140 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			140 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file    IncrementalFixedLagSmoother.h
 | 
						|
 * @brief   An iSAM2-based fixed-lag smoother.
 | 
						|
 *
 | 
						|
 * @author  Michael Kaess, Stephen Williams
 | 
						|
 * @date    Oct 14, 2012
 | 
						|
 */
 | 
						|
 | 
						|
// \callgraph
 | 
						|
#pragma once
 | 
						|
 | 
						|
#include <gtsam_unstable/nonlinear/FixedLagSmoother.h>
 | 
						|
#include <gtsam/nonlinear/ISAM2.h>
 | 
						|
 | 
						|
namespace gtsam {
 | 
						|
 | 
						|
/**
 | 
						|
 * This is a base class for the various HMF2 implementations. The HMF2 eliminates the factor graph
 | 
						|
 * such that the active states are placed in/near the root. This base class implements a function
 | 
						|
 * to calculate the ordering, and an update function to incorporate new factors into the HMF.
 | 
						|
 */
 | 
						|
class GTSAM_UNSTABLE_EXPORT IncrementalFixedLagSmoother: public FixedLagSmoother {
 | 
						|
 | 
						|
public:
 | 
						|
 | 
						|
  /// Typedef for a shared pointer to an Incremental Fixed-Lag Smoother
 | 
						|
  typedef boost::shared_ptr<IncrementalFixedLagSmoother> shared_ptr;
 | 
						|
 | 
						|
  /** default constructor */
 | 
						|
  IncrementalFixedLagSmoother(double smootherLag = 0.0,
 | 
						|
      const ISAM2Params& parameters = ISAM2Params()) :
 | 
						|
      FixedLagSmoother(smootherLag), isam_(parameters) {
 | 
						|
  }
 | 
						|
 | 
						|
  /** destructor */
 | 
						|
  virtual ~IncrementalFixedLagSmoother() {
 | 
						|
  }
 | 
						|
 | 
						|
  /** Print the factor for debugging and testing (implementing Testable) */
 | 
						|
  virtual void print(const std::string& s = "IncrementalFixedLagSmoother:\n",
 | 
						|
      const KeyFormatter& keyFormatter = DefaultKeyFormatter) const;
 | 
						|
 | 
						|
  /** Check if two IncrementalFixedLagSmoother Objects are equal */
 | 
						|
  virtual bool equals(const FixedLagSmoother& rhs, double tol = 1e-9) const;
 | 
						|
 | 
						|
  /**
 | 
						|
   * Add new factors, updating the solution and re-linearizing as needed.
 | 
						|
   * @param newFactors new factors on old and/or new variables
 | 
						|
   * @param newTheta new values for new variables only
 | 
						|
   * @param timestamps an (optional) map from keys to real time stamps
 | 
						|
   */
 | 
						|
  Result update(const NonlinearFactorGraph& newFactors = NonlinearFactorGraph(),
 | 
						|
      const Values& newTheta = Values(), //
 | 
						|
      const KeyTimestampMap& timestamps = KeyTimestampMap());
 | 
						|
 | 
						|
  /** Compute an estimate from the incomplete linear delta computed during the last update.
 | 
						|
   * This delta is incomplete because it was not updated below wildfire_threshold.  If only
 | 
						|
   * a single variable is needed, it is faster to call calculateEstimate(const KEY&).
 | 
						|
   */
 | 
						|
  Values calculateEstimate() const {
 | 
						|
    return isam_.calculateEstimate();
 | 
						|
  }
 | 
						|
 | 
						|
  /** Compute an estimate for a single variable using its incomplete linear delta computed
 | 
						|
   * during the last update.  This is faster than calling the no-argument version of
 | 
						|
   * calculateEstimate, which operates on all variables.
 | 
						|
   * @param key
 | 
						|
   * @return
 | 
						|
   */
 | 
						|
  template<class VALUE>
 | 
						|
  VALUE calculateEstimate(Key key) const {
 | 
						|
    return isam_.calculateEstimate<VALUE>(key);
 | 
						|
  }
 | 
						|
 | 
						|
  /** return the current set of iSAM2 parameters */
 | 
						|
  const ISAM2Params& params() const {
 | 
						|
    return isam_.params();
 | 
						|
  }
 | 
						|
 | 
						|
  /** Access the current set of factors */
 | 
						|
  const NonlinearFactorGraph& getFactors() const {
 | 
						|
    return isam_.getFactorsUnsafe();
 | 
						|
  }
 | 
						|
 | 
						|
  /** Access the current linearization point */
 | 
						|
  const Values& getLinearizationPoint() const {
 | 
						|
    return isam_.getLinearizationPoint();
 | 
						|
  }
 | 
						|
 | 
						|
  /** Access the current set of deltas to the linearization point */
 | 
						|
  const VectorValues& getDelta() const {
 | 
						|
    return isam_.getDelta();
 | 
						|
  }
 | 
						|
 | 
						|
  /// Calculate marginal covariance on given variable
 | 
						|
  Matrix marginalCovariance(Key key) const {
 | 
						|
    return isam_.marginalCovariance(key);
 | 
						|
  }
 | 
						|
 | 
						|
protected:
 | 
						|
  /** An iSAM2 object used to perform inference. The smoother lag is controlled
 | 
						|
   * by what factors are removed each iteration */
 | 
						|
  ISAM2 isam_;
 | 
						|
 | 
						|
  /** Erase any keys associated with timestamps before the provided time */
 | 
						|
  void eraseKeysBefore(double timestamp);
 | 
						|
 | 
						|
  /** Fill in an iSAM2 ConstrainedKeys structure such that the provided keys are eliminated before all others */
 | 
						|
  void createOrderingConstraints(const std::set<Key>& marginalizableKeys,
 | 
						|
      boost::optional<FastMap<Key, int> >& constrainedKeys) const;
 | 
						|
 | 
						|
private:
 | 
						|
  /** Private methods for printing debug information */
 | 
						|
  static void PrintKeySet(const std::set<Key>& keys, const std::string& label =
 | 
						|
      "Keys:");
 | 
						|
  static void PrintSymbolicFactor(const GaussianFactor::shared_ptr& factor);
 | 
						|
  static void PrintSymbolicGraph(const GaussianFactorGraph& graph,
 | 
						|
      const std::string& label = "Factor Graph:");
 | 
						|
  static void PrintSymbolicTree(const gtsam::ISAM2& isam,
 | 
						|
      const std::string& label = "Bayes Tree:");
 | 
						|
  static void PrintSymbolicTreeHelper(
 | 
						|
      const gtsam::ISAM2Clique::shared_ptr& clique, const std::string indent =
 | 
						|
          "");
 | 
						|
 | 
						|
};
 | 
						|
// IncrementalFixedLagSmoother
 | 
						|
 | 
						|
}/// namespace gtsam
 |