gtsam/python/gtsam/tests/test_Cal3Fisheye.py

209 lines
8.1 KiB
Python

"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Cal3Fisheye unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
Refactored: Roderick Koehle
"""
import unittest
import numpy as np
from gtsam.symbol_shorthand import K, L, P
from gtsam.utils.test_case import GtsamTestCase
import gtsam
def ulp(ftype=np.float64):
"""
Unit in the last place of floating point datatypes
"""
f = np.finfo(ftype)
return f.tiny / ftype(1 << f.nmant)
class TestCal3Fisheye(GtsamTestCase):
@classmethod
def setUpClass(cls):
"""
Equidistant fisheye projection
An equidistant fisheye projection with focal length f is defined
as the relation r/f = tan(theta), with r being the radius in the
image plane and theta the incident angle of the object point.
"""
x, y, z = 1.0, 0.0, 1.0
u, v = np.arctan2(x, z), 0.0
cls.obj_point = np.array([x, y, z])
cls.img_point = np.array([u, v])
p1 = [-1.0, 0.0, -1.0]
p2 = [ 1.0, 0.0, -1.0]
q1 = gtsam.Rot3(1.0, 0.0, 0.0, 0.0)
q2 = gtsam.Rot3(1.0, 0.0, 0.0, 0.0)
pose1 = gtsam.Pose3(q1, p1)
pose2 = gtsam.Pose3(q2, p2)
camera1 = gtsam.PinholeCameraCal3Fisheye(pose1)
camera2 = gtsam.PinholeCameraCal3Fisheye(pose2)
cls.origin = np.array([0.0, 0.0, 0.0])
cls.poses = gtsam.Pose3Vector([pose1, pose2])
cls.cameras = gtsam.CameraSetCal3Fisheye([camera1, camera2])
cls.measurements = gtsam.Point2Vector(
[k.project(cls.origin) for k in cls.cameras])
def test_Cal3Fisheye(self):
K = gtsam.Cal3Fisheye()
self.assertEqual(K.fx(), 1.)
self.assertEqual(K.fy(), 1.)
def test_distortion(self):
"""Fisheye distortion and rectification"""
equidistant = gtsam.Cal3Fisheye()
perspective_pt = self.obj_point[0:2] / self.obj_point[2]
distorted_pt = equidistant.uncalibrate(perspective_pt)
rectified_pt = equidistant.calibrate(distorted_pt)
self.gtsamAssertEquals(distorted_pt, self.img_point)
self.gtsamAssertEquals(rectified_pt, perspective_pt)
def test_pinhole(self):
"""Spatial equidistant camera projection"""
camera = gtsam.PinholeCameraCal3Fisheye()
pt1 = camera.Project(self.obj_point) # Perspective projection
pt2 = camera.project(self.obj_point) # Equidistant projection
x, y, z = self.obj_point
obj1 = camera.backproject(self.img_point, z)
r1 = camera.range(self.obj_point)
r = np.linalg.norm(self.obj_point)
self.gtsamAssertEquals(pt1, np.array([x/z, y/z]))
self.gtsamAssertEquals(pt2, self.img_point)
self.gtsamAssertEquals(obj1, self.obj_point)
self.assertEqual(r1, r)
def test_generic_factor(self):
"""Evaluate residual using pose and point as state variables"""
graph = gtsam.NonlinearFactorGraph()
state = gtsam.Values()
measured = self.img_point
noise_model = gtsam.noiseModel.Isotropic.Sigma(2, 1)
pose_key, point_key = P(0), L(0)
k = gtsam.Cal3Fisheye()
state.insert_pose3(pose_key, gtsam.Pose3())
state.insert_point3(point_key, self.obj_point)
factor = gtsam.GenericProjectionFactorCal3Fisheye(measured, noise_model, pose_key, point_key, k)
graph.add(factor)
score = graph.error(state)
self.assertAlmostEqual(score, 0)
def test_sfm_factor2(self):
"""Evaluate residual with camera, pose and point as state variables"""
graph = gtsam.NonlinearFactorGraph()
state = gtsam.Values()
measured = self.img_point
noise_model = gtsam.noiseModel.Isotropic.Sigma(2, 1)
camera_key, pose_key, landmark_key = K(0), P(0), L(0)
k = gtsam.Cal3Fisheye()
state.insert_cal3fisheye(camera_key, k)
state.insert_pose3(pose_key, gtsam.Pose3())
state.insert_point3(landmark_key, gtsam.Point3(self.obj_point))
factor = gtsam.GeneralSFMFactor2Cal3Fisheye(measured, noise_model, pose_key, landmark_key, camera_key)
graph.add(factor)
score = graph.error(state)
self.assertAlmostEqual(score, 0)
def test_jacobian_on_axis(self):
"""Check of jacobian at optical axis"""
obj_point_on_axis = np.array([0, 0, 1])
img_point = np.array([0, 0])
f, z, H = self.evaluate_jacobian(obj_point_on_axis, img_point)
self.assertAlmostEqual(f, 0)
self.gtsamAssertEquals(z, np.zeros(2))
self.gtsamAssertEquals(H @ H.T, 3*np.eye(2))
def test_jacobian_convergence(self):
"""Test stability of jacobian close to optical axis"""
t = ulp(np.float64)
obj_point_close_to_axis = np.array([t, 0, 1])
img_point = np.array([np.sqrt(t), 0])
f, z, H = self.evaluate_jacobian(obj_point_close_to_axis, img_point)
self.assertAlmostEqual(f, 0)
self.gtsamAssertEquals(z, np.zeros(2))
self.gtsamAssertEquals(H @ H.T, 3*np.eye(2))
# With a height of sqrt(ulp), this may cause an overflow
t = ulp(np.float64)
obj_point_close_to_axis = np.array([np.sqrt(t), 0, 1])
img_point = np.array([np.sqrt(t), 0])
f, z, H = self.evaluate_jacobian(obj_point_close_to_axis, img_point)
self.assertAlmostEqual(f, 0)
self.gtsamAssertEquals(z, np.zeros(2))
self.gtsamAssertEquals(H @ H.T, 3*np.eye(2))
def test_scaling_factor(self):
"""Check convergence of atan2(r, z)/r ~ 1/z for small r"""
r = ulp(np.float64)
s = np.arctan(r) / r
self.assertEqual(s, 1.0)
z = 1
s = self.scaling_factor(r, z)
self.assertEqual(s, 1.0/z)
z = 2
s = self.scaling_factor(r, z)
self.assertEqual(s, 1.0/z)
s = self.scaling_factor(2*r, z)
self.assertEqual(s, 1.0/z)
@staticmethod
def scaling_factor(r, z):
"""Projection factor theta/r for equidistant fisheye lens model"""
return np.arctan2(r, z) / r if r/z != 0 else 1.0/z
@staticmethod
def evaluate_jacobian(obj_point, img_point):
"""Evaluate jacobian at given object point"""
pose = gtsam.Pose3()
camera = gtsam.Cal3Fisheye()
state = gtsam.Values()
pose_key, landmark_key = P(0), L(0)
state.insert_point3(landmark_key, obj_point)
state.insert_pose3(pose_key, pose)
g = gtsam.NonlinearFactorGraph()
noise_model = gtsam.noiseModel.Unit.Create(2)
factor = gtsam.GenericProjectionFactorCal3Fisheye(img_point, noise_model, pose_key, landmark_key, camera)
g.add(factor)
f = g.error(state)
gaussian_factor_graph = g.linearize(state)
H, z = gaussian_factor_graph.jacobian()
return f, z, H
@unittest.skip("triangulatePoint3 currently seems to require perspective projections.")
def test_triangulation_skipped(self):
"""Estimate spatial point from image measurements"""
triangulated = gtsam.triangulatePoint3(self.cameras, self.measurements, rank_tol=1e-9, optimize=True)
self.gtsamAssertEquals(triangulated, self.origin)
def test_triangulation_rectify(self):
"""Estimate spatial point from image measurements using rectification"""
rectified = [k.calibration().calibrate(pt) for k, pt in zip(self.cameras, self.measurements)]
shared_cal = gtsam.Cal3_S2()
triangulated = gtsam.triangulatePoint3(self.poses, shared_cal, rectified, rank_tol=1e-9, optimize=False)
self.gtsamAssertEquals(triangulated, self.origin)
def test_retract(self):
expected = gtsam.Cal3Fisheye(100 + 2, 105 + 3, 0.0 + 4, 320 + 5, 240 + 6,
1e-3 + 7, 2.0*1e-3 + 8, 3.0*1e-3 + 9, 4.0*1e-3 + 10)
k = gtsam.Cal3Fisheye(100, 105, 0.0, 320, 240,
1e-3, 2.0*1e-3, 3.0*1e-3, 4.0*1e-3)
d = np.array([2, 3, 4, 5, 6, 7, 8, 9, 10], order='F')
actual = k.retract(d)
self.gtsamAssertEquals(actual, expected)
np.testing.assert_allclose(d, k.localCoordinates(actual))
if __name__ == "__main__":
unittest.main()