Add evaluate test
parent
fd12181ebe
commit
7c91fe82b4
|
@ -0,0 +1,66 @@
|
||||||
|
"""
|
||||||
|
GTSAM Copyright 2010-2022, Georgia Tech Research Corporation,
|
||||||
|
Atlanta, Georgia 30332-0415
|
||||||
|
All Rights Reserved
|
||||||
|
|
||||||
|
See LICENSE for the license information
|
||||||
|
|
||||||
|
Unit tests for Hybrid Values.
|
||||||
|
Author: Frank Dellaert
|
||||||
|
"""
|
||||||
|
# pylint: disable=invalid-name, no-name-in-module, no-member
|
||||||
|
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import unittest
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from gtsam.symbol_shorthand import A, X
|
||||||
|
from gtsam.utils.test_case import GtsamTestCase
|
||||||
|
|
||||||
|
import gtsam
|
||||||
|
from gtsam import GaussianConditional, GaussianMixture, HybridBayesNet, HybridValues, noiseModel
|
||||||
|
|
||||||
|
|
||||||
|
class TestHybridBayesNet(GtsamTestCase):
|
||||||
|
"""Unit tests for HybridValues."""
|
||||||
|
|
||||||
|
def test_evaluate(self):
|
||||||
|
"""Test evaluate for a hybrid Bayes net P(X0|X1) P(X1|Asia) P(Asia)."""
|
||||||
|
asiaKey = A(0)
|
||||||
|
Asia = (asiaKey, 2)
|
||||||
|
|
||||||
|
# Create the continuous conditional
|
||||||
|
I_1x1 = np.eye(1)
|
||||||
|
gc = GaussianConditional.FromMeanAndStddev(X(0), 2 * I_1x1, X(1), [-4], 5.0)
|
||||||
|
|
||||||
|
# Create the noise models
|
||||||
|
model0 = noiseModel.Diagonal.Sigmas([2.0])
|
||||||
|
model1 = noiseModel.Diagonal.Sigmas([3.0])
|
||||||
|
|
||||||
|
# Create the conditionals
|
||||||
|
conditional0 = GaussianConditional(X(1), [5], I_1x1, model0)
|
||||||
|
conditional1 = GaussianConditional(X(1), [2], I_1x1, model1)
|
||||||
|
# gm = GaussianMixture.FromConditionals([X(1)], [], [Asia], [conditional0, conditional1]) #
|
||||||
|
|
||||||
|
# Create hybrid Bayes net.
|
||||||
|
bayesNet = HybridBayesNet()
|
||||||
|
bayesNet.addGaussian(gc)
|
||||||
|
# bayesNet.addMixture(gm)
|
||||||
|
bayesNet.addDiscrete(Asia, "99/1")
|
||||||
|
|
||||||
|
# Create values at which to evaluate.
|
||||||
|
values = HybridValues()
|
||||||
|
values.insert(asiaKey, 0)
|
||||||
|
values.insert(X(0), [-6])
|
||||||
|
values.insert(X(1), [1])
|
||||||
|
|
||||||
|
conditionalProbability = gc.evaluate(values.continuous())
|
||||||
|
mixtureProbability = conditional0.evaluate(values.continuous())
|
||||||
|
assert self.assertAlmostEqual(
|
||||||
|
conditionalProbability * mixtureProbability * 0.99, bayesNet.evaluate(values), places=5
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
unittest.main()
|
Loading…
Reference in New Issue