134 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			134 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file    LinearConstraintSQP.cpp
 | 
						|
 * @author  Duy-Nguyen Ta
 | 
						|
 * @author  Krunal Chande
 | 
						|
 * @author  Luca Carlone
 | 
						|
 * @date    Dec 15, 2014
 | 
						|
 */
 | 
						|
 | 
						|
#include <gtsam/inference/FactorGraph-inst.h>
 | 
						|
#include <gtsam_unstable/linear/QPSolver.h>
 | 
						|
#include <gtsam_unstable/nonlinear/LinearConstraintSQP.h>
 | 
						|
#include <gtsam_unstable/nonlinear/ConstrainedFactor.h>
 | 
						|
#include <iostream>
 | 
						|
 | 
						|
namespace gtsam {
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
bool LinearConstraintSQP::isStationary(const VectorValues& delta) const {
 | 
						|
  return delta.vector().lpNorm<Eigen::Infinity>() < params_.errorTol;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
bool LinearConstraintSQP::isPrimalFeasible(const LinearConstraintNLPState& state) const {
 | 
						|
  return lcnlp_.linearEqualities.checkFeasibility(state.values, params_.errorTol);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
bool LinearConstraintSQP::isDualFeasible(const VectorValues& duals) const {
 | 
						|
  BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, lcnlp_.linearInequalities) {
 | 
						|
    ConstrainedFactor::shared_ptr inequality
 | 
						|
        = boost::dynamic_pointer_cast<ConstrainedFactor>(factor);
 | 
						|
 | 
						|
    Key dualKey = inequality->dualKey();
 | 
						|
    if (!duals.exists(dualKey)) continue; // should be inactive constraint!
 | 
						|
    double dual = duals.at(dualKey)[0];// because we only support single-valued inequalities
 | 
						|
    if (dual > 0.0) // See the explanation in QPSolver::identifyLeavingConstraint, we want dual < 0 ?
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
bool LinearConstraintSQP::isComplementary(const LinearConstraintNLPState& state) const {
 | 
						|
  return lcnlp_.linearInequalities.checkFeasibilityAndComplimentary(
 | 
						|
      state.values, state.duals, params_.errorTol);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
bool LinearConstraintSQP::checkConvergence(const LinearConstraintNLPState& state,
 | 
						|
    const VectorValues& delta) const {
 | 
						|
  return isStationary(delta) && isPrimalFeasible(state)
 | 
						|
      && isDualFeasible(state.duals) && isComplementary(state);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
VectorValues LinearConstraintSQP::initializeDuals() const {
 | 
						|
  VectorValues duals;
 | 
						|
  BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, lcnlp_.linearEqualities){
 | 
						|
    ConstrainedFactor::shared_ptr constraint
 | 
						|
        = boost::dynamic_pointer_cast<ConstrainedFactor>(factor);
 | 
						|
    duals.insert(constraint->dualKey(), Vector::Zero(factor->dim()));
 | 
						|
  }
 | 
						|
 | 
						|
  return duals;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
LinearConstraintNLPState LinearConstraintSQP::iterate(
 | 
						|
    const LinearConstraintNLPState& state) const {
 | 
						|
 | 
						|
  // construct the qp subproblem
 | 
						|
  QP qp;
 | 
						|
  qp.cost = *lcnlp_.cost.linearize(state.values);
 | 
						|
  qp.equalities.add(*lcnlp_.linearEqualities.linearize(state.values));
 | 
						|
  qp.inequalities.add(*lcnlp_.linearInequalities.linearize(state.values));
 | 
						|
 | 
						|
  if(params_.verbosity >= NonlinearOptimizerParams::LINEAR)
 | 
						|
    qp.print("QP subproblem:");
 | 
						|
 | 
						|
  // solve the QP subproblem
 | 
						|
  VectorValues delta, duals;
 | 
						|
  QPSolver qpSolver(qp);
 | 
						|
  VectorValues zeroInitialValues;
 | 
						|
  BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, state.values)
 | 
						|
    zeroInitialValues.insert(key_value.key, Vector::Zero(key_value.value.dim()));
 | 
						|
 | 
						|
  boost::tie(delta, duals) = qpSolver.optimize(zeroInitialValues, state.duals,
 | 
						|
      params_.warmStart);
 | 
						|
 | 
						|
  if(params_.verbosity >= NonlinearOptimizerParams::DELTA)
 | 
						|
    delta.print("Delta");
 | 
						|
 | 
						|
  // update new state
 | 
						|
  LinearConstraintNLPState newState;
 | 
						|
  newState.values = state.values.retract(delta);
 | 
						|
  newState.duals = duals;
 | 
						|
  newState.converged = checkConvergence(newState, delta);
 | 
						|
  newState.iterations = state.iterations + 1;
 | 
						|
 | 
						|
  if(params_.verbosity >= NonlinearOptimizerParams::VALUES)
 | 
						|
    newState.print("Values");
 | 
						|
 | 
						|
  return newState;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
std::pair<Values, VectorValues> LinearConstraintSQP::optimize(
 | 
						|
    const Values& initialValues) const {
 | 
						|
  LinearConstraintNLPState state(initialValues);
 | 
						|
  state.duals = initializeDuals();
 | 
						|
  while (!state.converged && state.iterations < params_.maxIterations) {
 | 
						|
    if(params_.verbosity >= NonlinearOptimizerParams::ERROR)
 | 
						|
      std::cout << "Iteration # " << state.iterations << std::endl;
 | 
						|
    state = iterate(state);
 | 
						|
  }
 | 
						|
  if(params_.verbosity >= NonlinearOptimizerParams::TERMINATION)
 | 
						|
    std::cout << "Number of iterations: " << state.iterations << std::endl;
 | 
						|
  return std::make_pair(state.values, state.duals);
 | 
						|
}
 | 
						|
 | 
						|
} // namespace gtsam
 | 
						|
 |