diff --git a/gtsam/hybrid/tests/TinyHybridExample.h b/gtsam/hybrid/tests/TinyHybridExample.h index f92b8254b..9175351c8 100644 --- a/gtsam/hybrid/tests/TinyHybridExample.h +++ b/gtsam/hybrid/tests/TinyHybridExample.h @@ -61,12 +61,12 @@ HybridBayesNet createHybridBayesNet(int num_measurements = 1) { } HybridGaussianFactorGraph convertBayesNet(const HybridBayesNet& bayesNet, - const HybridValues& values) { + const VectorValues& measurements) { HybridGaussianFactorGraph fg; int num_measurements = bayesNet.size() - 2; for (int i = 0; i < num_measurements; i++) { auto conditional = bayesNet.atMixture(i); - auto factor = conditional->likelihood(values.continuousSubset({Z(i)})); + auto factor = conditional->likelihood({{Z(i), measurements.at(Z(i))}}); fg.push_back(factor); } fg.push_back(bayesNet.atGaussian(num_measurements)); @@ -79,14 +79,14 @@ HybridGaussianFactorGraph createHybridGaussianFactorGraph( auto bayesNet = createHybridBayesNet(num_measurements); if (deterministic) { // Create a deterministic set of measurements: - HybridValues values{{}, {{M(0), 0}}}; + VectorValues measurements; for (int i = 0; i < num_measurements; i++) { - values.insert(Z(i), Vector1(5.0 + 0.1 * i)); + measurements.insert(Z(i), Vector1(5.0 + 0.1 * i)); } - return convertBayesNet(bayesNet, values); + return convertBayesNet(bayesNet, measurements); } else { // Create a random set of measurements: - return convertBayesNet(bayesNet, bayesNet.sample()); + return convertBayesNet(bayesNet, bayesNet.sample().continuous()); } }