diff --git a/.cproject b/.cproject
index 6a33ea37d..02aba4f6f 100644
--- a/.cproject
+++ b/.cproject
@@ -568,7 +568,6 @@
make
-
tests/testBayesTree.run
true
false
@@ -576,7 +575,6 @@
make
-
testBinaryBayesNet.run
true
false
@@ -624,7 +622,6 @@
make
-
testSymbolicBayesNet.run
true
false
@@ -632,7 +629,6 @@
make
-
tests/testSymbolicFactor.run
true
false
@@ -640,7 +636,6 @@
make
-
testSymbolicFactorGraph.run
true
false
@@ -656,20 +651,11 @@
make
-
tests/testBayesTree
true
false
true
-
- make
- -j5
- testPlanarSLAMExample_lago.run
- true
- true
- true
-
make
-j5
@@ -1024,7 +1010,6 @@
make
-
testErrors.run
true
false
@@ -1070,14 +1055,6 @@
true
true
-
- make
- -j5
- testParticleFactor.run
- true
- true
- true
-
make
-j2
@@ -1158,6 +1135,14 @@
true
true
+
+ make
+ -j5
+ testParticleFactor.run
+ true
+ true
+ true
+
make
-j2
@@ -1262,22 +1247,6 @@
true
true
-
- make
- -j5
- testImuFactor.run
- true
- true
- true
-
-
- make
- -j5
- testCombinedImuFactor.run
- true
- true
- true
-
make
-j2
@@ -1360,6 +1329,7 @@
make
+
testSimulated2DOriented.run
true
false
@@ -1399,6 +1369,7 @@
make
+
testSimulated2D.run
true
false
@@ -1406,6 +1377,7 @@
make
+
testSimulated3D.run
true
false
@@ -1419,6 +1391,22 @@
true
true
+
+ make
+ -j5
+ testImuFactor.run
+ true
+ true
+ true
+
+
+ make
+ -j5
+ testCombinedImuFactor.run
+ true
+ true
+ true
+
make
-j5
@@ -1724,7 +1712,6 @@
cpack
-
-G DEB
true
false
@@ -1732,7 +1719,6 @@
cpack
-
-G RPM
true
false
@@ -1740,7 +1726,6 @@
cpack
-
-G TGZ
true
false
@@ -1748,7 +1733,6 @@
cpack
-
--config CPackSourceConfig.cmake
true
false
@@ -2387,7 +2371,6 @@
make
-
testGraph.run
true
false
@@ -2395,7 +2378,6 @@
make
-
testJunctionTree.run
true
false
@@ -2403,7 +2385,6 @@
make
-
testSymbolicBayesNetB.run
true
false
@@ -2817,6 +2798,14 @@
true
true
+
+ make
+ -j5
+ testLagoInitializer.run
+ true
+ true
+ true
+
make
-j4
@@ -2835,6 +2824,7 @@
make
+
tests/testGaussianISAM2
true
false
diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt
index 669bf243f..7251c2b6f 100644
--- a/examples/CMakeLists.txt
+++ b/examples/CMakeLists.txt
@@ -6,6 +6,3 @@ set (excluded_examples
)
gtsamAddExamplesGlob("*.cpp" "${excluded_examples}" "gtsam;${Boost_PROGRAM_OPTIONS_LIBRARY}")
-
-# Build tests
-add_subdirectory(tests)
diff --git a/examples/tests/CMakeLists.txt b/examples/tests/CMakeLists.txt
deleted file mode 100644
index 7adefac95..000000000
--- a/examples/tests/CMakeLists.txt
+++ /dev/null
@@ -1 +0,0 @@
-gtsamAddTestsGlob(examples "test*.cpp" "" "gtsam")
diff --git a/examples/tests/testPlanarSLAMExample_lago.cpp b/examples/tests/testPlanarSLAMExample_lago.cpp
deleted file mode 100644
index 6a402efdf..000000000
--- a/examples/tests/testPlanarSLAMExample_lago.cpp
+++ /dev/null
@@ -1,486 +0,0 @@
-/* ----------------------------------------------------------------------------
-
- * GTSAM Copyright 2010, Georgia Tech Research Corporation,
- * Atlanta, Georgia 30332-0415
- * All Rights Reserved
- * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
-
- * See LICENSE for the license information
-
- * -------------------------------------------------------------------------- */
-
-/**
- * @file testPlanarSLAMExample_lago.cpp
- * @brief Unit tests for planar SLAM example using the initialization technique
- * LAGO (Linear Approximation for Graph Optimization)
- *
- * @author Luca Carlone
- * @author Frank Dellaert
- * @date May 14, 2014
- */
-
-// As this is a planar SLAM example, we will use Pose2 variables (x, y, theta) to represent
-// the robot positions and Point2 variables (x, y) to represent the landmark coordinates.
-#include
-
-#include
-#include
-
-// Each variable in the system (poses and landmarks) must be identified with a unique key.
-// We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
-// Here we will use Symbols
-#include
-
-// In GTSAM, measurement functions are represented as 'factors'. Several common factors
-// have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
-// Here we will use a RangeBearing factor for the range-bearing measurements to identified
-// landmarks, and Between factors for the relative motion described by odometry measurements.
-// Also, we will initialize the robot at the origin using a Prior factor.
-#include
-#include
-
-// When the factors are created, we will add them to a Factor Graph. As the factors we are using
-// are nonlinear factors, we will need a Nonlinear Factor Graph.
-#include
-
-#include
-#include
-#include
-#include
-
-using namespace std;
-using namespace gtsam;
-using namespace boost::assign;
-
-Symbol x0('x', 0), x1('x', 1), x2('x', 2), x3('x', 3);
-static SharedNoiseModel model(noiseModel::Isotropic::Sigma(3, 0.1));
-static const double PI = boost::math::constants::pi();
-
-#include
-/**
- * @brief Initialization technique for planar pose SLAM using
- * LAGO (Linear Approximation for Graph Optimization). see papers:
- *
- * L. Carlone, R. Aragues, J. Castellanos, and B. Bona, A fast and accurate
- * approximation for planar pose graph optimization, IJRR, 2014.
- *
- * L. Carlone, R. Aragues, J.A. Castellanos, and B. Bona, A linear approximation
- * for graph-based simultaneous localization and mapping, RSS, 2011.
- *
- * @param graph: nonlinear factor graph including between (Pose2) measurements
- * @return Values: initial guess including orientation estimate from LAGO
- */
-
-/*
- * This function computes the cumulative orientation wrt the root (without wrapping)
- * for a node (without wrapping). The function starts at the nodes and moves towards the root
- * summing up the (directed) rotation measurements. The root is assumed to have orientation zero
- */
-typedef map key2doubleMap;
-const Key keyAnchor = symbol('Z',9999999);
-
-double computeThetaToRoot(const Key nodeKey, const PredecessorMap& tree,
- const key2doubleMap& deltaThetaMap, key2doubleMap& thetaFromRootMap) {
-
- double nodeTheta = 0;
- Key key_child = nodeKey; // the node
- Key key_parent = 0; // the initialization does not matter
- while(1){
- // We check if we reached the root
- if(tree.at(key_child)==key_child) // if we reached the root
- break;
- // we sum the delta theta corresponding to the edge parent->child
- nodeTheta += deltaThetaMap.at(key_child);
- // we get the parent
- key_parent = tree.at(key_child); // the parent
- // we check if we connected to some part of the tree we know
- if(thetaFromRootMap.find(key_parent)!=thetaFromRootMap.end()){
- nodeTheta += thetaFromRootMap[key_parent];
- break;
- }
- key_child = key_parent; // we move upwards in the tree
- }
- return nodeTheta;
-}
-
-/*
- * This function computes the cumulative orientation (without wrapping)
- * for all node wrt the root (root has zero orientation)
- */
-key2doubleMap computeThetasToRoot(const key2doubleMap& deltaThetaMap,
- const PredecessorMap& tree) {
-
- key2doubleMap thetaToRootMap;
- key2doubleMap::const_iterator it;
- // for all nodes in the tree
- for(it = deltaThetaMap.begin(); it != deltaThetaMap.end(); ++it )
- {
- // compute the orientation wrt root
- Key nodeKey = it->first;
- double nodeTheta = computeThetaToRoot(nodeKey, tree, deltaThetaMap,
- thetaToRootMap);
- thetaToRootMap.insert(std::pair(nodeKey, nodeTheta));
- }
- return thetaToRootMap;
-}
-
-/*
- * Given a factor graph "g", and a spanning tree "tree", the function selects the nodes belonging to the tree and to g,
- * and stores the factor slots corresponding to edges in the tree and to chordsIds wrt this tree
- * Also it computes deltaThetaMap which is a fast way to encode relative orientations along the tree:
- * for a node key2, s.t. tree[key2]=key1, the values deltaThetaMap[key2] is the relative orientation theta[key2]-theta[key1]
- */
-void getSymbolicGraph(
- /*OUTPUTS*/ vector& spanningTreeIds, vector& chordsIds, key2doubleMap& deltaThetaMap,
- /*INPUTS*/ const PredecessorMap& tree, const NonlinearFactorGraph& g){
-
- // Get keys for which you want the orientation
- size_t id=0;
- // Loop over the factors
- BOOST_FOREACH(const boost::shared_ptr& factor, g){
- if (factor->keys().size() == 2){
- Key key1 = factor->keys()[0];
- Key key2 = factor->keys()[1];
-
- // recast to a between
- boost::shared_ptr< BetweenFactor > pose2Between = boost::dynamic_pointer_cast< BetweenFactor >(factor);
- if (!pose2Between) continue;
-
- // get the orientation - measured().theta();
- double deltaTheta = pose2Between->measured().theta();
-
- // insert (directed) orientations in the map "deltaThetaMap"
- bool inTree=false;
- if(tree.at(key1)==key2){
- deltaThetaMap.insert(std::pair(key1, -deltaTheta));
- inTree = true;
- } else if(tree.at(key2)==key1){
- deltaThetaMap.insert(std::pair(key2, deltaTheta));
- inTree = true;
- }
-
- // store factor slot, distinguishing spanning tree edges from chordsIds
- if(inTree == true)
- spanningTreeIds.push_back(id);
- else // it's a chord!
- chordsIds.push_back(id);
- }
- id++;
- }
-}
-
-// Retrieves the deltaTheta and the corresponding noise model from a BetweenFactor
-void getDeltaThetaAndNoise(NonlinearFactor::shared_ptr factor,
- Vector& deltaTheta, noiseModel::Diagonal::shared_ptr& model_deltaTheta) {
-
- boost::shared_ptr > pose2Between =
- boost::dynamic_pointer_cast >(factor);
- if (!pose2Between)
- throw std::invalid_argument(
- "buildOrientationGraph: invalid between factor!");
- deltaTheta = (Vector(1) << pose2Between->measured().theta());
- // Retrieve noise model
- SharedNoiseModel model = pose2Between->get_noiseModel();
- boost::shared_ptr diagonalModel =
- boost::dynamic_pointer_cast(model);
- if (!diagonalModel)
- throw std::invalid_argument("buildOrientationGraph: invalid noise model (current version assumes diagonal noise model)!");
- Vector std_deltaTheta = (Vector(1) << diagonalModel->sigma(2) ); // std on the angular measurement
- model_deltaTheta = noiseModel::Diagonal::Sigmas(std_deltaTheta);
-}
-
-/*
- * Linear factor graph with regularized orientation measurements
- */
-GaussianFactorGraph buildOrientationGraph(const vector& spanningTreeIds, const vector& chordsIds,
- const NonlinearFactorGraph& g, const key2doubleMap& orientationsToRoot, const PredecessorMap& tree){
-
- GaussianFactorGraph lagoGraph;
- Vector deltaTheta;
- noiseModel::Diagonal::shared_ptr model_deltaTheta;
-
- Matrix I = eye(1);
- // put original measurements in the spanning tree
- BOOST_FOREACH(const size_t& factorId, spanningTreeIds){
- const FastVector& keys = g[factorId]->keys();
- Key key1 = keys[0], key2 = keys[1];
- getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta);
- lagoGraph.add(JacobianFactor(key1, -I, key2, I, deltaTheta, model_deltaTheta));
- }
- // put regularized measurements in the chordsIds
- BOOST_FOREACH(const size_t& factorId, chordsIds){
- const FastVector& keys = g[factorId]->keys();
- Key key1 = keys[0], key2 = keys[1];
- getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta);
- double key1_DeltaTheta_key2 = deltaTheta(0);
- double k2pi_noise = key1_DeltaTheta_key2 + orientationsToRoot.at(key1) - orientationsToRoot.at(key2); // this coincides to summing up measurements along the cycle induced by the chord
- double k = round(k2pi_noise/(2*PI));
- Vector deltaThetaRegularized = (Vector(1) << key1_DeltaTheta_key2 - 2*k*PI);
- lagoGraph.add(JacobianFactor(key1, -I, key2, I, deltaThetaRegularized, model_deltaTheta));
- }
- // prior on some orientation (anchor)
- noiseModel::Diagonal::shared_ptr model_anchor = noiseModel::Diagonal::Variances((Vector(1) << 1e-8));
- lagoGraph.add(JacobianFactor(keyAnchor, I, (Vector(1) << 0.0), model_anchor));
- return lagoGraph;
-}
-
-/* ************************************************************************* */
-// Selects the subgraph composed by between factors and transforms priors into between wrt a fictitious node
-NonlinearFactorGraph buildPose2graph(const NonlinearFactorGraph& graph){
- NonlinearFactorGraph pose2Graph;
-
- BOOST_FOREACH(const boost::shared_ptr& factor, graph){
-
- // recast to a between on Pose2
- boost::shared_ptr< BetweenFactor > pose2Between =
- boost::dynamic_pointer_cast< BetweenFactor >(factor);
- if (pose2Between)
- pose2Graph.add(pose2Between);
-
- // recast to a between on Rot2
- boost::shared_ptr< BetweenFactor > rot2Between =
- boost::dynamic_pointer_cast< BetweenFactor >(factor);
- if (rot2Between)
- pose2Graph.add(rot2Between);
-
- // recast to a prior on Pose2
- boost::shared_ptr< PriorFactor > pose2Prior =
- boost::dynamic_pointer_cast< PriorFactor >(factor);
- if (pose2Prior)
- pose2Graph.add(BetweenFactor(keyAnchor, pose2Prior->keys()[0],
- pose2Prior->prior(), pose2Prior->get_noiseModel()));
-
- // recast to a prior on Rot2
- boost::shared_ptr< PriorFactor > rot2Prior =
- boost::dynamic_pointer_cast< PriorFactor >(factor);
- if (rot2Prior)
- pose2Graph.add(BetweenFactor(keyAnchor, rot2Prior->keys()[0],
- rot2Prior->prior(), rot2Prior->get_noiseModel()));
- }
- return pose2Graph;
-}
-/* ************************************************************************* */
-// returns the orientations of the Pose2 in the connected sub-graph defined by BetweenFactor
-VectorValues initializeLago(const NonlinearFactorGraph& graph) {
-
- // We "extract" the Pose2 subgraph of the original graph: this
- // is done to properly model priors and avoiding operating on a larger graph
- NonlinearFactorGraph pose2Graph = buildPose2graph(graph);
-
- // Find a minimum spanning tree
- PredecessorMap tree = findMinimumSpanningTree >(pose2Graph);
-
- // Create a linear factor graph (LFG) of scalars
- key2doubleMap deltaThetaMap;
- vector spanningTreeIds; // ids of between factors forming the spanning tree T
- vector chordsIds; // ids of between factors corresponding to chordsIds wrt T
- getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, pose2Graph);
-
- // temporary structure to correct wraparounds along loops
- key2doubleMap orientationsToRoot = computeThetasToRoot(deltaThetaMap, tree);
-
- // regularize measurements and plug everything in a factor graph
- GaussianFactorGraph lagoGraph = buildOrientationGraph(spanningTreeIds, chordsIds, pose2Graph, orientationsToRoot, tree);
-
- // Solve the LFG
- VectorValues estimateLago = lagoGraph.optimize();
-
- return estimateLago;
-}
-
-/* ************************************************************************* */
-// Only correct the orientation part in initialGuess
-Values initializeLago(const NonlinearFactorGraph& graph, const Values& initialGuess) {
- Values initialGuessLago;
-
- // get the orientation estimates from LAGO
- VectorValues orientations = initializeLago(graph);
-
- // for all nodes in the tree
- for(VectorValues::const_iterator it = orientations.begin(); it != orientations.end(); ++it ){
- Key key = it->first;
- if (key != keyAnchor){
- Pose2 pose = initialGuess.at(key);
- Vector orientation = orientations.at(key);
- Pose2 poseLago = Pose2(pose.x(),pose.y(),orientation(0));
- initialGuessLago.insert(key, poseLago);
- }
- }
- return initialGuessLago;
-}
-
-/* ************************************************************************* */
-/* ************************************************************************* */
-/* ************************************************************************* */
-
-
-namespace simple {
-// We consider a small graph:
-// symbolic FG
-// x2 0 1
-// / | \ 1 2
-// / | \ 2 3
-// x3 | x1 2 0
-// \ | / 0 3
-// \ | /
-// x0
-//
-
-Pose2 pose0 = Pose2(0.000000, 0.000000, 0.000000);
-Pose2 pose1 = Pose2(1.000000, 1.000000, 1.570796);
-Pose2 pose2 = Pose2(0.000000, 2.000000, 3.141593);
-Pose2 pose3 = Pose2(-1.000000, 1.000000, 4.712389);
-
-NonlinearFactorGraph graph() {
- NonlinearFactorGraph g;
- g.add(BetweenFactor(x0, x1, pose0.between(pose1), model));
- g.add(BetweenFactor(x1, x2, pose1.between(pose2), model));
- g.add(BetweenFactor(x2, x3, pose2.between(pose3), model));
- g.add(BetweenFactor(x2, x0, pose2.between(pose0), model));
- g.add(BetweenFactor(x0, x3, pose0.between(pose3), model));
- g.add(PriorFactor(x0, pose0, model));
- return g;
-}
-}
-
-/* *************************************************************************** */
-TEST( Lago, checkSTandChords ) {
- NonlinearFactorGraph g = simple::graph();
- PredecessorMap tree = findMinimumSpanningTree >(g);
-
- key2doubleMap deltaThetaMap;
- vector spanningTreeIds; // ids of between factors forming the spanning tree T
- vector chordsIds; // ids of between factors corresponding to chordsIds wrt T
- getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g);
-
- DOUBLES_EQUAL(spanningTreeIds[0], 0, 1e-6); // factor 0 is the first in the ST (0->1)
- DOUBLES_EQUAL(spanningTreeIds[1], 3, 1e-6); // factor 3 is the second in the ST(2->0)
- DOUBLES_EQUAL(spanningTreeIds[2], 4, 1e-6); // factor 4 is the third in the ST(0->3)
-
-}
-
-/* *************************************************************************** */
-TEST( Lago, orientationsOverSpanningTree ) {
- NonlinearFactorGraph g = simple::graph();
- PredecessorMap tree = findMinimumSpanningTree >(g);
-
- // check the tree structure
- EXPECT_LONGS_EQUAL(tree[x0], x0);
- EXPECT_LONGS_EQUAL(tree[x1], x0);
- EXPECT_LONGS_EQUAL(tree[x2], x0);
- EXPECT_LONGS_EQUAL(tree[x3], x0);
-
- key2doubleMap expected;
- expected[x0]= 0;
- expected[x1]= PI/2; // edge x0->x1 (consistent with edge (x0,x1))
- expected[x2]= -PI; // edge x0->x2 (traversed backwards wrt edge (x2,x0))
- expected[x3]= -PI/2; // edge x0->x3 (consistent with edge (x0,x3))
-
- key2doubleMap deltaThetaMap;
- vector spanningTreeIds; // ids of between factors forming the spanning tree T
- vector chordsIds; // ids of between factors corresponding to chordsIds wrt T
- getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g);
-
- key2doubleMap actual;
- actual = computeThetasToRoot(deltaThetaMap, tree);
- DOUBLES_EQUAL(expected[x0], actual[x0], 1e-6);
- DOUBLES_EQUAL(expected[x1], actual[x1], 1e-6);
- DOUBLES_EQUAL(expected[x2], actual[x2], 1e-6);
- DOUBLES_EQUAL(expected[x3], actual[x3], 1e-6);
-}
-
-/* *************************************************************************** */
-TEST( Lago, regularizedMeasurements ) {
- NonlinearFactorGraph g = simple::graph();
- PredecessorMap tree = findMinimumSpanningTree >(g);
-
- key2doubleMap deltaThetaMap;
- vector spanningTreeIds; // ids of between factors forming the spanning tree T
- vector chordsIds; // ids of between factors corresponding to chordsIds wrt T
- getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g);
-
- key2doubleMap orientationsToRoot = computeThetasToRoot(deltaThetaMap, tree);
-
- GaussianFactorGraph lagoGraph = buildOrientationGraph(spanningTreeIds, chordsIds, g, orientationsToRoot, tree);
- std::pair actualAb = lagoGraph.jacobian();
- // jacobian corresponding to the orientation measurements (last entry is the prior on the anchor and is disregarded)
- Vector actual = (Vector(5) << actualAb.second(0),actualAb.second(1),actualAb.second(2),actualAb.second(3),actualAb.second(4));
- // this is the whitened error, so we multiply by the std to unwhiten
- actual = 0.1 * actual;
- // Expected regularized measurements (same for the spanning tree, corrected for the chordsIds)
- Vector expected = (Vector(5) << PI/2, PI, -PI/2, PI/2 - 2*PI , PI/2);
-
- EXPECT(assert_equal(expected, actual, 1e-6));
-}
-
-/* *************************************************************************** */
-TEST( Lago, smallGraphVectorValues ) {
-
- VectorValues initialGuessLago = initializeLago(simple::graph());
-
- // comparison is up to PI, that's why we add some multiples of 2*PI
- EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6));
- EXPECT(assert_equal((Vector(1) << 0.5 * PI), initialGuessLago.at(x1), 1e-6));
- EXPECT(assert_equal((Vector(1) << PI - 2*PI), initialGuessLago.at(x2), 1e-6));
- EXPECT(assert_equal((Vector(1) << 1.5 * PI - 2*PI), initialGuessLago.at(x3), 1e-6));
-}
-
-/* *************************************************************************** */
-TEST( Lago, multiplePosePriors ) {
- NonlinearFactorGraph g = simple::graph();
- g.add(PriorFactor(x1, simple::pose1, model));
- VectorValues initialGuessLago = initializeLago(g);
-
- // comparison is up to PI, that's why we add some multiples of 2*PI
- EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6));
- EXPECT(assert_equal((Vector(1) << 0.5 * PI), initialGuessLago.at(x1), 1e-6));
- EXPECT(assert_equal((Vector(1) << PI - 2*PI), initialGuessLago.at(x2), 1e-6));
- EXPECT(assert_equal((Vector(1) << 1.5 * PI - 2*PI), initialGuessLago.at(x3), 1e-6));
-}
-
-/* *************************************************************************** */
-TEST( Lago, multiplePoseAndRotPriors ) {
- NonlinearFactorGraph g = simple::graph();
- g.add(PriorFactor(x1, simple::pose1.theta(), model));
- VectorValues initialGuessLago = initializeLago(g);
-
- // comparison is up to PI, that's why we add some multiples of 2*PI
- EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6));
- EXPECT(assert_equal((Vector(1) << 0.5 * PI), initialGuessLago.at(x1), 1e-6));
- EXPECT(assert_equal((Vector(1) << PI - 2*PI), initialGuessLago.at(x2), 1e-6));
- EXPECT(assert_equal((Vector(1) << 1.5 * PI - 2*PI), initialGuessLago.at(x3), 1e-6));
-}
-
-/* *************************************************************************** */
-TEST( Lago, smallGraphValues ) {
-
- // we set the orientations in the initial guess to zero
- Values initialGuess;
- initialGuess.insert(x0,Pose2(simple::pose0.x(),simple::pose0.y(),0.0));
- initialGuess.insert(x1,Pose2(simple::pose1.x(),simple::pose1.y(),0.0));
- initialGuess.insert(x2,Pose2(simple::pose2.x(),simple::pose2.y(),0.0));
- initialGuess.insert(x3,Pose2(simple::pose3.x(),simple::pose3.y(),0.0));
-
- // lago does not touch the Cartesian part and only fixed the orientations
- Values actual = initializeLago(simple::graph(), initialGuess);
-
- // we are in a noiseless case
- Values expected;
- expected.insert(x0,simple::pose0);
- expected.insert(x1,simple::pose1);
- expected.insert(x2,simple::pose2);
- expected.insert(x3,simple::pose3);
-
- EXPECT(assert_equal(expected, actual, 1e-6));
-}
-
-/* ************************************************************************* */
-int main() {
- TestResult tr;
- return TestRegistry::runAllTests(tr);
-}
-/* ************************************************************************* */
-
diff --git a/gtsam/nonlinear/LagoInitializer.h b/gtsam/nonlinear/LagoInitializer.h
new file mode 100644
index 000000000..7eac1d779
--- /dev/null
+++ b/gtsam/nonlinear/LagoInitializer.h
@@ -0,0 +1,318 @@
+/* ----------------------------------------------------------------------------
+
+ * GTSAM Copyright 2010, Georgia Tech Research Corporation,
+ * Atlanta, Georgia 30332-0415
+ * All Rights Reserved
+ * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
+
+ * See LICENSE for the license information
+
+ * -------------------------------------------------------------------------- */
+
+/**
+ * @file testPlanarSLAMExample_lago.cpp
+ * @brief Initialize Pose2 in a factor graph using LAGO
+ * (Linear Approximation for Graph Optimization). see papers:
+ *
+ * L. Carlone, R. Aragues, J. Castellanos, and B. Bona, A fast and accurate
+ * approximation for planar pose graph optimization, IJRR, 2014.
+ *
+ * L. Carlone, R. Aragues, J.A. Castellanos, and B. Bona, A linear approximation
+ * for graph-based simultaneous localization and mapping, RSS, 2011.
+ *
+ * @param graph: nonlinear factor graph (can include arbitrary factors but we assume
+ * that there is a subgraph involving Pose2 and betweenFactors)
+ * @return Values: initial guess from LAGO (only pose2 are initialized)
+ *
+ * @author Luca Carlone
+ * @author Frank Dellaert
+ * @date May 14, 2014
+ */
+
+#pragma once
+
+#include
+#include
+#include
+#include
+#include
+#include
+#include
+#include
+#include
+
+namespace gtsam {
+
+typedef std::map key2doubleMap;
+const Key keyAnchor = symbol('Z',9999999);
+noiseModel::Diagonal::shared_ptr priorOrientationNoise = noiseModel::Diagonal::Variances((Vector(1) << 1e-8));
+noiseModel::Diagonal::shared_ptr priorPose2Noise = noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8));
+
+/*
+ * This function computes the cumulative orientation (without wrapping) wrt the root of a spanning tree (tree)
+ * for a node (nodeKey). The function starts at the nodes and moves towards the root
+ * summing up the (directed) rotation measurements. Relative measurements are encoded in "deltaThetaMap"
+ * The root is assumed to have orientation zero.
+ */
+double computeThetaToRoot(const Key nodeKey, const PredecessorMap& tree,
+ const key2doubleMap& deltaThetaMap, const key2doubleMap& thetaFromRootMap) {
+
+ double nodeTheta = 0;
+ Key key_child = nodeKey; // the node
+ Key key_parent = 0; // the initialization does not matter
+ while(1){
+ // We check if we reached the root
+ if(tree.at(key_child)==key_child) // if we reached the root
+ break;
+ // we sum the delta theta corresponding to the edge parent->child
+ nodeTheta += deltaThetaMap.at(key_child);
+ // we get the parent
+ key_parent = tree.at(key_child); // the parent
+ // we check if we connected to some part of the tree we know
+ if(thetaFromRootMap.find(key_parent)!=thetaFromRootMap.end()){
+ nodeTheta += thetaFromRootMap.at(key_parent);
+ break;
+ }
+ key_child = key_parent; // we move upwards in the tree
+ }
+ return nodeTheta;
+}
+
+/*
+ * This function computes the cumulative orientations (without wrapping)
+ * for all node wrt the root (root has zero orientation)
+ */
+key2doubleMap computeThetasToRoot(const key2doubleMap& deltaThetaMap,
+ const PredecessorMap& tree) {
+
+ key2doubleMap thetaToRootMap;
+ key2doubleMap::const_iterator it;
+ // for all nodes in the tree
+ for(it = deltaThetaMap.begin(); it != deltaThetaMap.end(); ++it )
+ {
+ // compute the orientation wrt root
+ Key nodeKey = it->first;
+ double nodeTheta = computeThetaToRoot(nodeKey, tree, deltaThetaMap,
+ thetaToRootMap);
+ thetaToRootMap.insert(std::pair(nodeKey, nodeTheta));
+ }
+ return thetaToRootMap;
+}
+
+/*
+ * Given a factor graph "g", and a spanning tree "tree", the function selects the nodes belonging to the tree and to g,
+ * and stores the factor slots corresponding to edges in the tree and to chordsIds wrt this tree
+ * Also it computes deltaThetaMap which is a fast way to encode relative orientations along the tree:
+ * for a node key2, s.t. tree[key2]=key1, the values deltaThetaMap[key2] is the relative orientation theta[key2]-theta[key1]
+ */
+void getSymbolicGraph(
+ /*OUTPUTS*/ std::vector& spanningTreeIds, std::vector& chordsIds, key2doubleMap& deltaThetaMap,
+ /*INPUTS*/ const PredecessorMap& tree, const NonlinearFactorGraph& g){
+
+ // Get keys for which you want the orientation
+ size_t id=0;
+ // Loop over the factors
+ BOOST_FOREACH(const boost::shared_ptr& factor, g){
+ if (factor->keys().size() == 2){
+ Key key1 = factor->keys()[0];
+ Key key2 = factor->keys()[1];
+
+ // recast to a between
+ boost::shared_ptr< BetweenFactor > pose2Between =
+ boost::dynamic_pointer_cast< BetweenFactor >(factor);
+ if (!pose2Between) continue;
+
+ // get the orientation - measured().theta();
+ double deltaTheta = pose2Between->measured().theta();
+
+ // insert (directed) orientations in the map "deltaThetaMap"
+ bool inTree=false;
+ if(tree.at(key1)==key2){
+ deltaThetaMap.insert(std::pair(key1, -deltaTheta));
+ inTree = true;
+ } else if(tree.at(key2)==key1){
+ deltaThetaMap.insert(std::pair(key2, deltaTheta));
+ inTree = true;
+ }
+
+ // store factor slot, distinguishing spanning tree edges from chordsIds
+ if(inTree == true)
+ spanningTreeIds.push_back(id);
+ else // it's a chord!
+ chordsIds.push_back(id);
+ }
+ id++;
+ }
+}
+
+/*
+ * Retrieves the deltaTheta and the corresponding noise model from a BetweenFactor
+ */
+void getDeltaThetaAndNoise(NonlinearFactor::shared_ptr factor,
+ Vector& deltaTheta, noiseModel::Diagonal::shared_ptr& model_deltaTheta) {
+
+ // Get the relative rotation measurement from the between factor
+ boost::shared_ptr > pose2Between =
+ boost::dynamic_pointer_cast >(factor);
+ if (!pose2Between)
+ throw std::invalid_argument("buildLinearOrientationGraph: invalid between factor!");
+ deltaTheta = (Vector(1) << pose2Between->measured().theta());
+
+ // Retrieve the noise model for the relative rotation
+ SharedNoiseModel model = pose2Between->get_noiseModel();
+ boost::shared_ptr diagonalModel =
+ boost::dynamic_pointer_cast(model);
+ if (!diagonalModel)
+ throw std::invalid_argument("buildLinearOrientationGraph: invalid noise model "
+ "(current version assumes diagonal noise model)!");
+ Vector std_deltaTheta = (Vector(1) << diagonalModel->sigma(2) ); // std on the angular measurement
+ model_deltaTheta = noiseModel::Diagonal::Sigmas(std_deltaTheta);
+}
+
+/*
+ * Linear factor graph with regularized orientation measurements
+ */
+GaussianFactorGraph buildLinearOrientationGraph(const std::vector& spanningTreeIds, const std::vector& chordsIds,
+ const NonlinearFactorGraph& g, const key2doubleMap& orientationsToRoot, const PredecessorMap& tree){
+
+ GaussianFactorGraph lagoGraph;
+ Vector deltaTheta;
+ noiseModel::Diagonal::shared_ptr model_deltaTheta;
+
+ Matrix I = eye(1);
+ // put original measurements in the spanning tree
+ BOOST_FOREACH(const size_t& factorId, spanningTreeIds){
+ const FastVector& keys = g[factorId]->keys();
+ Key key1 = keys[0], key2 = keys[1];
+ getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta);
+ lagoGraph.add(JacobianFactor(key1, -I, key2, I, deltaTheta, model_deltaTheta));
+ }
+ // put regularized measurements in the chordsIds
+ BOOST_FOREACH(const size_t& factorId, chordsIds){
+ const FastVector& keys = g[factorId]->keys();
+ Key key1 = keys[0], key2 = keys[1];
+ getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta);
+ double key1_DeltaTheta_key2 = deltaTheta(0);
+ double k2pi_noise = key1_DeltaTheta_key2 + orientationsToRoot.at(key1) - orientationsToRoot.at(key2); // this coincides to summing up measurements along the cycle induced by the chord
+ double k = round(k2pi_noise/(2*M_PI));
+ Vector deltaThetaRegularized = (Vector(1) << key1_DeltaTheta_key2 - 2*k*M_PI);
+ lagoGraph.add(JacobianFactor(key1, -I, key2, I, deltaThetaRegularized, model_deltaTheta));
+ }
+ // prior on the anchor orientation
+ lagoGraph.add(JacobianFactor(keyAnchor, I, (Vector(1) << 0.0), priorOrientationNoise));
+ return lagoGraph;
+}
+
+/*
+ * Selects the subgraph of betweenFactors and transforms priors into between wrt a fictitious node
+ */
+NonlinearFactorGraph buildPose2graph(const NonlinearFactorGraph& graph){
+ NonlinearFactorGraph pose2Graph;
+
+ BOOST_FOREACH(const boost::shared_ptr& factor, graph){
+
+ // recast to a between on Pose2
+ boost::shared_ptr< BetweenFactor > pose2Between =
+ boost::dynamic_pointer_cast< BetweenFactor >(factor);
+ if (pose2Between)
+ pose2Graph.add(pose2Between);
+
+ // recast PriorFactor to BetweenFactor
+ boost::shared_ptr< PriorFactor > pose2Prior =
+ boost::dynamic_pointer_cast< PriorFactor >(factor);
+ if (pose2Prior)
+ pose2Graph.add(BetweenFactor(keyAnchor, pose2Prior->keys()[0],
+ pose2Prior->prior(), pose2Prior->get_noiseModel()));
+ }
+ return pose2Graph;
+}
+
+/*
+ * Returns the orientations of a graph including only BetweenFactors
+ */
+VectorValues computeLagoOrientations(const NonlinearFactorGraph& pose2Graph){
+
+ // Find a minimum spanning tree
+ PredecessorMap tree = findMinimumSpanningTree >(pose2Graph);
+
+ // Create a linear factor graph (LFG) of scalars
+ key2doubleMap deltaThetaMap;
+ std::vector spanningTreeIds; // ids of between factors forming the spanning tree T
+ std::vector chordsIds; // ids of between factors corresponding to chordsIds wrt T
+ getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, pose2Graph);
+
+ // temporary structure to correct wraparounds along loops
+ key2doubleMap orientationsToRoot = computeThetasToRoot(deltaThetaMap, tree);
+
+ // regularize measurements and plug everything in a factor graph
+ GaussianFactorGraph lagoGraph = buildLinearOrientationGraph(spanningTreeIds, chordsIds, pose2Graph, orientationsToRoot, tree);
+
+ // Solve the LFG
+ VectorValues orientationsLago = lagoGraph.optimize();
+
+ return orientationsLago;
+}
+
+/*
+ * Returns the orientations of the Pose2 in a generic factor graph
+ */
+VectorValues initializeOrientationsLago(const NonlinearFactorGraph& graph) {
+
+ // We "extract" the Pose2 subgraph of the original graph: this
+ // is done to properly model priors and avoiding operating on a larger graph
+ NonlinearFactorGraph pose2Graph = buildPose2graph(graph);
+
+ // Get orientations from relative orientation measurements
+ return computeLagoOrientations(pose2Graph);
+}
+
+/*
+ * Returns the values for the Pose2 in a generic factor graph
+ */
+Values initializeLago(const NonlinearFactorGraph& graph) {
+
+ // We "extract" the Pose2 subgraph of the original graph: this
+ // is done to properly model priors and avoiding operating on a larger graph
+ NonlinearFactorGraph pose2Graph = buildPose2graph(graph);
+
+ // Get orientations from relative orientation measurements
+ VectorValues orientationsLago = computeLagoOrientations(pose2Graph);
+
+ Values initialGuessLago;
+ // for all nodes in the tree
+ for(VectorValues::const_iterator it = orientationsLago.begin(); it != orientationsLago.end(); ++it ){
+ Key key = it->first;
+ Vector orientation = orientationsLago.at(key);
+ Pose2 poseLago = Pose2(0.0,0.0,orientation(0));
+ initialGuessLago.insert(key, poseLago);
+ }
+ pose2Graph.add(PriorFactor(keyAnchor, Pose2(), priorPose2Noise));
+ GaussNewtonOptimizer pose2optimizer(pose2Graph, initialGuessLago);
+ initialGuessLago = pose2optimizer.optimize();
+ initialGuessLago.erase(keyAnchor); // that was fictitious
+ return initialGuessLago;
+}
+
+/*
+ * Only corrects the orientation part in initialGuess
+ */
+Values initializeLago(const NonlinearFactorGraph& graph, const Values& initialGuess) {
+ Values initialGuessLago;
+
+ // get the orientation estimates from LAGO
+ VectorValues orientations = initializeOrientationsLago(graph);
+
+ // for all nodes in the tree
+ for(VectorValues::const_iterator it = orientations.begin(); it != orientations.end(); ++it ){
+ Key key = it->first;
+ if (key != keyAnchor){
+ Pose2 pose = initialGuess.at(key);
+ Vector orientation = orientations.at(key);
+ Pose2 poseLago = Pose2(pose.x(),pose.y(),orientation(0));
+ initialGuessLago.insert(key, poseLago);
+ }
+ }
+ return initialGuessLago;
+}
+
+} // end of namespace gtsam
diff --git a/gtsam/nonlinear/tests/testLagoInitializer.cpp b/gtsam/nonlinear/tests/testLagoInitializer.cpp
new file mode 100644
index 000000000..8181542ff
--- /dev/null
+++ b/gtsam/nonlinear/tests/testLagoInitializer.cpp
@@ -0,0 +1,227 @@
+/* ----------------------------------------------------------------------------
+
+ * GTSAM Copyright 2010, Georgia Tech Research Corporation,
+ * Atlanta, Georgia 30332-0415
+ * All Rights Reserved
+ * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
+
+ * See LICENSE for the license information
+
+ * -------------------------------------------------------------------------- */
+
+/**
+ * @file testPlanarSLAMExample_lago.cpp
+ * @brief Unit tests for planar SLAM example using the initialization technique
+ * LAGO (Linear Approximation for Graph Optimization)
+ *
+ * @author Luca Carlone
+ * @author Frank Dellaert
+ * @date May 14, 2014
+ */
+
+#include
+#include
+#include
+#include
+
+#include
+#include
+
+#include
+#include
+#include
+#include
+
+using namespace std;
+using namespace gtsam;
+using namespace boost::assign;
+
+Symbol x0('x', 0), x1('x', 1), x2('x', 2), x3('x', 3);
+static SharedNoiseModel model(noiseModel::Isotropic::Sigma(3, 0.1));
+
+namespace simple {
+// We consider a small graph:
+// symbolic FG
+// x2 0 1
+// / | \ 1 2
+// / | \ 2 3
+// x3 | x1 2 0
+// \ | / 0 3
+// \ | /
+// x0
+//
+
+Pose2 pose0 = Pose2(0.000000, 0.000000, 0.000000);
+Pose2 pose1 = Pose2(1.000000, 1.000000, 1.570796);
+Pose2 pose2 = Pose2(0.000000, 2.000000, 3.141593);
+Pose2 pose3 = Pose2(-1.000000, 1.000000, 4.712389);
+
+NonlinearFactorGraph graph() {
+ NonlinearFactorGraph g;
+ g.add(BetweenFactor(x0, x1, pose0.between(pose1), model));
+ g.add(BetweenFactor(x1, x2, pose1.between(pose2), model));
+ g.add(BetweenFactor(x2, x3, pose2.between(pose3), model));
+ g.add(BetweenFactor(x2, x0, pose2.between(pose0), model));
+ g.add(BetweenFactor(x0, x3, pose0.between(pose3), model));
+ g.add(PriorFactor(x0, pose0, model));
+ return g;
+}
+}
+
+/* *************************************************************************** */
+TEST( Lago, checkSTandChords ) {
+ NonlinearFactorGraph g = simple::graph();
+ PredecessorMap tree = findMinimumSpanningTree >(g);
+
+ key2doubleMap deltaThetaMap;
+ vector spanningTreeIds; // ids of between factors forming the spanning tree T
+ vector chordsIds; // ids of between factors corresponding to chordsIds wrt T
+ getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g);
+
+ DOUBLES_EQUAL(spanningTreeIds[0], 0, 1e-6); // factor 0 is the first in the ST (0->1)
+ DOUBLES_EQUAL(spanningTreeIds[1], 3, 1e-6); // factor 3 is the second in the ST(2->0)
+ DOUBLES_EQUAL(spanningTreeIds[2], 4, 1e-6); // factor 4 is the third in the ST(0->3)
+
+}
+
+/* *************************************************************************** */
+TEST( Lago, orientationsOverSpanningTree ) {
+ NonlinearFactorGraph g = simple::graph();
+ PredecessorMap tree = findMinimumSpanningTree >(g);
+
+ // check the tree structure
+ EXPECT_LONGS_EQUAL(tree[x0], x0);
+ EXPECT_LONGS_EQUAL(tree[x1], x0);
+ EXPECT_LONGS_EQUAL(tree[x2], x0);
+ EXPECT_LONGS_EQUAL(tree[x3], x0);
+
+ key2doubleMap expected;
+ expected[x0]= 0;
+ expected[x1]= M_PI/2; // edge x0->x1 (consistent with edge (x0,x1))
+ expected[x2]= -M_PI; // edge x0->x2 (traversed backwards wrt edge (x2,x0))
+ expected[x3]= -M_PI/2; // edge x0->x3 (consistent with edge (x0,x3))
+
+ key2doubleMap deltaThetaMap;
+ vector spanningTreeIds; // ids of between factors forming the spanning tree T
+ vector chordsIds; // ids of between factors corresponding to chordsIds wrt T
+ getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g);
+
+ key2doubleMap actual;
+ actual = computeThetasToRoot(deltaThetaMap, tree);
+ DOUBLES_EQUAL(expected[x0], actual[x0], 1e-6);
+ DOUBLES_EQUAL(expected[x1], actual[x1], 1e-6);
+ DOUBLES_EQUAL(expected[x2], actual[x2], 1e-6);
+ DOUBLES_EQUAL(expected[x3], actual[x3], 1e-6);
+}
+
+/* *************************************************************************** */
+TEST( Lago, regularizedMeasurements ) {
+ NonlinearFactorGraph g = simple::graph();
+ PredecessorMap tree = findMinimumSpanningTree >(g);
+
+ key2doubleMap deltaThetaMap;
+ vector spanningTreeIds; // ids of between factors forming the spanning tree T
+ vector chordsIds; // ids of between factors corresponding to chordsIds wrt T
+ getSymbolicGraph(spanningTreeIds, chordsIds, deltaThetaMap, tree, g);
+
+ key2doubleMap orientationsToRoot = computeThetasToRoot(deltaThetaMap, tree);
+
+ GaussianFactorGraph lagoGraph = buildLinearOrientationGraph(spanningTreeIds, chordsIds, g, orientationsToRoot, tree);
+ std::pair actualAb = lagoGraph.jacobian();
+ // jacobian corresponding to the orientation measurements (last entry is the prior on the anchor and is disregarded)
+ Vector actual = (Vector(5) << actualAb.second(0),actualAb.second(1),actualAb.second(2),actualAb.second(3),actualAb.second(4));
+ // this is the whitened error, so we multiply by the std to unwhiten
+ actual = 0.1 * actual;
+ // Expected regularized measurements (same for the spanning tree, corrected for the chordsIds)
+ Vector expected = (Vector(5) << M_PI/2, M_PI, -M_PI/2, M_PI/2 - 2*M_PI , M_PI/2);
+
+ EXPECT(assert_equal(expected, actual, 1e-6));
+}
+
+/* *************************************************************************** */
+TEST( Lago, smallGraphVectorValues ) {
+
+ VectorValues initialGuessLago = initializeOrientationsLago(simple::graph());
+
+ // comparison is up to M_PI, that's why we add some multiples of 2*M_PI
+ EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6));
+ EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initialGuessLago.at(x1), 1e-6));
+ EXPECT(assert_equal((Vector(1) << M_PI - 2*M_PI), initialGuessLago.at(x2), 1e-6));
+ EXPECT(assert_equal((Vector(1) << 1.5 * M_PI - 2*M_PI), initialGuessLago.at(x3), 1e-6));
+}
+
+/* *************************************************************************** */
+TEST( Lago, multiplePosePriors ) {
+ NonlinearFactorGraph g = simple::graph();
+ g.add(PriorFactor(x1, simple::pose1, model));
+ VectorValues initialGuessLago = initializeOrientationsLago(g);
+
+ // comparison is up to M_PI, that's why we add some multiples of 2*M_PI
+ EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6));
+ EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initialGuessLago.at(x1), 1e-6));
+ EXPECT(assert_equal((Vector(1) << M_PI - 2*M_PI), initialGuessLago.at(x2), 1e-6));
+ EXPECT(assert_equal((Vector(1) << 1.5 * M_PI - 2*M_PI), initialGuessLago.at(x3), 1e-6));
+}
+
+/* *************************************************************************** */
+TEST( Lago, multiplePoseAndRotPriors ) {
+ NonlinearFactorGraph g = simple::graph();
+ g.add(PriorFactor(x1, simple::pose1.theta(), model));
+ VectorValues initialGuessLago = initializeOrientationsLago(g);
+
+ // comparison is up to M_PI, that's why we add some multiples of 2*M_PI
+ EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6));
+ EXPECT(assert_equal((Vector(1) << 0.5 * M_PI), initialGuessLago.at(x1), 1e-6));
+ EXPECT(assert_equal((Vector(1) << M_PI - 2*M_PI), initialGuessLago.at(x2), 1e-6));
+ EXPECT(assert_equal((Vector(1) << 1.5 * M_PI - 2*M_PI), initialGuessLago.at(x3), 1e-6));
+}
+
+/* *************************************************************************** */
+TEST( Lago, smallGraphValues ) {
+
+ // we set the orientations in the initial guess to zero
+ Values initialGuess;
+ initialGuess.insert(x0,Pose2(simple::pose0.x(),simple::pose0.y(),0.0));
+ initialGuess.insert(x1,Pose2(simple::pose1.x(),simple::pose1.y(),0.0));
+ initialGuess.insert(x2,Pose2(simple::pose2.x(),simple::pose2.y(),0.0));
+ initialGuess.insert(x3,Pose2(simple::pose3.x(),simple::pose3.y(),0.0));
+
+ // lago does not touch the Cartesian part and only fixed the orientations
+ Values actual = initializeLago(simple::graph(), initialGuess);
+
+ // we are in a noiseless case
+ Values expected;
+ expected.insert(x0,simple::pose0);
+ expected.insert(x1,simple::pose1);
+ expected.insert(x2,simple::pose2);
+ expected.insert(x3,simple::pose3);
+
+ EXPECT(assert_equal(expected, actual, 1e-6));
+}
+
+/* *************************************************************************** */
+TEST( Lago, smallGraph2 ) {
+
+ // lago does not touch the Cartesian part and only fixed the orientations
+ Values actual = initializeLago(simple::graph());
+
+ // we are in a noiseless case
+ Values expected;
+ expected.insert(x0,simple::pose0);
+ expected.insert(x1,simple::pose1);
+ expected.insert(x2,simple::pose2);
+ expected.insert(x3,simple::pose3);
+
+ EXPECT(assert_equal(expected, actual, 1e-6));
+}
+
+/* ************************************************************************* */
+int main() {
+ TestResult tr;
+ return TestRegistry::runAllTests(tr);
+}
+/* ************************************************************************* */
+