Fixed conversion arguments
parent
021ee1a5d9
commit
fbfc20b88d
|
@ -61,12 +61,12 @@ HybridBayesNet createHybridBayesNet(int num_measurements = 1) {
|
||||||
}
|
}
|
||||||
|
|
||||||
HybridGaussianFactorGraph convertBayesNet(const HybridBayesNet& bayesNet,
|
HybridGaussianFactorGraph convertBayesNet(const HybridBayesNet& bayesNet,
|
||||||
const HybridValues& values) {
|
const VectorValues& measurements) {
|
||||||
HybridGaussianFactorGraph fg;
|
HybridGaussianFactorGraph fg;
|
||||||
int num_measurements = bayesNet.size() - 2;
|
int num_measurements = bayesNet.size() - 2;
|
||||||
for (int i = 0; i < num_measurements; i++) {
|
for (int i = 0; i < num_measurements; i++) {
|
||||||
auto conditional = bayesNet.atMixture(i);
|
auto conditional = bayesNet.atMixture(i);
|
||||||
auto factor = conditional->likelihood(values.continuousSubset({Z(i)}));
|
auto factor = conditional->likelihood({{Z(i), measurements.at(Z(i))}});
|
||||||
fg.push_back(factor);
|
fg.push_back(factor);
|
||||||
}
|
}
|
||||||
fg.push_back(bayesNet.atGaussian(num_measurements));
|
fg.push_back(bayesNet.atGaussian(num_measurements));
|
||||||
|
@ -79,14 +79,14 @@ HybridGaussianFactorGraph createHybridGaussianFactorGraph(
|
||||||
auto bayesNet = createHybridBayesNet(num_measurements);
|
auto bayesNet = createHybridBayesNet(num_measurements);
|
||||||
if (deterministic) {
|
if (deterministic) {
|
||||||
// Create a deterministic set of measurements:
|
// Create a deterministic set of measurements:
|
||||||
HybridValues values{{}, {{M(0), 0}}};
|
VectorValues measurements;
|
||||||
for (int i = 0; i < num_measurements; i++) {
|
for (int i = 0; i < num_measurements; i++) {
|
||||||
values.insert(Z(i), Vector1(5.0 + 0.1 * i));
|
measurements.insert(Z(i), Vector1(5.0 + 0.1 * i));
|
||||||
}
|
}
|
||||||
return convertBayesNet(bayesNet, values);
|
return convertBayesNet(bayesNet, measurements);
|
||||||
} else {
|
} else {
|
||||||
// Create a random set of measurements:
|
// Create a random set of measurements:
|
||||||
return convertBayesNet(bayesNet, bayesNet.sample());
|
return convertBayesNet(bayesNet, bayesNet.sample().continuous());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue