Re-enabled summarization test/implementation. Sequential versions re-implemented, but tests don't pass

release/4.3a0
Alex Cunningham 2013-08-09 19:59:14 +00:00
parent 5b7d7b3793
commit 073ea4fa0f
3 changed files with 50 additions and 84 deletions

View File

@ -5,8 +5,6 @@
* @author Alex Cunningham
*/
#if 0
#include <gtsam/nonlinear/summarization.h>
#include <gtsam/nonlinear/LinearContainerFactor.h>
@ -15,35 +13,29 @@ using namespace std;
namespace gtsam {
/* ************************************************************************* */
std::pair<GaussianFactorGraph,Ordering>
summarize(const NonlinearFactorGraph& graph, const Values& values,
GaussianFactorGraph summarize(const NonlinearFactorGraph& graph, const Values& values,
const KeySet& saved_keys, SummarizationMode mode) {
const size_t nrEliminatedKeys = values.size() - saved_keys.size();
GaussianFactorGraph full_graph = *graph.linearize(values);
// If we aren't eliminating anything, linearize and return
if (!nrEliminatedKeys || saved_keys.empty()) {
Ordering ordering = *values.orderingArbitrary();
GaussianFactorGraph linear_graph = *graph.linearize(values, ordering);
return make_pair(linear_graph, ordering);
}
if (!nrEliminatedKeys || saved_keys.empty())
return full_graph;
// Compute a constrained ordering with variables grouped to end
std::map<gtsam::Key, int> ordering_constraints;
std::vector<Key> saved_keys_vec(saved_keys.begin(), saved_keys.end());
// group all saved variables together
BOOST_FOREACH(const gtsam::Key& key, saved_keys)
ordering_constraints.insert(make_pair(key, 1));
Ordering ordering = *graph.orderingCOLAMDConstrained(values, ordering_constraints);
// // Compute a constrained ordering with variables grouped to end
// std::map<gtsam::Key, int> ordering_constraints;
//
// // group all saved variables together
// BOOST_FOREACH(const gtsam::Key& key, saved_keys)
// ordering_constraints.insert(make_pair(key, 1));
//
// Ordering ordering = *graph.orderingCOLAMDConstrained(values, ordering_constraints);
// Linearize the system
GaussianFactorGraph full_graph = *graph.linearize(values, ordering);
GaussianFactorGraph summarized_system;
std::vector<Index> indices;
BOOST_FOREACH(const Key& k, saved_keys)
indices.push_back(ordering[k]);
// PARTIAL_QR = 0, /// Uses QR solver to eliminate, does not require fully constrained system
// PARTIAL_CHOLESKY = 1, /// Uses Cholesky solver, does not require fully constrained system
// SEQUENTIAL_QR = 2, /// Uses QR to compute full joint graph (needs fully constrained system)
@ -51,38 +43,37 @@ summarize(const NonlinearFactorGraph& graph, const Values& values,
switch (mode) {
case PARTIAL_QR: {
summarized_system.push_back(EliminateQR(full_graph, nrEliminatedKeys).second);
// summarized_system.push_back(EliminateQR(full_graph, nrEliminatedKeys).second);
break;
}
case PARTIAL_CHOLESKY: {
summarized_system.push_back(EliminateCholesky(full_graph, nrEliminatedKeys).second);
// summarized_system.push_back(EliminateCholesky(full_graph, nrEliminatedKeys).second);
break;
}
case SEQUENTIAL_QR: {
GaussianSequentialSolver solver(full_graph, true);
summarized_system.push_back(*solver.jointFactorGraph(indices));
summarized_system.push_back(*full_graph.marginal(saved_keys_vec, EliminateQR));
// GaussianSequentialSolver solver(full_graph, true);
// summarized_system.push_back(*solver.jointFactorGraph(indices));
break;
}
case SEQUENTIAL_CHOLESKY: {
GaussianSequentialSolver solver(full_graph, false);
summarized_system.push_back(*solver.jointFactorGraph(indices));
summarized_system.push_back(*full_graph.marginal(saved_keys_vec, EliminateCholesky));
// GaussianSequentialSolver solver(full_graph, false);
// summarized_system.push_back(*solver.jointFactorGraph(indices));
break;
}
}
return make_pair(summarized_system, ordering);
return summarized_system;
}
/* ************************************************************************* */
NonlinearFactorGraph summarizeAsNonlinearContainer(
const NonlinearFactorGraph& graph, const Values& values,
const KeySet& saved_keys, SummarizationMode mode) {
GaussianFactorGraph summarized_graph;
Ordering ordering;
boost::tie(summarized_graph, ordering) = summarize(graph, values, saved_keys, mode);
return LinearContainerFactor::convertLinearGraph(summarized_graph, ordering);
GaussianFactorGraph summarized_graph = summarize(graph, values, saved_keys, mode);
return LinearContainerFactor::convertLinearGraph(summarized_graph);
}
/* ************************************************************************* */
} // \namespace gtsam
#endif

View File

@ -9,13 +9,9 @@
#pragma once
#if 0
#include <gtsam/dllexport.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/nonlinear/Ordering.h>
namespace gtsam {
@ -40,9 +36,8 @@ typedef enum {
* @param mode controls what elimination technique and requirements to use
* @return a pair of the remaining graph and the ordering used for linearization
*/
std::pair<GaussianFactorGraph,Ordering> GTSAM_EXPORT
summarize(const NonlinearFactorGraph& graph, const Values& values,
const KeySet& saved_keys, SummarizationMode mode = PARTIAL_QR);
GaussianFactorGraph GTSAM_EXPORT summarize(const NonlinearFactorGraph& graph,
const Values& values, const KeySet& saved_keys, SummarizationMode mode = PARTIAL_QR);
/**
* Performs the same summarization technique used in summarize(), but returns the
@ -59,5 +54,3 @@ NonlinearFactorGraph GTSAM_EXPORT summarizeAsNonlinearContainer(
const KeySet& saved_keys, SummarizationMode mode = PARTIAL_QR);
} // \namespace gtsam
#endif

View File

@ -9,8 +9,6 @@
#include <CppUnitLite/TestHarness.h>
#if 0
#include <boost/assign/std/set.hpp>
#include <boost/assign/std/vector.hpp>
@ -78,23 +76,23 @@ TEST( testSummarization, example_from_ddf1 ) {
{
// Summarize to a linear system
GaussianFactorGraph actLinGraph; Ordering actOrdering;
GaussianFactorGraph actLinGraph;
SummarizationMode mode = PARTIAL_QR;
boost::tie(actLinGraph, actOrdering) = summarize(graph, values, saved_keys, mode);
actLinGraph = summarize(graph, values, saved_keys, mode);
Ordering expSumOrdering; expSumOrdering += xA0, xA1, xA2, lA3, lA5;
EXPECT(assert_equal(expSumOrdering, actOrdering));
// Ordering expSumOrdering; expSumOrdering += xA0, xA1, xA2, lA3, lA5;
// EXPECT(assert_equal(expSumOrdering, actOrdering));
// Does not split out subfactors where possible
GaussianFactorGraph expLinGraph;
expLinGraph += JacobianFactor(
expSumOrdering[lA3],
lA3,
Matrix_(4,2,
0.595867, 0.605092,
0.0, -0.406109,
0.0, 0.0,
0.0, 0.0),
expSumOrdering[lA5],
lA5,
Matrix_(4,2,
-0.125971, -0.160052,
0.13586, 0.301096,
@ -105,30 +103,27 @@ TEST( testSummarization, example_from_ddf1 ) {
// Summarize directly from a nonlinear graph to another nonlinear graph
NonlinearFactorGraph actContainerGraph = summarizeAsNonlinearContainer(graph, values, saved_keys, mode);
NonlinearFactorGraph expContainerGraph = LinearContainerFactor::convertLinearGraph(expLinGraph, expSumOrdering);
NonlinearFactorGraph expContainerGraph = LinearContainerFactor::convertLinearGraph(expLinGraph);
EXPECT(assert_equal(expContainerGraph, actContainerGraph, tol));
}
{
// Summarize to a linear system using cholesky - compare to previous version
GaussianFactorGraph actLinGraph; Ordering actOrdering;
GaussianFactorGraph actLinGraph;
SummarizationMode mode = PARTIAL_CHOLESKY;
boost::tie(actLinGraph, actOrdering) = summarize(graph, values, saved_keys, mode);
Ordering expSumOrdering; expSumOrdering += xA0, xA1, xA2, lA3, lA5;
EXPECT(assert_equal(expSumOrdering, actOrdering));
actLinGraph = summarize(graph, values, saved_keys, mode);
// Does not split out subfactors where possible
GaussianFactorGraph expLinGraph;
expLinGraph += HessianFactor(JacobianFactor(
expSumOrdering[lA3],
lA3,
Matrix_(4,2,
0.595867, 0.605092,
0.0, -0.406109,
0.0, 0.0,
0.0, 0.0),
expSumOrdering[lA5],
lA5,
Matrix_(4,2,
-0.125971, -0.160052,
0.13586, 0.301096,
@ -139,35 +134,31 @@ TEST( testSummarization, example_from_ddf1 ) {
// Summarize directly from a nonlinear graph to another nonlinear graph
NonlinearFactorGraph actContainerGraph = summarizeAsNonlinearContainer(graph, values, saved_keys, mode);
NonlinearFactorGraph expContainerGraph = LinearContainerFactor::convertLinearGraph(expLinGraph, expSumOrdering);
NonlinearFactorGraph expContainerGraph = LinearContainerFactor::convertLinearGraph(expLinGraph);
EXPECT(assert_equal(expContainerGraph, actContainerGraph, tol));
}
{
// Summarize to a linear system with joint factor graph version
GaussianFactorGraph actLinGraph; Ordering actOrdering;
SummarizationMode mode = SEQUENTIAL_QR;
boost::tie(actLinGraph, actOrdering) = summarize(graph, values, saved_keys, mode);
Ordering expSumOrdering; expSumOrdering += xA0, xA1, xA2, lA3, lA5;
EXPECT(assert_equal(expSumOrdering, actOrdering));
GaussianFactorGraph actLinGraph = summarize(graph, values, saved_keys, mode);
// Does not split out subfactors where possible
GaussianFactorGraph expLinGraph;
expLinGraph += JacobianFactor(
expSumOrdering[lA3],
lA3,
Matrix_(2,2,
0.595867, 0.605092,
0.0, 0.406109),
expSumOrdering[lA5],
lA5,
Matrix_(2,2,
-0.125971, -0.160052,
-0.13586, -0.301096),
zero(2), diagmodel2);
expLinGraph += JacobianFactor(
expSumOrdering[lA5],
lA5,
Matrix_(2,2,
0.268667, 0.31703,
0.0, 0.131698),
@ -177,35 +168,31 @@ TEST( testSummarization, example_from_ddf1 ) {
// Summarize directly from a nonlinear graph to another nonlinear graph
NonlinearFactorGraph actContainerGraph = summarizeAsNonlinearContainer(graph, values, saved_keys, mode);
NonlinearFactorGraph expContainerGraph = LinearContainerFactor::convertLinearGraph(expLinGraph, expSumOrdering);
NonlinearFactorGraph expContainerGraph = LinearContainerFactor::convertLinearGraph(expLinGraph);
EXPECT(assert_equal(expContainerGraph, actContainerGraph, tol));
}
{
// Summarize to a linear system with joint factor graph version
GaussianFactorGraph actLinGraph; Ordering actOrdering;
SummarizationMode mode = SEQUENTIAL_CHOLESKY;
boost::tie(actLinGraph, actOrdering) = summarize(graph, values, saved_keys, mode);
Ordering expSumOrdering; expSumOrdering += xA0, xA1, xA2, lA3, lA5;
EXPECT(assert_equal(expSumOrdering, actOrdering));
GaussianFactorGraph actLinGraph = summarize(graph, values, saved_keys, mode);
// Does not split out subfactors where possible
GaussianFactorGraph expLinGraph;
expLinGraph += JacobianFactor(
expSumOrdering[lA3],
lA3,
Matrix_(2,2,
0.595867, 0.605092,
0.0, 0.406109),
expSumOrdering[lA5],
lA5,
Matrix_(2,2,
-0.125971, -0.160052,
-0.13586, -0.301096),
zero(2), diagmodel2);
expLinGraph += JacobianFactor(
expSumOrdering[lA5],
lA5,
Matrix_(2,2,
0.268667, 0.31703,
0.0, 0.131698),
@ -215,7 +202,7 @@ TEST( testSummarization, example_from_ddf1 ) {
// Summarize directly from a nonlinear graph to another nonlinear graph
NonlinearFactorGraph actContainerGraph = summarizeAsNonlinearContainer(graph, values, saved_keys, mode);
NonlinearFactorGraph expContainerGraph = LinearContainerFactor::convertLinearGraph(expLinGraph, expSumOrdering);
NonlinearFactorGraph expContainerGraph = LinearContainerFactor::convertLinearGraph(expLinGraph);
EXPECT(assert_equal(expContainerGraph, actContainerGraph, tol));
}
@ -233,16 +220,11 @@ TEST( testSummarization, no_summarize_case ) {
values.insert(key, Pose2(0.0, 0.0, 0.1));
SummarizationMode mode = SEQUENTIAL_CHOLESKY;
GaussianFactorGraph actLinGraph; Ordering actOrdering;
boost::tie(actLinGraph, actOrdering) = summarize(graph, values, saved_keys, mode);
Ordering expOrdering; expOrdering += key;
GaussianFactorGraph expLinGraph = *graph.linearize(values, expOrdering);
EXPECT(assert_equal(expOrdering, actOrdering));
GaussianFactorGraph actLinGraph = summarize(graph, values, saved_keys, mode);
GaussianFactorGraph expLinGraph = *graph.linearize(values);
EXPECT(assert_equal(expLinGraph, actLinGraph));
}
#endif
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */