Fixed conversion arguments
parent
021ee1a5d9
commit
fbfc20b88d
|
@ -61,12 +61,12 @@ HybridBayesNet createHybridBayesNet(int num_measurements = 1) {
|
|||
}
|
||||
|
||||
HybridGaussianFactorGraph convertBayesNet(const HybridBayesNet& bayesNet,
|
||||
const HybridValues& values) {
|
||||
const VectorValues& measurements) {
|
||||
HybridGaussianFactorGraph fg;
|
||||
int num_measurements = bayesNet.size() - 2;
|
||||
for (int i = 0; i < num_measurements; i++) {
|
||||
auto conditional = bayesNet.atMixture(i);
|
||||
auto factor = conditional->likelihood(values.continuousSubset({Z(i)}));
|
||||
auto factor = conditional->likelihood({{Z(i), measurements.at(Z(i))}});
|
||||
fg.push_back(factor);
|
||||
}
|
||||
fg.push_back(bayesNet.atGaussian(num_measurements));
|
||||
|
@ -79,14 +79,14 @@ HybridGaussianFactorGraph createHybridGaussianFactorGraph(
|
|||
auto bayesNet = createHybridBayesNet(num_measurements);
|
||||
if (deterministic) {
|
||||
// Create a deterministic set of measurements:
|
||||
HybridValues values{{}, {{M(0), 0}}};
|
||||
VectorValues measurements;
|
||||
for (int i = 0; i < num_measurements; i++) {
|
||||
values.insert(Z(i), Vector1(5.0 + 0.1 * i));
|
||||
measurements.insert(Z(i), Vector1(5.0 + 0.1 * i));
|
||||
}
|
||||
return convertBayesNet(bayesNet, values);
|
||||
return convertBayesNet(bayesNet, measurements);
|
||||
} else {
|
||||
// Create a random set of measurements:
|
||||
return convertBayesNet(bayesNet, bayesNet.sample());
|
||||
return convertBayesNet(bayesNet, bayesNet.sample().continuous());
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue