created class LagoInitialized with working unit test
parent
1e7e386857
commit
569f7bb292
82
.cproject
82
.cproject
|
|
@ -568,7 +568,6 @@
|
|||
</target>
|
||||
<target name="tests/testBayesTree.run" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>tests/testBayesTree.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
|
@ -576,7 +575,6 @@
|
|||
</target>
|
||||
<target name="testBinaryBayesNet.run" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>testBinaryBayesNet.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
|
@ -624,7 +622,6 @@
|
|||
</target>
|
||||
<target name="testSymbolicBayesNet.run" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>testSymbolicBayesNet.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
|
@ -632,7 +629,6 @@
|
|||
</target>
|
||||
<target name="tests/testSymbolicFactor.run" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>tests/testSymbolicFactor.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
|
@ -640,7 +636,6 @@
|
|||
</target>
|
||||
<target name="testSymbolicFactorGraph.run" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>testSymbolicFactorGraph.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
|
@ -656,20 +651,11 @@
|
|||
</target>
|
||||
<target name="tests/testBayesTree" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>tests/testBayesTree</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testPlanarSLAMExample_lago.run" path="build/examples/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j5</buildArguments>
|
||||
<buildTarget>testPlanarSLAMExample_lago.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testPoseRTV.run" path="build/gtsam_unstable/dynamics" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j5</buildArguments>
|
||||
|
|
@ -1024,7 +1010,6 @@
|
|||
</target>
|
||||
<target name="testErrors.run" path="linear" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>testErrors.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
|
@ -1070,14 +1055,6 @@
|
|||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testParticleFactor.run" path="build/gtsam_unstable/nonlinear" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j5</buildArguments>
|
||||
<buildTarget>testParticleFactor.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="check" path="base" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j2</buildArguments>
|
||||
|
|
@ -1158,6 +1135,14 @@
|
|||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testParticleFactor.run" path="build/gtsam_unstable/nonlinear" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j5</buildArguments>
|
||||
<buildTarget>testParticleFactor.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="check" path="build/inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j2</buildArguments>
|
||||
|
|
@ -1262,22 +1247,6 @@
|
|||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testImuFactor.run" path="build/gtsam/navigation" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j5</buildArguments>
|
||||
<buildTarget>testImuFactor.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testCombinedImuFactor.run" path="build/gtsam/navigation" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j5</buildArguments>
|
||||
<buildTarget>testCombinedImuFactor.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="all" path="slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j2</buildArguments>
|
||||
|
|
@ -1360,6 +1329,7 @@
|
|||
</target>
|
||||
<target name="testSimulated2DOriented.run" path="slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>testSimulated2DOriented.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
|
@ -1399,6 +1369,7 @@
|
|||
</target>
|
||||
<target name="testSimulated2D.run" path="slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>testSimulated2D.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
|
@ -1406,6 +1377,7 @@
|
|||
</target>
|
||||
<target name="testSimulated3D.run" path="slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>testSimulated3D.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
|
@ -1419,6 +1391,22 @@
|
|||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testImuFactor.run" path="build/gtsam/navigation" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j5</buildArguments>
|
||||
<buildTarget>testImuFactor.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testCombinedImuFactor.run" path="build/gtsam/navigation" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j5</buildArguments>
|
||||
<buildTarget>testCombinedImuFactor.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testVectorValues.run" path="build/gtsam/linear" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j5</buildArguments>
|
||||
|
|
@ -1724,7 +1712,6 @@
|
|||
</target>
|
||||
<target name="Generate DEB Package" path="" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>cpack</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>-G DEB</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
|
@ -1732,7 +1719,6 @@
|
|||
</target>
|
||||
<target name="Generate RPM Package" path="" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>cpack</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>-G RPM</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
|
@ -1740,7 +1726,6 @@
|
|||
</target>
|
||||
<target name="Generate TGZ Package" path="" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>cpack</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>-G TGZ</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
|
@ -1748,7 +1733,6 @@
|
|||
</target>
|
||||
<target name="Generate TGZ Source Package" path="" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>cpack</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>--config CPackSourceConfig.cmake</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
|
@ -2387,7 +2371,6 @@
|
|||
</target>
|
||||
<target name="testGraph.run" path="build/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>testGraph.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
|
@ -2395,7 +2378,6 @@
|
|||
</target>
|
||||
<target name="testJunctionTree.run" path="build/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>testJunctionTree.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
|
@ -2403,7 +2385,6 @@
|
|||
</target>
|
||||
<target name="testSymbolicBayesNetB.run" path="build/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>testSymbolicBayesNetB.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
|
@ -2817,6 +2798,14 @@
|
|||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testLagoInitializer.run" path="build/gtsam/nonlinear/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j5</buildArguments>
|
||||
<buildTarget>testLagoInitializer.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testImuFactor.run" path="build-debug/gtsam_unstable/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j4</buildArguments>
|
||||
|
|
@ -2835,6 +2824,7 @@
|
|||
</target>
|
||||
<target name="tests/testGaussianISAM2" path="build/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments/>
|
||||
<buildTarget>tests/testGaussianISAM2</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>false</useDefaultCommand>
|
||||
|
|
|
|||
|
|
@ -6,6 +6,3 @@ set (excluded_examples
|
|||
)
|
||||
|
||||
gtsamAddExamplesGlob("*.cpp" "${excluded_examples}" "gtsam;${Boost_PROGRAM_OPTIONS_LIBRARY}")
|
||||
|
||||
# Build tests
|
||||
add_subdirectory(tests)
|
||||
|
|
|
|||
|
|
@ -1 +0,0 @@
|
|||
gtsamAddTestsGlob(examples "test*.cpp" "" "gtsam")
|
||||
|
|
@ -1,486 +0,0 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testPlanarSLAMExample_lago.cpp
|
||||
* @brief Unit tests for planar SLAM example using the initialization technique
|
||||
* LAGO (Linear Approximation for Graph Optimization)
|
||||
*
|
||||
* @author Luca Carlone
|
||||
* @author Frank Dellaert
|
||||
* @date May 14, 2014
|
||||
*/
|
||||
|
||||
// As this is a planar SLAM example, we will use Pose2 variables (x, y, theta) to represent
|
||||
// the robot positions and Point2 variables (x, y) to represent the landmark coordinates.
|
||||
#include <gtsam/geometry/Pose2.h>
|
||||
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
|
||||
// Each variable in the system (poses and landmarks) must be identified with a unique key.
|
||||
// We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
|
||||
// Here we will use Symbols
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
|
||||
// In GTSAM, measurement functions are represented as 'factors'. Several common factors
|
||||
// have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
|
||||
// Here we will use a RangeBearing factor for the range-bearing measurements to identified
|
||||
// landmarks, and Between factors for the relative motion described by odometry measurements.
|
||||
// Also, we will initialize the robot at the origin using a Prior factor.
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
|
||||
// When the factors are created, we will add them to a Factor Graph. As the factors we are using
|
||||
// are nonlinear factors, we will need a Nonlinear Factor Graph.
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
|
||||
#include <gtsam/base/TestableAssertions.h>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
#include <boost/math/constants/constants.hpp>
|
||||
#include <cmath>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using namespace boost::assign;
|
||||
|
||||
Symbol x0('x', 0), x1('x', 1), x2('x', 2), x3('x', 3);
|
||||
static SharedNoiseModel model(noiseModel::Isotropic::Sigma(3, 0.1));
|
||||
static const double PI = boost::math::constants::pi<double>();
|
||||
|
||||
#include <gtsam/inference/graph.h>
|
||||
/**
|
||||
* @brief Initialization technique for planar pose SLAM using
|
||||
* LAGO (Linear Approximation for Graph Optimization). see papers:
|
||||
*
|
||||
* L. Carlone, R. Aragues, J. Castellanos, and B. Bona, A fast and accurate
|
||||
* approximation for planar pose graph optimization, IJRR, 2014.
|
||||
*
|
||||
* L. Carlone, R. Aragues, J.A. Castellanos, and B. Bona, A linear approximation
|
||||
* for graph-based simultaneous localization and mapping, RSS, 2011.
|
||||
*
|
||||
* @param graph: nonlinear factor graph including between (Pose2) measurements
|
||||
* @return Values: initial guess including orientation estimate from LAGO
|
||||
*/
|
||||
|
||||
/*
|
||||
* This function computes the cumulative orientation wrt the root (without wrapping)
|
||||
* for a node (without wrapping). The function starts at the nodes and moves towards the root
|
||||
* summing up the (directed) rotation measurements. The root is assumed to have orientation zero
|
||||
*/
|
||||
typedef map<Key,double> key2doubleMap;
|
||||
const Key keyAnchor = symbol('Z',9999999);
|
||||
|
||||
double computeThetaToRoot(const Key nodeKey, const PredecessorMap<Key>& tree,
|
||||
const key2doubleMap& deltaThetaMap, key2doubleMap& thetaFromRootMap) {
|
||||
|
||||
double nodeTheta = 0;
|
||||
Key key_child = nodeKey; // the node
|
||||
Key key_parent = 0; // the initialization does not matter
|
||||
while(1){
|
||||
// We check if we reached the root
|
||||
if(tree.at(key_child)==key_child) // if we reached the root
|
||||
break;
|
||||
// we sum the delta theta corresponding to the edge parent->child
|
||||
nodeTheta += deltaThetaMap.at(key_child);
|
||||
// we get the parent
|
||||
key_parent = tree.at(key_child); // the parent
|
||||
// we check if we connected to some part of the tree we know
|
||||
if(thetaFromRootMap.find(key_parent)!=thetaFromRootMap.end()){
|
||||
nodeTheta += thetaFromRootMap[key_parent];
|
||||
break;
|
||||
}
|
||||
key_child = key_parent; // we move upwards in the tree
|
||||
}
|
||||
return nodeTheta;
|
||||
}
|
||||
|
||||
/*
|
||||
* This function computes the cumulative orientation (without wrapping)
|
||||
* for all node wrt the root (root has zero orientation)
|
||||
*/
|
||||
key2doubleMap computeThetasToRoot(const key2doubleMap& deltaThetaMap,
|
||||
const PredecessorMap<Key>& tree) {
|
||||
|
||||
key2doubleMap thetaToRootMap;
|
||||
key2doubleMap::const_iterator it;
|
||||
// for all nodes in the tree
|
||||
for(it = deltaThetaMap.begin(); it != deltaThetaMap.end(); ++it )
|
||||
{
|
||||
// compute the orientation wrt root
|
||||
Key nodeKey = it->first;
|
||||
double nodeTheta = computeThetaToRoot(nodeKey, tree, deltaThetaMap,
|
||||
thetaToRootMap);
|
||||
thetaToRootMap.insert(std::pair<Key, double>(nodeKey, nodeTheta));
|
||||
}
|
||||
return thetaToRootMap;
|
||||
}
|
||||
|
||||
/*
|
||||
* Given a factor graph "g", and a spanning tree "tree", the function selects the nodes belonging to the tree and to g,
|
||||
* and stores the factor slots corresponding to edges in the tree and to chordsIds wrt this tree
|
||||
* Also it computes deltaThetaMap which is a fast way to encode relative orientations along the tree:
|
||||
* for a node key2, s.t. tree[key2]=key1, the values deltaThetaMap[key2] is the relative orientation theta[key2]-theta[key1]
|
||||
*/
|
||||
void getSymbolicGraph(
|
||||
/*OUTPUTS*/ vector<size_t>& spanningTreeIds, vector<size_t>& chordsIds, key2doubleMap& deltaThetaMap,
|
||||
/*INPUTS*/ const PredecessorMap<Key>& tree, const NonlinearFactorGraph& g){
|
||||
|
||||
// Get keys for which you want the orientation
|
||||
size_t id=0;
|
||||
// Loop over the factors
|
||||
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, g){
|
||||
if (factor->keys().size() == 2){
|
||||
Key key1 = factor->keys()[0];
|
||||
Key key2 = factor->keys()[1];
|
||||
|
||||
// recast to a between
|
||||
boost::shared_ptr< BetweenFactor<Pose2> > pose2Between = boost::dynamic_pointer_cast< BetweenFactor<Pose2> >(factor);
|
||||
if (!pose2Between) continue;
|
||||
|
||||
// get the orientation - measured().theta();
|
||||
double deltaTheta = pose2Between->measured().theta();
|
||||
|
||||
// insert (directed) orientations in the map "deltaThetaMap"
|
||||
bool inTree=false;
|
||||
if(tree.at(key1)==key2){
|
||||
deltaThetaMap.insert(std::pair<Key, double>(key1, -deltaTheta));
|
||||
inTree = true;
|
||||
} else if(tree.at(key2)==key1){
|
||||
deltaThetaMap.insert(std::pair<Key, double>(key2, deltaTheta));
|
||||
inTree = true;
|
||||
}
|
||||
|
||||
// store factor slot, distinguishing spanning tree edges from chordsIds
|
||||
if(inTree == true)
|
||||
spanningTreeIds.push_back(id);
|
||||
else // it's a chord!
|
||||
chordsIds.push_back(id);
|
||||
}
|
||||
id++;
|
||||
}
|
||||
}
|
||||
|
||||
// Retrieves the deltaTheta and the corresponding noise model from a BetweenFactor<Pose2>
|
||||
void getDeltaThetaAndNoise(NonlinearFactor::shared_ptr factor,
|
||||
Vector& deltaTheta, noiseModel::Diagonal::shared_ptr& model_deltaTheta) {
|
||||
|
||||
boost::shared_ptr<BetweenFactor<Pose2> > pose2Between =
|
||||
boost::dynamic_pointer_cast<BetweenFactor<Pose2> >(factor);
|
||||
if (!pose2Between)
|
||||
throw std::invalid_argument(
|
||||
"buildOrientationGraph: invalid between factor!");
|
||||
deltaTheta = (Vector(1) << pose2Between->measured().theta());
|
||||
// Retrieve noise model
|
||||
SharedNoiseModel model = pose2Between->get_noiseModel();
|
||||
boost::shared_ptr<noiseModel::Diagonal> diagonalModel =
|
||||
boost::dynamic_pointer_cast<noiseModel::Diagonal>(model);
|
||||
if (!diagonalModel)
|
||||
throw std::invalid_argument("buildOrientationGraph: invalid noise model (current version assumes diagonal noise model)!");
|
||||
Vector std_deltaTheta = (Vector(1) << diagonalModel->sigma(2) ); // std on the angular measurement
|
||||
model_deltaTheta = noiseModel::Diagonal::Sigmas(std_deltaTheta);
|
||||
}
|
||||
|
||||
/*
|
||||
* Linear factor graph with regularized orientation measurements
|
||||
*/
|
||||
GaussianFactorGraph buildOrientationGraph(const vector<size_t>& spanningTreeIds, const vector<size_t>& chordsIds,
|
||||
const NonlinearFactorGraph& g, const key2doubleMap& orientationsToRoot, const PredecessorMap<Key>& tree){
|
||||
|
||||
GaussianFactorGraph lagoGraph;
|
||||
Vector deltaTheta;
|
||||
noiseModel::Diagonal::shared_ptr model_deltaTheta;
|
||||
|
||||
Matrix I = eye(1);
|
||||
// put original measurements in the spanning tree
|
||||
BOOST_FOREACH(const size_t& factorId, spanningTreeIds){
|
||||
const FastVector<Key>& keys = g[factorId]->keys();
|
||||
Key key1 = keys[0], key2 = keys[1];
|
||||
getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta);
|
||||
lagoGraph.add(JacobianFactor(key1, -I, key2, I, deltaTheta, model_deltaTheta));
|
||||
}
|
||||
// put regularized measurements in the chordsIds
|
||||
BOOST_FOREACH(const size_t& factorId, chordsIds){
|
||||
const FastVector<Key>& keys = g[factorId]->keys();
|
||||
Key key1 = keys[0], key2 = keys[1];
|
||||
getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta);
|
||||
double key1_DeltaTheta_key2 = deltaTheta(0);
|
||||
double k2pi_noise = key1_DeltaTheta_key2 + orientationsToRoot.at(key1) - orientationsToRoot.at(key2); // this coincides to summing up measurements along the cycle induced by the chord
|
||||
double k = round(k2pi_noise/(2*PI));
|
||||
Vector deltaThetaRegularized = (Vector(1) << key1_DeltaTheta_key2 - 2*k*PI);
|
||||
lagoGraph.add(JacobianFactor(key1, -I, key2, I, deltaThetaRegularized, model_deltaTheta));
|
||||
}
|
||||
// prior on some orientation (anchor)
|
||||
noiseModel::Diagonal::shared_ptr model_anchor = noiseModel::Diagonal::Variances((Vector(1) << 1e-8));
|
||||
lagoGraph.add(JacobianFactor(keyAnchor, I, (Vector(1) << 0.0), model_anchor));
|
||||
return lagoGraph;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Selects the subgraph composed by between factors and transforms priors into between wrt a fictitious node
|
||||
NonlinearFactorGraph buildPose2graph(const NonlinearFactorGraph& graph){
|
||||
NonlinearFactorGraph pose2Graph;
|
||||
|
||||
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, graph){
|
||||
|
||||
// recast to a between on Pose2
|
||||
boost::shared_ptr< BetweenFactor<Pose2> > pose2Between =
|
||||
boost::dynamic_pointer_cast< BetweenFactor<Pose2> >(factor);
|
||||
if (pose2Between)
|
||||
pose2Graph.add(pose2Between);
|
||||
|
||||
// recast to a between on Rot2
|
||||
boost::shared_ptr< BetweenFactor<Rot2> > rot2Between =
|
||||
boost::dynamic_pointer_cast< BetweenFactor<Rot2> >(factor);
|
||||
if (rot2Between)
|
||||
pose2Graph.add(rot2Between);
|
||||
|
||||
// recast to a prior on Pose2
|
||||
boost::shared_ptr< PriorFactor<Pose2> > pose2Prior =
|
||||
boost::dynamic_pointer_cast< PriorFactor<Pose2> >(factor);
|
||||
if (pose2Prior)
|
||||
pose2Graph.add(BetweenFactor<Pose2>(keyAnchor, pose2Prior->keys()[0],
|
||||
pose2Prior->prior(), pose2Prior->get_noiseModel()));
|
||||
|
||||
// recast to a prior on Rot2
|
||||
boost::shared_ptr< PriorFactor<Rot2> > rot2Prior =
|
||||
boost::dynamic_pointer_cast< PriorFactor<Rot2> >(factor);
|
||||
if (rot2Prior)
|
||||
pose2Graph.add(BetweenFactor<Rot2>(keyAnchor, rot2Prior->keys()[0],
|
||||
rot2Prior->prior(), rot2Prior->get_noiseModel()));
|
||||
}
|
||||
return pose2Graph;
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
// returns the orientations of the Pose2 in the connected sub-graph defined by BetweenFactor<Pose2>
|
||||
VectorValues initializeLago(const NonlinearFactorGraph& graph) {
|
||||
|
||||
// We "extract" the Pose2 subgraph of the original graph: this
|
||||
// is done to properly model priors and avoiding operating on a larger graph
|
||||
NonlinearFactorGraph pose2Graph = buildPose2graph(graph);
|
||||
|
||||
// Find a minimum spanning tree
|
||||
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key, BetweenFactor<Pose2> >(pose2Graph);
|
||||
|
||||
// Create a linear factor graph (LFG) of scalars
|
||||
key2doubleMap deltaThetaMap;
|
||||
vector<size_t> spanningTreeIds; // ids of between factors forming the spanning tree T
|
||||
vector<size_t> chordsIds; // ids of between factors corresponding to chordsIds wrt T
|
||||
getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, pose2Graph);
|
||||
|
||||
// temporary structure to correct wraparounds along loops
|
||||
key2doubleMap orientationsToRoot = computeThetasToRoot(deltaThetaMap, tree);
|
||||
|
||||
// regularize measurements and plug everything in a factor graph
|
||||
GaussianFactorGraph lagoGraph = buildOrientationGraph(spanningTreeIds, chordsIds, pose2Graph, orientationsToRoot, tree);
|
||||
|
||||
// Solve the LFG
|
||||
VectorValues estimateLago = lagoGraph.optimize();
|
||||
|
||||
return estimateLago;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Only correct the orientation part in initialGuess
|
||||
Values initializeLago(const NonlinearFactorGraph& graph, const Values& initialGuess) {
|
||||
Values initialGuessLago;
|
||||
|
||||
// get the orientation estimates from LAGO
|
||||
VectorValues orientations = initializeLago(graph);
|
||||
|
||||
// for all nodes in the tree
|
||||
for(VectorValues::const_iterator it = orientations.begin(); it != orientations.end(); ++it ){
|
||||
Key key = it->first;
|
||||
if (key != keyAnchor){
|
||||
Pose2 pose = initialGuess.at<Pose2>(key);
|
||||
Vector orientation = orientations.at(key);
|
||||
Pose2 poseLago = Pose2(pose.x(),pose.y(),orientation(0));
|
||||
initialGuessLago.insert(key, poseLago);
|
||||
}
|
||||
}
|
||||
return initialGuessLago;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/* ************************************************************************* */
|
||||
/* ************************************************************************* */
|
||||
|
||||
|
||||
namespace simple {
|
||||
// We consider a small graph:
|
||||
// symbolic FG
|
||||
// x2 0 1
|
||||
// / | \ 1 2
|
||||
// / | \ 2 3
|
||||
// x3 | x1 2 0
|
||||
// \ | / 0 3
|
||||
// \ | /
|
||||
// x0
|
||||
//
|
||||
|
||||
Pose2 pose0 = Pose2(0.000000, 0.000000, 0.000000);
|
||||
Pose2 pose1 = Pose2(1.000000, 1.000000, 1.570796);
|
||||
Pose2 pose2 = Pose2(0.000000, 2.000000, 3.141593);
|
||||
Pose2 pose3 = Pose2(-1.000000, 1.000000, 4.712389);
|
||||
|
||||
NonlinearFactorGraph graph() {
|
||||
NonlinearFactorGraph g;
|
||||
g.add(BetweenFactor<Pose2>(x0, x1, pose0.between(pose1), model));
|
||||
g.add(BetweenFactor<Pose2>(x1, x2, pose1.between(pose2), model));
|
||||
g.add(BetweenFactor<Pose2>(x2, x3, pose2.between(pose3), model));
|
||||
g.add(BetweenFactor<Pose2>(x2, x0, pose2.between(pose0), model));
|
||||
g.add(BetweenFactor<Pose2>(x0, x3, pose0.between(pose3), model));
|
||||
g.add(PriorFactor<Pose2>(x0, pose0, model));
|
||||
return g;
|
||||
}
|
||||
}
|
||||
|
||||
/* *************************************************************************** */
|
||||
TEST( Lago, checkSTandChords ) {
|
||||
NonlinearFactorGraph g = simple::graph();
|
||||
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
|
||||
BetweenFactor<Pose2> >(g);
|
||||
|
||||
key2doubleMap deltaThetaMap;
|
||||
vector<size_t> spanningTreeIds; // ids of between factors forming the spanning tree T
|
||||
vector<size_t> chordsIds; // ids of between factors corresponding to chordsIds wrt T
|
||||
getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g);
|
||||
|
||||
DOUBLES_EQUAL(spanningTreeIds[0], 0, 1e-6); // factor 0 is the first in the ST (0->1)
|
||||
DOUBLES_EQUAL(spanningTreeIds[1], 3, 1e-6); // factor 3 is the second in the ST(2->0)
|
||||
DOUBLES_EQUAL(spanningTreeIds[2], 4, 1e-6); // factor 4 is the third in the ST(0->3)
|
||||
|
||||
}
|
||||
|
||||
/* *************************************************************************** */
|
||||
TEST( Lago, orientationsOverSpanningTree ) {
|
||||
NonlinearFactorGraph g = simple::graph();
|
||||
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
|
||||
BetweenFactor<Pose2> >(g);
|
||||
|
||||
// check the tree structure
|
||||
EXPECT_LONGS_EQUAL(tree[x0], x0);
|
||||
EXPECT_LONGS_EQUAL(tree[x1], x0);
|
||||
EXPECT_LONGS_EQUAL(tree[x2], x0);
|
||||
EXPECT_LONGS_EQUAL(tree[x3], x0);
|
||||
|
||||
key2doubleMap expected;
|
||||
expected[x0]= 0;
|
||||
expected[x1]= PI/2; // edge x0->x1 (consistent with edge (x0,x1))
|
||||
expected[x2]= -PI; // edge x0->x2 (traversed backwards wrt edge (x2,x0))
|
||||
expected[x3]= -PI/2; // edge x0->x3 (consistent with edge (x0,x3))
|
||||
|
||||
key2doubleMap deltaThetaMap;
|
||||
vector<size_t> spanningTreeIds; // ids of between factors forming the spanning tree T
|
||||
vector<size_t> chordsIds; // ids of between factors corresponding to chordsIds wrt T
|
||||
getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g);
|
||||
|
||||
key2doubleMap actual;
|
||||
actual = computeThetasToRoot(deltaThetaMap, tree);
|
||||
DOUBLES_EQUAL(expected[x0], actual[x0], 1e-6);
|
||||
DOUBLES_EQUAL(expected[x1], actual[x1], 1e-6);
|
||||
DOUBLES_EQUAL(expected[x2], actual[x2], 1e-6);
|
||||
DOUBLES_EQUAL(expected[x3], actual[x3], 1e-6);
|
||||
}
|
||||
|
||||
/* *************************************************************************** */
|
||||
TEST( Lago, regularizedMeasurements ) {
|
||||
NonlinearFactorGraph g = simple::graph();
|
||||
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
|
||||
BetweenFactor<Pose2> >(g);
|
||||
|
||||
key2doubleMap deltaThetaMap;
|
||||
vector<size_t> spanningTreeIds; // ids of between factors forming the spanning tree T
|
||||
vector<size_t> chordsIds; // ids of between factors corresponding to chordsIds wrt T
|
||||
getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g);
|
||||
|
||||
key2doubleMap orientationsToRoot = computeThetasToRoot(deltaThetaMap, tree);
|
||||
|
||||
GaussianFactorGraph lagoGraph = buildOrientationGraph(spanningTreeIds, chordsIds, g, orientationsToRoot, tree);
|
||||
std::pair<Matrix,Vector> actualAb = lagoGraph.jacobian();
|
||||
// jacobian corresponding to the orientation measurements (last entry is the prior on the anchor and is disregarded)
|
||||
Vector actual = (Vector(5) << actualAb.second(0),actualAb.second(1),actualAb.second(2),actualAb.second(3),actualAb.second(4));
|
||||
// this is the whitened error, so we multiply by the std to unwhiten
|
||||
actual = 0.1 * actual;
|
||||
// Expected regularized measurements (same for the spanning tree, corrected for the chordsIds)
|
||||
Vector expected = (Vector(5) << PI/2, PI, -PI/2, PI/2 - 2*PI , PI/2);
|
||||
|
||||
EXPECT(assert_equal(expected, actual, 1e-6));
|
||||
}
|
||||
|
||||
/* *************************************************************************** */
|
||||
TEST( Lago, smallGraphVectorValues ) {
|
||||
|
||||
VectorValues initialGuessLago = initializeLago(simple::graph());
|
||||
|
||||
// comparison is up to PI, that's why we add some multiples of 2*PI
|
||||
EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6));
|
||||
EXPECT(assert_equal((Vector(1) << 0.5 * PI), initialGuessLago.at(x1), 1e-6));
|
||||
EXPECT(assert_equal((Vector(1) << PI - 2*PI), initialGuessLago.at(x2), 1e-6));
|
||||
EXPECT(assert_equal((Vector(1) << 1.5 * PI - 2*PI), initialGuessLago.at(x3), 1e-6));
|
||||
}
|
||||
|
||||
/* *************************************************************************** */
|
||||
TEST( Lago, multiplePosePriors ) {
|
||||
NonlinearFactorGraph g = simple::graph();
|
||||
g.add(PriorFactor<Pose2>(x1, simple::pose1, model));
|
||||
VectorValues initialGuessLago = initializeLago(g);
|
||||
|
||||
// comparison is up to PI, that's why we add some multiples of 2*PI
|
||||
EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6));
|
||||
EXPECT(assert_equal((Vector(1) << 0.5 * PI), initialGuessLago.at(x1), 1e-6));
|
||||
EXPECT(assert_equal((Vector(1) << PI - 2*PI), initialGuessLago.at(x2), 1e-6));
|
||||
EXPECT(assert_equal((Vector(1) << 1.5 * PI - 2*PI), initialGuessLago.at(x3), 1e-6));
|
||||
}
|
||||
|
||||
/* *************************************************************************** */
|
||||
TEST( Lago, multiplePoseAndRotPriors ) {
|
||||
NonlinearFactorGraph g = simple::graph();
|
||||
g.add(PriorFactor<Rot2>(x1, simple::pose1.theta(), model));
|
||||
VectorValues initialGuessLago = initializeLago(g);
|
||||
|
||||
// comparison is up to PI, that's why we add some multiples of 2*PI
|
||||
EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6));
|
||||
EXPECT(assert_equal((Vector(1) << 0.5 * PI), initialGuessLago.at(x1), 1e-6));
|
||||
EXPECT(assert_equal((Vector(1) << PI - 2*PI), initialGuessLago.at(x2), 1e-6));
|
||||
EXPECT(assert_equal((Vector(1) << 1.5 * PI - 2*PI), initialGuessLago.at(x3), 1e-6));
|
||||
}
|
||||
|
||||
/* *************************************************************************** */
|
||||
TEST( Lago, smallGraphValues ) {
|
||||
|
||||
// we set the orientations in the initial guess to zero
|
||||
Values initialGuess;
|
||||
initialGuess.insert(x0,Pose2(simple::pose0.x(),simple::pose0.y(),0.0));
|
||||
initialGuess.insert(x1,Pose2(simple::pose1.x(),simple::pose1.y(),0.0));
|
||||
initialGuess.insert(x2,Pose2(simple::pose2.x(),simple::pose2.y(),0.0));
|
||||
initialGuess.insert(x3,Pose2(simple::pose3.x(),simple::pose3.y(),0.0));
|
||||
|
||||
// lago does not touch the Cartesian part and only fixed the orientations
|
||||
Values actual = initializeLago(simple::graph(), initialGuess);
|
||||
|
||||
// we are in a noiseless case
|
||||
Values expected;
|
||||
expected.insert(x0,simple::pose0);
|
||||
expected.insert(x1,simple::pose1);
|
||||
expected.insert(x2,simple::pose2);
|
||||
expected.insert(x3,simple::pose3);
|
||||
|
||||
EXPECT(assert_equal(expected, actual, 1e-6));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
|
||||
|
|
@ -0,0 +1,318 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testPlanarSLAMExample_lago.cpp
|
||||
* @brief Initialize Pose2 in a factor graph using LAGO
|
||||
* (Linear Approximation for Graph Optimization). see papers:
|
||||
*
|
||||
* L. Carlone, R. Aragues, J. Castellanos, and B. Bona, A fast and accurate
|
||||
* approximation for planar pose graph optimization, IJRR, 2014.
|
||||
*
|
||||
* L. Carlone, R. Aragues, J.A. Castellanos, and B. Bona, A linear approximation
|
||||
* for graph-based simultaneous localization and mapping, RSS, 2011.
|
||||
*
|
||||
* @param graph: nonlinear factor graph (can include arbitrary factors but we assume
|
||||
* that there is a subgraph involving Pose2 and betweenFactors)
|
||||
* @return Values: initial guess from LAGO (only pose2 are initialized)
|
||||
*
|
||||
* @author Luca Carlone
|
||||
* @author Frank Dellaert
|
||||
* @date May 14, 2014
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/geometry/Pose2.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
#include <gtsam/inference/graph.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
typedef std::map<Key,double> key2doubleMap;
|
||||
const Key keyAnchor = symbol('Z',9999999);
|
||||
noiseModel::Diagonal::shared_ptr priorOrientationNoise = noiseModel::Diagonal::Variances((Vector(1) << 1e-8));
|
||||
noiseModel::Diagonal::shared_ptr priorPose2Noise = noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8));
|
||||
|
||||
/*
|
||||
* This function computes the cumulative orientation (without wrapping) wrt the root of a spanning tree (tree)
|
||||
* for a node (nodeKey). The function starts at the nodes and moves towards the root
|
||||
* summing up the (directed) rotation measurements. Relative measurements are encoded in "deltaThetaMap"
|
||||
* The root is assumed to have orientation zero.
|
||||
*/
|
||||
double computeThetaToRoot(const Key nodeKey, const PredecessorMap<Key>& tree,
|
||||
const key2doubleMap& deltaThetaMap, const key2doubleMap& thetaFromRootMap) {
|
||||
|
||||
double nodeTheta = 0;
|
||||
Key key_child = nodeKey; // the node
|
||||
Key key_parent = 0; // the initialization does not matter
|
||||
while(1){
|
||||
// We check if we reached the root
|
||||
if(tree.at(key_child)==key_child) // if we reached the root
|
||||
break;
|
||||
// we sum the delta theta corresponding to the edge parent->child
|
||||
nodeTheta += deltaThetaMap.at(key_child);
|
||||
// we get the parent
|
||||
key_parent = tree.at(key_child); // the parent
|
||||
// we check if we connected to some part of the tree we know
|
||||
if(thetaFromRootMap.find(key_parent)!=thetaFromRootMap.end()){
|
||||
nodeTheta += thetaFromRootMap.at(key_parent);
|
||||
break;
|
||||
}
|
||||
key_child = key_parent; // we move upwards in the tree
|
||||
}
|
||||
return nodeTheta;
|
||||
}
|
||||
|
||||
/*
|
||||
* This function computes the cumulative orientations (without wrapping)
|
||||
* for all node wrt the root (root has zero orientation)
|
||||
*/
|
||||
key2doubleMap computeThetasToRoot(const key2doubleMap& deltaThetaMap,
|
||||
const PredecessorMap<Key>& tree) {
|
||||
|
||||
key2doubleMap thetaToRootMap;
|
||||
key2doubleMap::const_iterator it;
|
||||
// for all nodes in the tree
|
||||
for(it = deltaThetaMap.begin(); it != deltaThetaMap.end(); ++it )
|
||||
{
|
||||
// compute the orientation wrt root
|
||||
Key nodeKey = it->first;
|
||||
double nodeTheta = computeThetaToRoot(nodeKey, tree, deltaThetaMap,
|
||||
thetaToRootMap);
|
||||
thetaToRootMap.insert(std::pair<Key, double>(nodeKey, nodeTheta));
|
||||
}
|
||||
return thetaToRootMap;
|
||||
}
|
||||
|
||||
/*
|
||||
* Given a factor graph "g", and a spanning tree "tree", the function selects the nodes belonging to the tree and to g,
|
||||
* and stores the factor slots corresponding to edges in the tree and to chordsIds wrt this tree
|
||||
* Also it computes deltaThetaMap which is a fast way to encode relative orientations along the tree:
|
||||
* for a node key2, s.t. tree[key2]=key1, the values deltaThetaMap[key2] is the relative orientation theta[key2]-theta[key1]
|
||||
*/
|
||||
void getSymbolicGraph(
|
||||
/*OUTPUTS*/ std::vector<size_t>& spanningTreeIds, std::vector<size_t>& chordsIds, key2doubleMap& deltaThetaMap,
|
||||
/*INPUTS*/ const PredecessorMap<Key>& tree, const NonlinearFactorGraph& g){
|
||||
|
||||
// Get keys for which you want the orientation
|
||||
size_t id=0;
|
||||
// Loop over the factors
|
||||
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, g){
|
||||
if (factor->keys().size() == 2){
|
||||
Key key1 = factor->keys()[0];
|
||||
Key key2 = factor->keys()[1];
|
||||
|
||||
// recast to a between
|
||||
boost::shared_ptr< BetweenFactor<Pose2> > pose2Between =
|
||||
boost::dynamic_pointer_cast< BetweenFactor<Pose2> >(factor);
|
||||
if (!pose2Between) continue;
|
||||
|
||||
// get the orientation - measured().theta();
|
||||
double deltaTheta = pose2Between->measured().theta();
|
||||
|
||||
// insert (directed) orientations in the map "deltaThetaMap"
|
||||
bool inTree=false;
|
||||
if(tree.at(key1)==key2){
|
||||
deltaThetaMap.insert(std::pair<Key, double>(key1, -deltaTheta));
|
||||
inTree = true;
|
||||
} else if(tree.at(key2)==key1){
|
||||
deltaThetaMap.insert(std::pair<Key, double>(key2, deltaTheta));
|
||||
inTree = true;
|
||||
}
|
||||
|
||||
// store factor slot, distinguishing spanning tree edges from chordsIds
|
||||
if(inTree == true)
|
||||
spanningTreeIds.push_back(id);
|
||||
else // it's a chord!
|
||||
chordsIds.push_back(id);
|
||||
}
|
||||
id++;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Retrieves the deltaTheta and the corresponding noise model from a BetweenFactor<Pose2>
|
||||
*/
|
||||
void getDeltaThetaAndNoise(NonlinearFactor::shared_ptr factor,
|
||||
Vector& deltaTheta, noiseModel::Diagonal::shared_ptr& model_deltaTheta) {
|
||||
|
||||
// Get the relative rotation measurement from the between factor
|
||||
boost::shared_ptr<BetweenFactor<Pose2> > pose2Between =
|
||||
boost::dynamic_pointer_cast<BetweenFactor<Pose2> >(factor);
|
||||
if (!pose2Between)
|
||||
throw std::invalid_argument("buildLinearOrientationGraph: invalid between factor!");
|
||||
deltaTheta = (Vector(1) << pose2Between->measured().theta());
|
||||
|
||||
// Retrieve the noise model for the relative rotation
|
||||
SharedNoiseModel model = pose2Between->get_noiseModel();
|
||||
boost::shared_ptr<noiseModel::Diagonal> diagonalModel =
|
||||
boost::dynamic_pointer_cast<noiseModel::Diagonal>(model);
|
||||
if (!diagonalModel)
|
||||
throw std::invalid_argument("buildLinearOrientationGraph: invalid noise model "
|
||||
"(current version assumes diagonal noise model)!");
|
||||
Vector std_deltaTheta = (Vector(1) << diagonalModel->sigma(2) ); // std on the angular measurement
|
||||
model_deltaTheta = noiseModel::Diagonal::Sigmas(std_deltaTheta);
|
||||
}
|
||||
|
||||
/*
|
||||
* Linear factor graph with regularized orientation measurements
|
||||
*/
|
||||
GaussianFactorGraph buildLinearOrientationGraph(const std::vector<size_t>& spanningTreeIds, const std::vector<size_t>& chordsIds,
|
||||
const NonlinearFactorGraph& g, const key2doubleMap& orientationsToRoot, const PredecessorMap<Key>& tree){
|
||||
|
||||
GaussianFactorGraph lagoGraph;
|
||||
Vector deltaTheta;
|
||||
noiseModel::Diagonal::shared_ptr model_deltaTheta;
|
||||
|
||||
Matrix I = eye(1);
|
||||
// put original measurements in the spanning tree
|
||||
BOOST_FOREACH(const size_t& factorId, spanningTreeIds){
|
||||
const FastVector<Key>& keys = g[factorId]->keys();
|
||||
Key key1 = keys[0], key2 = keys[1];
|
||||
getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta);
|
||||
lagoGraph.add(JacobianFactor(key1, -I, key2, I, deltaTheta, model_deltaTheta));
|
||||
}
|
||||
// put regularized measurements in the chordsIds
|
||||
BOOST_FOREACH(const size_t& factorId, chordsIds){
|
||||
const FastVector<Key>& keys = g[factorId]->keys();
|
||||
Key key1 = keys[0], key2 = keys[1];
|
||||
getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta);
|
||||
double key1_DeltaTheta_key2 = deltaTheta(0);
|
||||
double k2pi_noise = key1_DeltaTheta_key2 + orientationsToRoot.at(key1) - orientationsToRoot.at(key2); // this coincides to summing up measurements along the cycle induced by the chord
|
||||
double k = round(k2pi_noise/(2*M_PI));
|
||||
Vector deltaThetaRegularized = (Vector(1) << key1_DeltaTheta_key2 - 2*k*M_PI);
|
||||
lagoGraph.add(JacobianFactor(key1, -I, key2, I, deltaThetaRegularized, model_deltaTheta));
|
||||
}
|
||||
// prior on the anchor orientation
|
||||
lagoGraph.add(JacobianFactor(keyAnchor, I, (Vector(1) << 0.0), priorOrientationNoise));
|
||||
return lagoGraph;
|
||||
}
|
||||
|
||||
/*
|
||||
* Selects the subgraph of betweenFactors and transforms priors into between wrt a fictitious node
|
||||
*/
|
||||
NonlinearFactorGraph buildPose2graph(const NonlinearFactorGraph& graph){
|
||||
NonlinearFactorGraph pose2Graph;
|
||||
|
||||
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, graph){
|
||||
|
||||
// recast to a between on Pose2
|
||||
boost::shared_ptr< BetweenFactor<Pose2> > pose2Between =
|
||||
boost::dynamic_pointer_cast< BetweenFactor<Pose2> >(factor);
|
||||
if (pose2Between)
|
||||
pose2Graph.add(pose2Between);
|
||||
|
||||
// recast PriorFactor<Pose2> to BetweenFactor<Pose2>
|
||||
boost::shared_ptr< PriorFactor<Pose2> > pose2Prior =
|
||||
boost::dynamic_pointer_cast< PriorFactor<Pose2> >(factor);
|
||||
if (pose2Prior)
|
||||
pose2Graph.add(BetweenFactor<Pose2>(keyAnchor, pose2Prior->keys()[0],
|
||||
pose2Prior->prior(), pose2Prior->get_noiseModel()));
|
||||
}
|
||||
return pose2Graph;
|
||||
}
|
||||
|
||||
/*
|
||||
* Returns the orientations of a graph including only BetweenFactors<Pose2>
|
||||
*/
|
||||
VectorValues computeLagoOrientations(const NonlinearFactorGraph& pose2Graph){
|
||||
|
||||
// Find a minimum spanning tree
|
||||
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key, BetweenFactor<Pose2> >(pose2Graph);
|
||||
|
||||
// Create a linear factor graph (LFG) of scalars
|
||||
key2doubleMap deltaThetaMap;
|
||||
std::vector<size_t> spanningTreeIds; // ids of between factors forming the spanning tree T
|
||||
std::vector<size_t> chordsIds; // ids of between factors corresponding to chordsIds wrt T
|
||||
getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, pose2Graph);
|
||||
|
||||
// temporary structure to correct wraparounds along loops
|
||||
key2doubleMap orientationsToRoot = computeThetasToRoot(deltaThetaMap, tree);
|
||||
|
||||
// regularize measurements and plug everything in a factor graph
|
||||
GaussianFactorGraph lagoGraph = buildLinearOrientationGraph(spanningTreeIds, chordsIds, pose2Graph, orientationsToRoot, tree);
|
||||
|
||||
// Solve the LFG
|
||||
VectorValues orientationsLago = lagoGraph.optimize();
|
||||
|
||||
return orientationsLago;
|
||||
}
|
||||
|
||||
/*
|
||||
* Returns the orientations of the Pose2 in a generic factor graph
|
||||
*/
|
||||
VectorValues initializeOrientationsLago(const NonlinearFactorGraph& graph) {
|
||||
|
||||
// We "extract" the Pose2 subgraph of the original graph: this
|
||||
// is done to properly model priors and avoiding operating on a larger graph
|
||||
NonlinearFactorGraph pose2Graph = buildPose2graph(graph);
|
||||
|
||||
// Get orientations from relative orientation measurements
|
||||
return computeLagoOrientations(pose2Graph);
|
||||
}
|
||||
|
||||
/*
|
||||
* Returns the values for the Pose2 in a generic factor graph
|
||||
*/
|
||||
Values initializeLago(const NonlinearFactorGraph& graph) {
|
||||
|
||||
// We "extract" the Pose2 subgraph of the original graph: this
|
||||
// is done to properly model priors and avoiding operating on a larger graph
|
||||
NonlinearFactorGraph pose2Graph = buildPose2graph(graph);
|
||||
|
||||
// Get orientations from relative orientation measurements
|
||||
VectorValues orientationsLago = computeLagoOrientations(pose2Graph);
|
||||
|
||||
Values initialGuessLago;
|
||||
// for all nodes in the tree
|
||||
for(VectorValues::const_iterator it = orientationsLago.begin(); it != orientationsLago.end(); ++it ){
|
||||
Key key = it->first;
|
||||
Vector orientation = orientationsLago.at(key);
|
||||
Pose2 poseLago = Pose2(0.0,0.0,orientation(0));
|
||||
initialGuessLago.insert(key, poseLago);
|
||||
}
|
||||
pose2Graph.add(PriorFactor<Pose2>(keyAnchor, Pose2(), priorPose2Noise));
|
||||
GaussNewtonOptimizer pose2optimizer(pose2Graph, initialGuessLago);
|
||||
initialGuessLago = pose2optimizer.optimize();
|
||||
initialGuessLago.erase(keyAnchor); // that was fictitious
|
||||
return initialGuessLago;
|
||||
}
|
||||
|
||||
/*
|
||||
* Only corrects the orientation part in initialGuess
|
||||
*/
|
||||
Values initializeLago(const NonlinearFactorGraph& graph, const Values& initialGuess) {
|
||||
Values initialGuessLago;
|
||||
|
||||
// get the orientation estimates from LAGO
|
||||
VectorValues orientations = initializeOrientationsLago(graph);
|
||||
|
||||
// for all nodes in the tree
|
||||
for(VectorValues::const_iterator it = orientations.begin(); it != orientations.end(); ++it ){
|
||||
Key key = it->first;
|
||||
if (key != keyAnchor){
|
||||
Pose2 pose = initialGuess.at<Pose2>(key);
|
||||
Vector orientation = orientations.at(key);
|
||||
Pose2 poseLago = Pose2(pose.x(),pose.y(),orientation(0));
|
||||
initialGuessLago.insert(key, poseLago);
|
||||
}
|
||||
}
|
||||
return initialGuessLago;
|
||||
}
|
||||
|
||||
} // end of namespace gtsam
|
||||
|
|
@ -0,0 +1,227 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testPlanarSLAMExample_lago.cpp
|
||||
* @brief Unit tests for planar SLAM example using the initialization technique
|
||||
* LAGO (Linear Approximation for Graph Optimization)
|
||||
*
|
||||
* @author Luca Carlone
|
||||
* @author Frank Dellaert
|
||||
* @date May 14, 2014
|
||||
*/
|
||||
|
||||
#include <gtsam/geometry/Pose2.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/LagoInitializer.h>
|
||||
|
||||
#include <gtsam/base/TestableAssertions.h>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
#include <boost/math/constants/constants.hpp>
|
||||
#include <cmath>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using namespace boost::assign;
|
||||
|
||||
Symbol x0('x', 0), x1('x', 1), x2('x', 2), x3('x', 3);
|
||||
static SharedNoiseModel model(noiseModel::Isotropic::Sigma(3, 0.1));
|
||||
|
||||
namespace simple {
|
||||
// We consider a small graph:
|
||||
// symbolic FG
|
||||
// x2 0 1
|
||||
// / | \ 1 2
|
||||
// / | \ 2 3
|
||||
// x3 | x1 2 0
|
||||
// \ | / 0 3
|
||||
// \ | /
|
||||
// x0
|
||||
//
|
||||
|
||||
Pose2 pose0 = Pose2(0.000000, 0.000000, 0.000000);
|
||||
Pose2 pose1 = Pose2(1.000000, 1.000000, 1.570796);
|
||||
Pose2 pose2 = Pose2(0.000000, 2.000000, 3.141593);
|
||||
Pose2 pose3 = Pose2(-1.000000, 1.000000, 4.712389);
|
||||
|
||||
NonlinearFactorGraph graph() {
|
||||
NonlinearFactorGraph g;
|
||||
g.add(BetweenFactor<Pose2>(x0, x1, pose0.between(pose1), model));
|
||||
g.add(BetweenFactor<Pose2>(x1, x2, pose1.between(pose2), model));
|
||||
g.add(BetweenFactor<Pose2>(x2, x3, pose2.between(pose3), model));
|
||||
g.add(BetweenFactor<Pose2>(x2, x0, pose2.between(pose0), model));
|
||||
g.add(BetweenFactor<Pose2>(x0, x3, pose0.between(pose3), model));
|
||||
g.add(PriorFactor<Pose2>(x0, pose0, model));
|
||||
return g;
|
||||
}
|
||||
}
|
||||
|
||||
/* *************************************************************************** */
|
||||
TEST( Lago, checkSTandChords ) {
|
||||
NonlinearFactorGraph g = simple::graph();
|
||||
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
|
||||
BetweenFactor<Pose2> >(g);
|
||||
|
||||
key2doubleMap deltaThetaMap;
|
||||
vector<size_t> spanningTreeIds; // ids of between factors forming the spanning tree T
|
||||
vector<size_t> chordsIds; // ids of between factors corresponding to chordsIds wrt T
|
||||
getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g);
|
||||
|
||||
DOUBLES_EQUAL(spanningTreeIds[0], 0, 1e-6); // factor 0 is the first in the ST (0->1)
|
||||
DOUBLES_EQUAL(spanningTreeIds[1], 3, 1e-6); // factor 3 is the second in the ST(2->0)
|
||||
DOUBLES_EQUAL(spanningTreeIds[2], 4, 1e-6); // factor 4 is the third in the ST(0->3)
|
||||
|
||||
}
|
||||
|
||||
/* *************************************************************************** */
|
||||
TEST( Lago, orientationsOverSpanningTree ) {
|
||||
NonlinearFactorGraph g = simple::graph();
|
||||
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
|
||||
BetweenFactor<Pose2> >(g);
|
||||
|
||||
// check the tree structure
|
||||
EXPECT_LONGS_EQUAL(tree[x0], x0);
|
||||
EXPECT_LONGS_EQUAL(tree[x1], x0);
|
||||
EXPECT_LONGS_EQUAL(tree[x2], x0);
|
||||
EXPECT_LONGS_EQUAL(tree[x3], x0);
|
||||
|
||||
key2doubleMap expected;
|
||||
expected[x0]= 0;
|
||||
expected[x1]= M_PI/2; // edge x0->x1 (consistent with edge (x0,x1))
|
||||
expected[x2]= -M_PI; // edge x0->x2 (traversed backwards wrt edge (x2,x0))
|
||||
expected[x3]= -M_PI/2; // edge x0->x3 (consistent with edge (x0,x3))
|
||||
|
||||
key2doubleMap deltaThetaMap;
|
||||
vector<size_t> spanningTreeIds; // ids of between factors forming the spanning tree T
|
||||
vector<size_t> chordsIds; // ids of between factors corresponding to chordsIds wrt T
|
||||
getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g);
|
||||
|
||||
key2doubleMap actual;
|
||||
actual = computeThetasToRoot(deltaThetaMap, tree);
|
||||
DOUBLES_EQUAL(expected[x0], actual[x0], 1e-6);
|
||||
DOUBLES_EQUAL(expected[x1], actual[x1], 1e-6);
|
||||
DOUBLES_EQUAL(expected[x2], actual[x2], 1e-6);
|
||||
DOUBLES_EQUAL(expected[x3], actual[x3], 1e-6);
|
||||
}
|
||||
|
||||
/* *************************************************************************** */
|
||||
TEST( Lago, regularizedMeasurements ) {
|
||||
NonlinearFactorGraph g = simple::graph();
|
||||
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
|
||||
BetweenFactor<Pose2> >(g);
|
||||
|
||||
key2doubleMap deltaThetaMap;
|
||||
vector<size_t> spanningTreeIds; // ids of between factors forming the spanning tree T
|
||||
vector<size_t> chordsIds; // ids of between factors corresponding to chordsIds wrt T
|
||||
getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g);
|
||||
|
||||
key2doubleMap orientationsToRoot = computeThetasToRoot(deltaThetaMap, tree);
|
||||
|
||||
GaussianFactorGraph lagoGraph = buildLinearOrientationGraph(spanningTreeIds, chordsIds, g, orientationsToRoot, tree);
|
||||
std::pair<Matrix,Vector> actualAb = lagoGraph.jacobian();
|
||||
// jacobian corresponding to the orientation measurements (last entry is the prior on the anchor and is disregarded)
|
||||
Vector actual = (Vector(5) << actualAb.second(0),actualAb.second(1),actualAb.second(2),actualAb.second(3),actualAb.second(4));
|
||||
// this is the whitened error, so we multiply by the std to unwhiten
|
||||
actual = 0.1 * actual;
|
||||
// Expected regularized measurements (same for the spanning tree, corrected for the chordsIds)
|
||||
Vector expected = (Vector(5) << M_PI/2, M_PI, -M_PI/2, M_PI/2 - 2*M_PI , M_PI/2);
|
||||
|
||||
EXPECT(assert_equal(expected, actual, 1e-6));
|
||||
}
|
||||
|
||||
/* *************************************************************************** */
|
||||
TEST( Lago, smallGraphVectorValues ) {
|
||||
|
||||
VectorValues initialGuessLago = initializeOrientationsLago(simple::graph());
|
||||
|
||||
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
|
||||
EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6));
|
||||
EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initialGuessLago.at(x1), 1e-6));
|
||||
EXPECT(assert_equal((Vector(1) << M_PI - 2*M_PI), initialGuessLago.at(x2), 1e-6));
|
||||
EXPECT(assert_equal((Vector(1) << 1.5 * M_PI - 2*M_PI), initialGuessLago.at(x3), 1e-6));
|
||||
}
|
||||
|
||||
/* *************************************************************************** */
|
||||
TEST( Lago, multiplePosePriors ) {
|
||||
NonlinearFactorGraph g = simple::graph();
|
||||
g.add(PriorFactor<Pose2>(x1, simple::pose1, model));
|
||||
VectorValues initialGuessLago = initializeOrientationsLago(g);
|
||||
|
||||
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
|
||||
EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6));
|
||||
EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initialGuessLago.at(x1), 1e-6));
|
||||
EXPECT(assert_equal((Vector(1) << M_PI - 2*M_PI), initialGuessLago.at(x2), 1e-6));
|
||||
EXPECT(assert_equal((Vector(1) << 1.5 * M_PI - 2*M_PI), initialGuessLago.at(x3), 1e-6));
|
||||
}
|
||||
|
||||
/* *************************************************************************** */
|
||||
TEST( Lago, multiplePoseAndRotPriors ) {
|
||||
NonlinearFactorGraph g = simple::graph();
|
||||
g.add(PriorFactor<Rot2>(x1, simple::pose1.theta(), model));
|
||||
VectorValues initialGuessLago = initializeOrientationsLago(g);
|
||||
|
||||
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
|
||||
EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6));
|
||||
EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initialGuessLago.at(x1), 1e-6));
|
||||
EXPECT(assert_equal((Vector(1) << M_PI - 2*M_PI), initialGuessLago.at(x2), 1e-6));
|
||||
EXPECT(assert_equal((Vector(1) << 1.5 * M_PI - 2*M_PI), initialGuessLago.at(x3), 1e-6));
|
||||
}
|
||||
|
||||
/* *************************************************************************** */
|
||||
TEST( Lago, smallGraphValues ) {
|
||||
|
||||
// we set the orientations in the initial guess to zero
|
||||
Values initialGuess;
|
||||
initialGuess.insert(x0,Pose2(simple::pose0.x(),simple::pose0.y(),0.0));
|
||||
initialGuess.insert(x1,Pose2(simple::pose1.x(),simple::pose1.y(),0.0));
|
||||
initialGuess.insert(x2,Pose2(simple::pose2.x(),simple::pose2.y(),0.0));
|
||||
initialGuess.insert(x3,Pose2(simple::pose3.x(),simple::pose3.y(),0.0));
|
||||
|
||||
// lago does not touch the Cartesian part and only fixed the orientations
|
||||
Values actual = initializeLago(simple::graph(), initialGuess);
|
||||
|
||||
// we are in a noiseless case
|
||||
Values expected;
|
||||
expected.insert(x0,simple::pose0);
|
||||
expected.insert(x1,simple::pose1);
|
||||
expected.insert(x2,simple::pose2);
|
||||
expected.insert(x3,simple::pose3);
|
||||
|
||||
EXPECT(assert_equal(expected, actual, 1e-6));
|
||||
}
|
||||
|
||||
/* *************************************************************************** */
|
||||
TEST( Lago, smallGraph2 ) {
|
||||
|
||||
// lago does not touch the Cartesian part and only fixed the orientations
|
||||
Values actual = initializeLago(simple::graph());
|
||||
|
||||
// we are in a noiseless case
|
||||
Values expected;
|
||||
expected.insert(x0,simple::pose0);
|
||||
expected.insert(x1,simple::pose1);
|
||||
expected.insert(x2,simple::pose2);
|
||||
expected.insert(x3,simple::pose3);
|
||||
|
||||
EXPECT(assert_equal(expected, actual, 1e-6));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
|
||||
Loading…
Reference in New Issue