119 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C++
		
	
	
		
		
			
		
	
	
			119 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C++
		
	
	
|  | /* ----------------------------------------------------------------------------
 | ||
|  | 
 | ||
|  |  * GTSAM Copyright 2010, Georgia Tech Research Corporation, | ||
|  |  * Atlanta, Georgia 30332-0415 | ||
|  |  * All Rights Reserved | ||
|  |  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | ||
|  | 
 | ||
|  |  * See LICENSE for the license information | ||
|  | 
 | ||
|  |  * -------------------------------------------------------------------------- */ | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * @file    SFMExample.cpp | ||
|  |  * @brief   A structure-from-motion problem on a simulated dataset | ||
|  |  * @author  Duy-Nguyen Ta | ||
|  |  */ | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * A structure-from-motion example with landmarks | ||
|  |  *  - The landmarks form a 10 meter cube | ||
|  |  *  - The robot rotates around the landmarks, always facing towards the cube | ||
|  |  */ | ||
|  | 
 | ||
|  | // For loading the data
 | ||
|  | #include "SFMdata.h"
 | ||
|  | 
 | ||
|  | // Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y).
 | ||
|  | #include <gtsam/geometry/Point2.h>
 | ||
|  | 
 | ||
|  | // Each variable in the system (poses and landmarks) must be identified with a unique key.
 | ||
|  | // We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
 | ||
|  | // Here we will use Symbols
 | ||
|  | #include <gtsam/inference/Symbol.h>
 | ||
|  | 
 | ||
|  | // In GTSAM, measurement functions are represented as 'factors'. Several common factors
 | ||
|  | // have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
 | ||
|  | // Here we will use Projection factors to model the camera's landmark observations.
 | ||
|  | // Also, we will initialize the robot at some location using a Prior factor.
 | ||
|  | #include <gtsam/slam/PriorFactor.h>
 | ||
|  | #include <gtsam/slam/ProjectionFactor.h>
 | ||
|  | 
 | ||
|  | // When the factors are created, we will add them to a Factor Graph. As the factors we are using
 | ||
|  | // are nonlinear factors, we will need a Nonlinear Factor Graph.
 | ||
|  | #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | ||
|  | 
 | ||
|  | // Finally, once all of the factors have been added to our factor graph, we will want to
 | ||
|  | // solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values.
 | ||
|  | // GTSAM includes several nonlinear optimizers to perform this step. Here we will use a
 | ||
|  | // trust-region method known as Powell's Degleg
 | ||
|  | #include <gtsam/nonlinear/DoglegOptimizer.h>
 | ||
|  | 
 | ||
|  | // The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
 | ||
|  | // nonlinear functions around an initial linearization point, then solve the linear system
 | ||
|  | // to update the linearization point. This happens repeatedly until the solver converges
 | ||
|  | // to a consistent set of variable values. This requires us to specify an initial guess
 | ||
|  | // for each variable, held in a Values container.
 | ||
|  | #include <gtsam/nonlinear/Values.h>
 | ||
|  | 
 | ||
|  | #include <vector>
 | ||
|  | 
 | ||
|  | using namespace std; | ||
|  | using namespace gtsam; | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | int main(int argc, char* argv[]) { | ||
|  | 
 | ||
|  |   // Define the camera calibration parameters
 | ||
|  |   Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)); | ||
|  | 
 | ||
|  |   // Define the camera observation noise model
 | ||
|  |   noiseModel::Isotropic::shared_ptr measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
 | ||
|  | 
 | ||
|  |   // Create the set of ground-truth landmarks
 | ||
|  |   vector<Point3> points = createPoints(); | ||
|  | 
 | ||
|  |   // Create the set of ground-truth poses
 | ||
|  |   vector<Pose3> poses = createPoses(); | ||
|  | 
 | ||
|  |   // Create a factor graph
 | ||
|  |   NonlinearFactorGraph graph; | ||
|  | 
 | ||
|  |   // Add a prior on pose x1. This indirectly specifies where the origin is.
 | ||
|  |   noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas((Vec(6) << Vector3::Constant(0.3), Vector3::Constant(0.1))); // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
 | ||
|  |   graph.push_back(PriorFactor<Pose3>(Symbol('x', 0), poses[0], poseNoise)); // add directly to graph
 | ||
|  | 
 | ||
|  |   // Simulated measurements from each camera pose, adding them to the factor graph
 | ||
|  |   for (size_t i = 0; i < poses.size(); ++i) { | ||
|  |     for (size_t j = 0; j < points.size(); ++j) { | ||
|  |       SimpleCamera camera(poses[i], *K); | ||
|  |       Point2 measurement = camera.project(points[j]); | ||
|  |       graph.push_back(GenericProjectionFactor<Pose3, Point3, Cal3_S2>(measurement, measurementNoise, Symbol('x', i), Symbol('l', j), K)); | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   // Because the structure-from-motion problem has a scale ambiguity, the problem is still under-constrained
 | ||
|  |   // Here we add a prior on the position of the first landmark. This fixes the scale by indicating the distance
 | ||
|  |   // between the first camera and the first landmark. All other landmark positions are interpreted using this scale.
 | ||
|  |   noiseModel::Isotropic::shared_ptr pointNoise = noiseModel::Isotropic::Sigma(3, 0.1); | ||
|  |   graph.push_back(PriorFactor<Point3>(Symbol('l', 0), points[0], pointNoise)); // add directly to graph
 | ||
|  |   graph.print("Factor Graph:\n"); | ||
|  | 
 | ||
|  |   // Create the data structure to hold the initial estimate to the solution
 | ||
|  |   // Intentionally initialize the variables off from the ground truth
 | ||
|  |   Values initialEstimate; | ||
|  |   for (size_t i = 0; i < poses.size(); ++i) | ||
|  |     initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20)))); | ||
|  |   for (size_t j = 0; j < points.size(); ++j) | ||
|  |     initialEstimate.insert(Symbol('l', j), points[j].compose(Point3(-0.25, 0.20, 0.15))); | ||
|  |   initialEstimate.print("Initial Estimates:\n"); | ||
|  | 
 | ||
|  |   /* Optimize the graph and print results */ | ||
|  |   Values result = DoglegOptimizer(graph, initialEstimate).optimize(); | ||
|  |   result.print("Final results:\n"); | ||
|  | 
 | ||
|  |   return 0; | ||
|  | } | ||
|  | /* ************************************************************************* */ | ||
|  | 
 |