing a single point)
// D x 3 = (D x ZDim) * (ZDim x 3)
const MatrixZD& Fj = FBlocks_[k];
Eigen::Matrix<double, D, 3> FtE = Fj.transpose()
* E_.block<ZDim, 3>(ZDim * k, 0);
Eigen::Matrix<double, D, 1> dj;
for (int k = 0; k < D; ++k) { // for each diagonal element of the camera hessian
// Vector column_k_Fj = Fj.col(k);
dj(k) = Fj.col(k).squaredNorm(); // dot(column_k_Fj, column_k_Fj);
// Vector column_k_FtE = FtE.row(k);
// (1 x 1) = (1 x 3) * (3 * 3) * (3 x 1)
dj(k) -= FtE.row(k) * PointCovariance_ * FtE.row(k).transpose();
}
d.insert(j, dj);
}
return d;
}
/**
* @brief add the contribution of this factor to the diagonal of the hessian
* d(output) = d(input) + deltaHessianFactor
*/
virtual void hessianDiagonal(double* d) const {
// diag(Hessian) = diag(F' * (I - E * PointCov * E') * F);
// Use eigen magic to access raw memory
typedef Eigen::Matrix<double, D, 1> DVector;
typedef Eigen::Map<DVector> DMap;
for (size_t pos = 0; pos < size(); ++pos) { // for each camera in the factor
Key j = keys_[pos];
// Calculate Fj'*Ej for the current camera (observing a single point)
// D x 3 = (D x ZDim) * (ZDim x 3)
const MatrixZD& Fj = FBlocks_[pos];
Eigen::Matrix<double, D, 3> FtE = Fj.transpose()
* E_.block<ZDim, 3>(ZDim * pos, 0);
DVector dj;
for (int k = 0; k < D; ++k) { // for each diagonal element of the camera hessian
dj(k) = Fj.col(k).squaredNorm();
// (1 x 1) = (1 x 3) * (3 * 3) * (3 x 1)
dj(k) -= FtE.row(k) * PointCovariance_ * FtE.row(k).transpose();
}
DMap(d + D * j) += dj;
}
}
/// Return the block diagonal of the Hessian for this factor
virtual std::map<Key, Matrix> hessianBlockDiagonal() const {
std::map<Key, Matrix> blocks;
// F'*(I - E*P*E')*F
for (size_t pos = 0; pos < size(); ++pos) {
Key j = keys_[pos];
// F'*F - F'*E*P*E'*F e.g. (9*2)*(2*9) - (9*2)*(2*3)*(3*3)*(3*2)*(2*9)
const MatrixZD& Fj = FBlocks_[pos];
// Eigen::Matrix<double, D, 3> FtE = Fj.transpose()
// * E_.block<ZDim, 3>(ZDim * pos, 0);
// blocks[j] = Fj.transpose() * Fj
// - FtE * PointCovariance_ * FtE.transpose();
const Matrix23& Ej = E_.block<ZDim, 3>(ZDim * pos, 0);
blocks[j] = Fj.transpose()
* (Fj - Ej * PointCovariance_ * Ej.transpose() * Fj);
// F'*(I - E*P*E')*F, TODO: this should work, but it does not :-(
// static const Eigen::Matrix<double, ZDim, ZDim> I2 = eye(ZDim);
// Matrix2 Q = //
// I2 - E_.block<ZDim, 3>(ZDim * pos, 0) * PointCovariance_ * E_.block<ZDim, 3>(ZDim * pos, 0).transpose();
// blocks[j] = Fj.transpose() * Q * Fj;
}
return blocks;
}
virtual GaussianFactor::shared_ptr clone() const {
return boost::make_shared<RegularImplicitSchurFactor<CAMERA> >(keys_,
FBlocks_, PointCovariance_, E_, b_);
throw std::runtime_error(
"RegularImplicitSchurFactor::clone non implemented");
}
virtual bool empty() const {
return false;
}
virtual GaussianFactor::shared_ptr negate() const {
return boost::make_shared<RegularImplicitSchurFactor<CAMERA> >(keys_,
FBlocks_, PointCovariance_, E_, b_);
throw std::runtime_error(
"RegularImplicitSchurFactor::negate non implemented");
}
// Raw Vector version of y += F'*alpha*(I - E*P*E')*F*x, for testing
static
void multiplyHessianAdd(const Matrix& F, const Matrix& E,
const Matrix& PointCovariance, double alpha, const Vector& x, Vector& y) {
Vector e1 = F * x;
Vector d1 = E.transpose() * e1;
Vector d2 = PointCovariance * d1;
Vector e2 = E * d2;
Vector e3 = alpha * (e1 - e2);
y += F.transpose() * e3;
}
typedef std::vector<Vector2, Eigen::aligned_allocator<Vector2>> Error2s;
/**
* @brief Calculate corrected error Q*(e-ZDim*b) = (I - E*P*E')*(e-ZDim*b)
*/
void projectError2(const Error2s& e1, Error2s& e2) const {
// d1 = E.transpose() * (e1-ZDim*b) = (3*2m)*2m
Vector3 d1;
d1.setZero();
for (size_t k = 0; k < size(); k++)
d1 += E_.block<ZDim, 3>(ZDim * k, 0).transpose()
* (e1[k] - ZDim * b_.segment<ZDim>(k * ZDim));
// d2 = E.transpose() * e1 = (3*2m)*2m
Vector3 d2 = PointCovariance_ * d1;
// e3 = alpha*(e1 - E*d2) = 1*[2m-(2m*3)*3]
for (size_t k = 0; k < size(); k++)
e2[k] = e1[k] - ZDim * b_.segment<ZDim>(k * ZDim)
- E_.block<ZDim, 3>(ZDim * k, 0) * d2;
}
/*
* This definition matches the linearized error in the Hessian Factor:
* LinError(x) = x'*H*x - 2*x'*eta + f
* with:
* H = F' * (I-E'*P*E) * F = F' * Q * F
* eta = F' * (I-E'*P*E) * b = F' * Q * b
* f = nonlinear error
* (x'*H*x - 2*x'*eta + f) = x'*F'*Q*F*x - 2*x'*F'*Q *b + f = x'*F'*Q*(F*x - 2*b) + f
*/
virtual double error(const VectorValues& x) const {
// resize does not do malloc if correct size
e1.resize(size());
e2.resize(size());
// e1 = F * x - b = (2m*dm)*dm
for (size_t k = 0; k < size(); ++k)
e1[k] = FBlocks_[k] * x.at(keys_[k]);
projectError2(e1, e2);
double result = 0;
for (size_t k = 0; k < size(); ++k)
result += dot(e1[k], e2[k]);
double f = b_.squaredNorm();
return 0.5 * (result + f);
}
// needed to be GaussianFactor - (I - E*P*E')*(F*x - b)
// This is wrong and does not match the definition in Hessian,
// but it matches the definition of the Jacobian factor (JF)
double errorJF(const VectorValues& x) const {
// resize does not do malloc if correct size
e1.resize(size());
e2.resize(size());
// e1 = F * x - b = (2m*dm)*dm
for (size_t k = 0; k < size(); ++k)
e1[k] = FBlocks_[k] * x.at(keys_[k]) - b_.segment<ZDim>(k * ZDim);
projectError(e1, e2);
double result = 0;
for (size_t k = 0; k < size(); ++k)
result += dot(e2[k], e2[k]);
// std::cout << "implicitFactor::error result " << result << std::endl;
return 0.5 * result;
}
/**
* @brief Calculate corrected error Q*e = (I - E*P*E')*e
*/
void projectError(const Error2s& e1, Error2s& e2) const {
// d1 = E.transpose() * e1 = (3*2m)*2m
Vector3 d1;
d1.setZero();
for (size_t k = 0; k < size(); k++)
d1 += E_.block<ZDim, 3>(ZDim * k, 0).transpose() * e1[k];
// d2 = E.transpose() * e1 = (3*2m)*2m
Vector3 d2 = PointCovariance_ * d1;
// e3 = alpha*(e1 - E*d2) = 1*[2m-(2m*3)*3]
for (size_t k = 0; k < size(); k++)
e2[k] = e1[k] - E_.block<ZDim, 3>(ZDim * k, 0) * d2;
}
/// Scratch space for multiplyHessianAdd
mutable Error2s e1, e2;
/**
* @brief double* Hessian-vector multiply, i.e. y += F'*alpha*(I - E*P*E')*F*x
* RAW memory access! Assumes keys start at 0 and go to M-1, and x and and y are laid out that way
*/
void multiplyHessianAdd(double alpha, const double* x, double* y) const {
// Use eigen magic to access raw memory
typedef Eigen::Matrix<double, D, 1> DVector;
typedef Eigen::Map<DVector> DMap;
typedef Eigen::Map<const DVector> ConstDMap;
// resize does not do malloc if correct size
e1.resize(size());
e2.resize(size());
// e1 = F * x = (2m*dm)*dm
for (size_t k = 0; k < size(); ++k) {
Key key = keys_[k];
e1[k] = FBlocks_[k] * ConstDMap(x + D * key);
}
projectError(e1, e2);
// y += F.transpose()*e2 = (2d*2m)*2m
for (size_t k = 0; k < size(); ++k) {
Key key = keys_[k];
DMap(y + D * key) += FBlocks_[k].transpose() * alpha * e2[k];
}
}
void multiplyHessianAdd(double alpha, const double* x, double* y,
std::vector<size_t> keys) const {
}
;
/**
* @brief Hessian-vector multiply, i.e. y += F'*alpha*(I - E*P*E')*F*x
*/
void multiplyHessianAdd(double alpha, const VectorValues& x,
VectorValues& y) const {
// resize does not do malloc if correct size
e1.resize(size());
e2.resize(size());
// e1 = F * x = (2m*dm)*dm
for (size_t k = 0; k < size(); ++k)
e1[k] = FBlocks_[k] * x.at(keys_[k]);
projectError(e1, e2);
// y += F.transpose()*e2 = (2d*2m)*2m
for (size_t k = 0; k < size(); ++k) {
Key key = keys_[k];
static const Vector empty;
std::pair<VectorValues::iterator, bool> it = y.tryInsert(key, empty);
Vector& yi = it.first->second;
// Create the value as a zero vector if it does not exist.
if (it.second)
yi = Vector::Zero(FBlocks_[k].cols());
yi += FBlocks_[k].transpose() * alpha * e2[k];
}
}
/**
* @brief Dummy version to measure overhead of key access
*/
void multiplyHessianDummy(double alpha, const VectorValues& x,
VectorValues& y) const {
for (size_t k = 0; k < size(); ++k) {
static const Vector empty;
Key key = keys_[k];
std::pair<VectorValues::iterator, bool> it = y.tryInsert(key, empty);
Vector& yi = it.first->second;
yi = x.at(key);
}
}
/**
* Calculate gradient, which is -F'Q*b, see paper
*/
VectorValues gradientAtZero() const {
// calculate Q*b
e1.resize(size());
e2.resize(size());
for (size_t k = 0; k < size(); k++)
e1[k] = b_.segment<ZDim>(ZDim * k);
projectError(e1, e2);
// g = F.transpose()*e2
VectorValues g;
for (size_t k = 0; k < size(); ++k) {
Key key = keys_[k];
g.insert(key, -FBlocks_[k].transpose() * e2[k]);
}
// return it
return g;
}
/**
* Calculate gradient, which is -F'Q*b, see paper - RAW MEMORY ACCESS
*/
virtual void gradientAtZero(double* d) const {
// Use eigen magic to access raw memory
typedef Eigen::Matrix<double, D, 1> DVector;
typedef Eigen::Map<DVector> DMap;
// calculate Q*b
e1.resize(size());
e2.resize(size());
for (size_t k = 0; k < size(); k++)
e1[k] = b_.segment<ZDim>(ZDim * k);
projectError(e1, e2);
for (size_t k = 0; k < size(); ++k) { // for each camera in the factor
Key j = keys_[k];
DMap(d + D * j) += -FBlocks_[k].transpose() * e2[k];
}
}
/// Gradient wrt a key at any values
Vector gradient(Key key, const VectorValues& x) const {
throw std::runtime_error(
"gradient for RegularImplicitSchurFactor is not implemented yet");
}
};
// end class RegularImplicitSchurFactor
template<class CAMERA>
const int RegularImplicitSchurFactor<CAMERA>::D;
template<class CAMERA>
const int RegularImplicitSchurFactor<CAMERA>::ZDim;
// traits
template<class CAMERA> struct traits<RegularImplicitSchurFactor<CAMERA> > : public Testable<
RegularImplicitSchurFactor<CAMERA> > {
};
}