gtsam/gtsam/basis/FitBasis.h

100 lines
3.1 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file FitBasis.h
* @date July 4, 2020
* @author Varun Agrawal, Frank Dellaert
* @brief Fit a Basis using least-squares
*/
/*
* Concept needed for LS. Parameters = Coefficients | Values
* - Parameters, Jacobian
* - PredictFactor(double x)(Parameters p, OptionalJacobian<1,N> H)
*/
#pragma once
#include <gtsam/basis/Basis.h>
#include <gtsam/basis/BasisFactors.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/VectorValues.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
namespace gtsam {
/// Our sequence representation is a map of {x: y} values where y = f(x)
using Sequence = std::map<double, double>;
/// A sample is a key-value pair from a sequence.
using Sample = std::pair<double, double>;
/**
* Class that does regression via least squares
* Example usage:
* size_t N = 3;
* auto fit = FitBasis<Chebyshev2>(data_points, noise_model, N);
* Vector coefficients = fit.parameters();
*
* where `data_points` are a map from `x` to `y` values indicating a function
* mapping at specific points, `noise_model` is the gaussian noise model, and
* `N` is the degree of the polynomial basis used to fit the function.
*/
template <class Basis>
class FitBasis {
public:
using Parameters = typename Basis::Parameters;
private:
Parameters parameters_;
public:
/// Create nonlinear FG from Sequence
static NonlinearFactorGraph NonlinearGraph(const Sequence& sequence,
const SharedNoiseModel& model,
size_t N) {
NonlinearFactorGraph graph;
for (const Sample sample : sequence) {
graph.emplace_shared<EvaluationFactor<Basis>>(0, sample.second, model, N,
sample.first);
}
return graph;
}
/// Create linear FG from Sequence
static GaussianFactorGraph::shared_ptr LinearGraph(
const Sequence& sequence, const SharedNoiseModel& model, size_t N) {
NonlinearFactorGraph graph = NonlinearGraph(sequence, model, N);
Values values;
values.insert<Parameters>(0, Parameters::Zero(N));
GaussianFactorGraph::shared_ptr gfg = graph.linearize(values);
return gfg;
}
/**
* @brief Construct a new FitBasis object.
*
* @param sequence map of x->y values for a function, a.k.a. y = f(x).
* @param model The noise model to use.
* @param N The degree of the polynomial to fit.
*/
FitBasis(const Sequence& sequence, const SharedNoiseModel& model, size_t N) {
GaussianFactorGraph::shared_ptr gfg = LinearGraph(sequence, model, N);
VectorValues solution = gfg->optimize();
parameters_ = solution.at(0);
}
/// Return Fourier coefficients
Parameters parameters() const { return parameters_; }
};
} // namespace gtsam