1039 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
		
		
			
		
	
	
			1039 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
|  | /* ----------------------------------------------------------------------------
 | ||
|  | 
 | ||
|  |  * GTSAM Copyright 2010, Georgia Tech Research Corporation, | ||
|  |  * Atlanta, Georgia 30332-0415 | ||
|  |  * All Rights Reserved | ||
|  |  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | ||
|  | 
 | ||
|  |  * See LICENSE for the license information | ||
|  | 
 | ||
|  |  * -------------------------------------------------------------------------- */ | ||
|  | 
 | ||
|  | /**
 | ||
|  |  *  @file  TestSmartStereoProjectionPoseFactor.cpp | ||
|  |  *  @brief Unit tests for ProjectionFactor Class | ||
|  |  *  @author Chris Beall | ||
|  |  *  @author Luca Carlone | ||
|  |  *  @author Zsolt Kira | ||
|  |  *  @date   Sept 2013 | ||
|  |  */ | ||
|  | 
 | ||
|  | #include <gtsam_unstable/slam/SmartStereoProjectionPoseFactor.h>
 | ||
|  | 
 | ||
|  | #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | ||
|  | #include <gtsam/slam/PoseTranslationPrior.h>
 | ||
|  | #include <gtsam/slam/ProjectionFactor.h>
 | ||
|  | #include <gtsam/slam/StereoFactor.h>
 | ||
|  | #include <boost/assign/std/vector.hpp>
 | ||
|  | #include <CppUnitLite/TestHarness.h>
 | ||
|  | #include <iostream>
 | ||
|  | 
 | ||
|  | using namespace std; | ||
|  | using namespace boost::assign; | ||
|  | using namespace gtsam; | ||
|  | 
 | ||
|  | static bool isDebugTest = true; | ||
|  | 
 | ||
|  | // make a realistic calibration matrix
 | ||
|  | static double fov = 60; // degrees
 | ||
|  | static size_t w=640,h=480; | ||
|  | static double b = 1; | ||
|  | 
 | ||
|  | static Cal3_S2Stereo::shared_ptr K(new Cal3_S2Stereo(fov,w,h,b)); | ||
|  | static Cal3_S2Stereo::shared_ptr K2(new Cal3_S2Stereo(1500, 1200, 0, 640, 480,b)); | ||
|  | static boost::shared_ptr<Cal3Bundler> Kbundler(new Cal3Bundler(500, 1e-3, 1e-3, 1000, 2000)); | ||
|  | 
 | ||
|  | static double rankTol = 1.0; | ||
|  | static double linThreshold = -1.0; | ||
|  | static bool manageDegeneracy = true; | ||
|  | // Create a noise model for the pixel error
 | ||
|  | static SharedNoiseModel model(noiseModel::Unit::Create(3)); | ||
|  | 
 | ||
|  | // Convenience for named keys
 | ||
|  | using symbol_shorthand::X; | ||
|  | using symbol_shorthand::L; | ||
|  | 
 | ||
|  | // tests data
 | ||
|  | static Symbol x1('X',  1); | ||
|  | static Symbol x2('X',  2); | ||
|  | static Symbol x3('X',  3); | ||
|  | 
 | ||
|  | static Key poseKey1(x1); | ||
|  | static StereoPoint2 measurement1(323.0, 300.0, 240.0); //potentially use more reasonable measurement value?
 | ||
|  | static Pose3 body_P_sensor1(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0)); | ||
|  | 
 | ||
|  | typedef SmartStereoProjectionPoseFactor<Pose3,Point3,Cal3_S2Stereo> SmartFactor; | ||
|  | typedef SmartStereoProjectionPoseFactor<Pose3,Point3,Cal3Bundler> SmartFactorBundler; | ||
|  | 
 | ||
|  | vector<StereoPoint2> stereo_projectToMultipleCameras( | ||
|  |     const StereoCamera& cam1, const StereoCamera& cam2, | ||
|  |     const StereoCamera& cam3, Point3 landmark){ | ||
|  | 
 | ||
|  |   vector<StereoPoint2> measurements_cam; | ||
|  | 
 | ||
|  |   StereoPoint2 cam1_uv1 = cam1.project(landmark); | ||
|  |   StereoPoint2 cam2_uv1 = cam2.project(landmark); | ||
|  |   StereoPoint2 cam3_uv1 = cam3.project(landmark); | ||
|  |   measurements_cam.push_back(cam1_uv1); | ||
|  |   measurements_cam.push_back(cam2_uv1); | ||
|  |   measurements_cam.push_back(cam3_uv1); | ||
|  | 
 | ||
|  |   return measurements_cam; | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( SmartStereoProjectionPoseFactor, Constructor) { | ||
|  |   fprintf(stderr,"Test 1 Complete"); | ||
|  |   SmartFactor::shared_ptr factor1(new SmartFactor()); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( SmartStereoProjectionPoseFactor, Constructor2) { | ||
|  |   SmartFactor factor1(rankTol, linThreshold); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( SmartStereoProjectionPoseFactor, Constructor3) { | ||
|  |   SmartFactor::shared_ptr factor1(new SmartFactor()); | ||
|  |   factor1->add(measurement1, poseKey1, model, K); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( SmartStereoProjectionPoseFactor, Constructor4) { | ||
|  |   SmartFactor factor1(rankTol, linThreshold); | ||
|  |   factor1.add(measurement1, poseKey1, model, K); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( SmartStereoProjectionPoseFactor, ConstructorWithTransform) { | ||
|  |   bool manageDegeneracy = true; | ||
|  |   bool enableEPI = false; | ||
|  |   SmartFactor factor1(rankTol, linThreshold, manageDegeneracy, enableEPI, body_P_sensor1); | ||
|  |   factor1.add(measurement1, poseKey1, model, K); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( SmartStereoProjectionPoseFactor, Equals ) { | ||
|  |   SmartFactor::shared_ptr factor1(new SmartFactor()); | ||
|  |   factor1->add(measurement1, poseKey1, model, K); | ||
|  | 
 | ||
|  |   SmartFactor::shared_ptr factor2(new SmartFactor()); | ||
|  |   factor2->add(measurement1, poseKey1, model, K); | ||
|  | 
 | ||
|  |   CHECK(assert_equal(*factor1, *factor2)); | ||
|  | } | ||
|  | 
 | ||
|  | /* *************************************************************************/ | ||
|  | TEST_UNSAFE( SmartStereoProjectionPoseFactor, noiseless ){ | ||
|  |   // cout << " ************************ SmartStereoProjectionPoseFactor: noisy ****************************" << endl;
 | ||
|  | 
 | ||
|  |   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | ||
|  |   Pose3 level_pose = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); | ||
|  |   StereoCamera level_camera(level_pose, K2); | ||
|  | 
 | ||
|  |   // create second camera 1 meter to the right of first camera
 | ||
|  |   Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1,0,0)); | ||
|  |   StereoCamera level_camera_right(level_pose_right, K2); | ||
|  | 
 | ||
|  |   // landmark ~5 meters infront of camera
 | ||
|  |   Point3 landmark(5, 0.5, 1.2); | ||
|  | 
 | ||
|  |   // 1. Project two landmarks into two cameras and triangulate
 | ||
|  |   StereoPoint2 level_uv = level_camera.project(landmark); | ||
|  |   StereoPoint2 level_uv_right = level_camera_right.project(landmark); | ||
|  | 
 | ||
|  |   Values values; | ||
|  |   values.insert(x1, level_pose); | ||
|  |   values.insert(x2, level_pose_right); | ||
|  | 
 | ||
|  |   SmartFactor factor1; | ||
|  |   factor1.add(level_uv, x1, model, K2); | ||
|  |   factor1.add(level_uv_right, x2, model, K2); | ||
|  | 
 | ||
|  |   double actualError = factor1.error(values); | ||
|  |   double expectedError = 0.0; | ||
|  |   EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7); | ||
|  | 
 | ||
|  |   SmartFactor::Cameras cameras = factor1.cameras(values); | ||
|  |   double actualError2 = factor1.totalReprojectionError(cameras); | ||
|  |   EXPECT_DOUBLES_EQUAL(expectedError, actualError2, 1e-7); | ||
|  | 
 | ||
|  |   // test vector of errors
 | ||
|  |   //Vector actual = factor1.unwhitenedError(values);
 | ||
|  |   //EXPECT(assert_equal(zero(4),actual,1e-8));
 | ||
|  | } | ||
|  | 
 | ||
|  | /* *************************************************************************/ | ||
|  | TEST( SmartStereoProjectionPoseFactor, noisy ){ | ||
|  |   // cout << " ************************ SmartStereoProjectionPoseFactor: noisy ****************************" << endl;
 | ||
|  | 
 | ||
|  |   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | ||
|  |   Pose3 level_pose = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); | ||
|  |   StereoCamera level_camera(level_pose, K2); | ||
|  | 
 | ||
|  |   // create second camera 1 meter to the right of first camera
 | ||
|  |   Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1,0,0)); | ||
|  |   StereoCamera level_camera_right(level_pose_right, K2); | ||
|  | 
 | ||
|  |   // landmark ~5 meters infront of camera
 | ||
|  |   Point3 landmark(5, 0.5, 1.2); | ||
|  | 
 | ||
|  |   // 1. Project two landmarks into two cameras and triangulate
 | ||
|  |   StereoPoint2 pixelError(0.2,0.2,0); | ||
|  |   StereoPoint2 level_uv = level_camera.project(landmark) + pixelError; | ||
|  |   StereoPoint2 level_uv_right = level_camera_right.project(landmark); | ||
|  | 
 | ||
|  |   Values values; | ||
|  |   values.insert(x1, level_pose); | ||
|  |   Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); | ||
|  |   values.insert(x2, level_pose_right.compose(noise_pose)); | ||
|  | 
 | ||
|  |   SmartFactor::shared_ptr factor1(new SmartFactor()); | ||
|  |   factor1->add(level_uv, x1, model, K); | ||
|  |   factor1->add(level_uv_right, x2, model, K); | ||
|  | 
 | ||
|  |   double actualError1= factor1->error(values); | ||
|  | 
 | ||
|  |   SmartFactor::shared_ptr factor2(new SmartFactor()); | ||
|  |   vector<StereoPoint2> measurements; | ||
|  |   measurements.push_back(level_uv); | ||
|  |   measurements.push_back(level_uv_right); | ||
|  | 
 | ||
|  |   std::vector< SharedNoiseModel > noises; | ||
|  |   noises.push_back(model); | ||
|  |   noises.push_back(model); | ||
|  | 
 | ||
|  |   std::vector< boost::shared_ptr<Cal3_S2Stereo> > Ks;  ///< shared pointer to calibration object (one for each camera)
 | ||
|  |   Ks.push_back(K); | ||
|  |   Ks.push_back(K); | ||
|  | 
 | ||
|  |   std::vector<Key> views; | ||
|  |   views.push_back(x1); | ||
|  |   views.push_back(x2); | ||
|  | 
 | ||
|  |   factor2->add(measurements, views, noises, Ks); | ||
|  | 
 | ||
|  |   double actualError2= factor2->error(values); | ||
|  | 
 | ||
|  |   DOUBLES_EQUAL(actualError1, actualError2, 1e-7); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* *************************************************************************/ | ||
|  | TEST( SmartStereoProjectionPoseFactor, 3poses_smart_projection_factor ){ | ||
|  |    cout << " ************************ SmartStereoProjectionPoseFactor: 3 cams + 3 landmarks **********************" << endl; | ||
|  | 
 | ||
|  |   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | ||
|  |   Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); | ||
|  |   StereoCamera cam1(pose1, K2); | ||
|  | 
 | ||
|  |   // create second camera 1 meter to the right of first camera
 | ||
|  |   Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0)); | ||
|  |   StereoCamera cam2(pose2, K2); | ||
|  | 
 | ||
|  |   // create third camera 1 meter above the first camera
 | ||
|  |   Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0)); | ||
|  |   StereoCamera cam3(pose3, K2); | ||
|  | 
 | ||
|  |   // three landmarks ~5 meters infront of camera
 | ||
|  |   Point3 landmark1(5, 0.5, 1.2); | ||
|  |   Point3 landmark2(5, -0.5, 1.2); | ||
|  |   Point3 landmark3(3, 0, 3.0); | ||
|  | 
 | ||
|  |   // 1. Project three landmarks into three cameras and triangulate
 | ||
|  |   vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1); | ||
|  |   vector<StereoPoint2> measurements_cam2 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2); | ||
|  |   vector<StereoPoint2> measurements_cam3 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark3); | ||
|  | 
 | ||
|  |   std::vector<Key> views; | ||
|  |   views.push_back(x1); | ||
|  |   views.push_back(x2); | ||
|  |   views.push_back(x3); | ||
|  | 
 | ||
|  |   SmartFactor::shared_ptr smartFactor1(new SmartFactor()); | ||
|  |   smartFactor1->add(measurements_cam1, views, model, K2); | ||
|  | 
 | ||
|  |   SmartFactor::shared_ptr smartFactor2(new SmartFactor()); | ||
|  |   smartFactor2->add(measurements_cam2, views, model, K2); | ||
|  | 
 | ||
|  |   SmartFactor::shared_ptr smartFactor3(new SmartFactor()); | ||
|  |   smartFactor3->add(measurements_cam3, views, model, K2); | ||
|  | 
 | ||
|  |   const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10); | ||
|  | 
 | ||
|  |   NonlinearFactorGraph graph; | ||
|  |   graph.push_back(smartFactor1); | ||
|  |   graph.push_back(smartFactor2); | ||
|  |   graph.push_back(smartFactor3); | ||
|  |   graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior)); | ||
|  |   graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior)); | ||
|  | 
 | ||
|  |   //  Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
 | ||
|  |   Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1)); // smaller noise
 | ||
|  |   Values values; | ||
|  |   values.insert(x1, pose1); | ||
|  |   values.insert(x2, pose2); | ||
|  |   // initialize third pose with some noise, we expect it to move back to original pose3
 | ||
|  |   values.insert(x3, pose3*noise_pose); | ||
|  |   if(isDebugTest) values.at<Pose3>(x3).print("Smart: Pose3 before optimization: "); | ||
|  | 
 | ||
|  |   LevenbergMarquardtParams params; | ||
|  |   if(isDebugTest) params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA; | ||
|  |   if(isDebugTest) params.verbosity = NonlinearOptimizerParams::ERROR; | ||
|  | 
 | ||
|  |   Values result; | ||
|  |   gttic_(SmartStereoProjectionPoseFactor); | ||
|  |   LevenbergMarquardtOptimizer optimizer(graph, values, params); | ||
|  |   result = optimizer.optimize(); | ||
|  |   gttoc_(SmartStereoProjectionPoseFactor); | ||
|  |   tictoc_finishedIteration_(); | ||
|  | 
 | ||
|  | //  GaussianFactorGraph::shared_ptr GFG = graph.linearize(values);
 | ||
|  | //  VectorValues delta = GFG->optimize();
 | ||
|  | 
 | ||
|  |   // result.print("results of 3 camera, 3 landmark optimization \n");
 | ||
|  |   if(isDebugTest) result.at<Pose3>(x3).print("Smart: Pose3 after optimization: "); | ||
|  |   EXPECT(assert_equal(pose3,result.at<Pose3>(x3))); | ||
|  |   if(isDebugTest) tictoc_print_(); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* *************************************************************************/ | ||
|  | TEST( SmartStereoProjectionPoseFactor, jacobianSVD ){ | ||
|  | 
 | ||
|  |   std::vector<Key> views; | ||
|  |   views.push_back(x1); | ||
|  |   views.push_back(x2); | ||
|  |   views.push_back(x3); | ||
|  | 
 | ||
|  |   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | ||
|  |   Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); | ||
|  |   StereoCamera cam1(pose1, K); | ||
|  |   // create second camera 1 meter to the right of first camera
 | ||
|  |   Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0)); | ||
|  |   StereoCamera cam2(pose2, K); | ||
|  |   // create third camera 1 meter above the first camera
 | ||
|  |   Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0)); | ||
|  |   StereoCamera cam3(pose3, K); | ||
|  | 
 | ||
|  |   // three landmarks ~5 meters infront of camera
 | ||
|  |   Point3 landmark1(5, 0.5, 1.2); | ||
|  |   Point3 landmark2(5, -0.5, 1.2); | ||
|  |   Point3 landmark3(3, 0, 3.0); | ||
|  | 
 | ||
|  |   // 1. Project three landmarks into three cameras and triangulate
 | ||
|  |   vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1); | ||
|  |   vector<StereoPoint2> measurements_cam2 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2); | ||
|  |   vector<StereoPoint2> measurements_cam3 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark3); | ||
|  | 
 | ||
|  |   SmartFactor::shared_ptr smartFactor1(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD)); | ||
|  |   smartFactor1->add(measurements_cam1, views, model, K); | ||
|  | 
 | ||
|  |   SmartFactor::shared_ptr smartFactor2(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD)); | ||
|  |   smartFactor2->add(measurements_cam2, views, model, K); | ||
|  | 
 | ||
|  |   SmartFactor::shared_ptr smartFactor3(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD)); | ||
|  |   smartFactor3->add(measurements_cam3, views, model, K); | ||
|  | 
 | ||
|  |   const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10); | ||
|  | 
 | ||
|  |   NonlinearFactorGraph graph; | ||
|  |   graph.push_back(smartFactor1); | ||
|  |   graph.push_back(smartFactor2); | ||
|  |   graph.push_back(smartFactor3); | ||
|  |   graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior)); | ||
|  |   graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior)); | ||
|  | 
 | ||
|  |   //  Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
 | ||
|  |   Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1)); // smaller noise
 | ||
|  |   Values values; | ||
|  |   values.insert(x1, pose1); | ||
|  |   values.insert(x2, pose2); | ||
|  |   values.insert(x3, pose3*noise_pose); | ||
|  | 
 | ||
|  |   LevenbergMarquardtParams params; | ||
|  |   Values result; | ||
|  |   LevenbergMarquardtOptimizer optimizer(graph, values, params); | ||
|  |   result = optimizer.optimize(); | ||
|  |   EXPECT(assert_equal(pose3,result.at<Pose3>(x3))); | ||
|  | } | ||
|  | 
 | ||
|  | /* *************************************************************************/ | ||
|  | TEST( SmartStereoProjectionPoseFactor, landmarkDistance ){ | ||
|  | 
 | ||
|  |   double excludeLandmarksFutherThanDist = 2; | ||
|  | 
 | ||
|  |   std::vector<Key> views; | ||
|  |   views.push_back(x1); | ||
|  |   views.push_back(x2); | ||
|  |   views.push_back(x3); | ||
|  | 
 | ||
|  |   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | ||
|  |   Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); | ||
|  |   StereoCamera cam1(pose1, K); | ||
|  |   // create second camera 1 meter to the right of first camera
 | ||
|  |   Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0)); | ||
|  |   StereoCamera cam2(pose2, K); | ||
|  |   // create third camera 1 meter above the first camera
 | ||
|  |   Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0)); | ||
|  |   StereoCamera cam3(pose3, K); | ||
|  | 
 | ||
|  |   // three landmarks ~5 meters infront of camera
 | ||
|  |   Point3 landmark1(5, 0.5, 1.2); | ||
|  |   Point3 landmark2(5, -0.5, 1.2); | ||
|  |   Point3 landmark3(3, 0, 3.0); | ||
|  | 
 | ||
|  |   // 1. Project three landmarks into three cameras and triangulate
 | ||
|  |   vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1); | ||
|  |   vector<StereoPoint2> measurements_cam2 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2); | ||
|  |   vector<StereoPoint2> measurements_cam3 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark3); | ||
|  | 
 | ||
|  | 
 | ||
|  |   SmartFactor::shared_ptr smartFactor1(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD, excludeLandmarksFutherThanDist)); | ||
|  |   smartFactor1->add(measurements_cam1, views, model, K); | ||
|  | 
 | ||
|  |   SmartFactor::shared_ptr smartFactor2(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD, excludeLandmarksFutherThanDist)); | ||
|  |   smartFactor2->add(measurements_cam2, views, model, K); | ||
|  | 
 | ||
|  |   SmartFactor::shared_ptr smartFactor3(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD, excludeLandmarksFutherThanDist)); | ||
|  |   smartFactor3->add(measurements_cam3, views, model, K); | ||
|  | 
 | ||
|  |   const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10); | ||
|  | 
 | ||
|  |   NonlinearFactorGraph graph; | ||
|  |   graph.push_back(smartFactor1); | ||
|  |   graph.push_back(smartFactor2); | ||
|  |   graph.push_back(smartFactor3); | ||
|  |   graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior)); | ||
|  |   graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior)); | ||
|  | 
 | ||
|  |   //  Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
 | ||
|  |   Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1)); // smaller noise
 | ||
|  |   Values values; | ||
|  |   values.insert(x1, pose1); | ||
|  |   values.insert(x2, pose2); | ||
|  |   values.insert(x3, pose3*noise_pose); | ||
|  | 
 | ||
|  |   // All factors are disabled and pose should remain where it is
 | ||
|  |   LevenbergMarquardtParams params; | ||
|  |   Values result; | ||
|  |   LevenbergMarquardtOptimizer optimizer(graph, values, params); | ||
|  |   result = optimizer.optimize(); | ||
|  |   EXPECT(assert_equal(values.at<Pose3>(x3),result.at<Pose3>(x3))); | ||
|  | } | ||
|  | 
 | ||
|  | /* *************************************************************************/ | ||
|  | TEST( SmartStereoProjectionPoseFactor, dynamicOutlierRejection ){ | ||
|  | 
 | ||
|  |   double excludeLandmarksFutherThanDist = 1e10; | ||
|  |   double dynamicOutlierRejectionThreshold = 1; // max 1 pixel of average reprojection error
 | ||
|  | 
 | ||
|  |   std::vector<Key> views; | ||
|  |   views.push_back(x1); | ||
|  |   views.push_back(x2); | ||
|  |   views.push_back(x3); | ||
|  | 
 | ||
|  |   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | ||
|  |   Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); | ||
|  |   StereoCamera cam1(pose1, K); | ||
|  |   // create second camera 1 meter to the right of first camera
 | ||
|  |   Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0)); | ||
|  |   StereoCamera cam2(pose2, K); | ||
|  |   // create third camera 1 meter above the first camera
 | ||
|  |   Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0)); | ||
|  |   StereoCamera cam3(pose3, K); | ||
|  | 
 | ||
|  |   // three landmarks ~5 meters infront of camera
 | ||
|  |   Point3 landmark1(5, 0.5, 1.2); | ||
|  |   Point3 landmark2(5, -0.5, 1.2); | ||
|  |   Point3 landmark3(3, 0, 3.0); | ||
|  |   Point3 landmark4(5, -0.5, 1); | ||
|  | 
 | ||
|  |   // 1. Project four landmarks into three cameras and triangulate
 | ||
|  |    vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1); | ||
|  |    vector<StereoPoint2> measurements_cam2 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2); | ||
|  |    vector<StereoPoint2> measurements_cam3 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark3); | ||
|  |    vector<StereoPoint2> measurements_cam4 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark4); | ||
|  | 
 | ||
|  | 
 | ||
|  |   measurements_cam4.at(0) = measurements_cam4.at(0) + StereoPoint2(10,10,1); // add outlier
 | ||
|  | 
 | ||
|  |   SmartFactor::shared_ptr smartFactor1(new SmartFactor(1, -1, false, false, boost::none, | ||
|  |       JACOBIAN_SVD, excludeLandmarksFutherThanDist, dynamicOutlierRejectionThreshold)); | ||
|  |   smartFactor1->add(measurements_cam1, views, model, K); | ||
|  | 
 | ||
|  |   SmartFactor::shared_ptr smartFactor2(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD, | ||
|  |       excludeLandmarksFutherThanDist, dynamicOutlierRejectionThreshold)); | ||
|  |   smartFactor2->add(measurements_cam2, views, model, K); | ||
|  | 
 | ||
|  |   SmartFactor::shared_ptr smartFactor3(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD, | ||
|  |       excludeLandmarksFutherThanDist, dynamicOutlierRejectionThreshold)); | ||
|  |   smartFactor3->add(measurements_cam3, views, model, K); | ||
|  | 
 | ||
|  |   SmartFactor::shared_ptr smartFactor4(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD, | ||
|  |       excludeLandmarksFutherThanDist, dynamicOutlierRejectionThreshold)); | ||
|  |   smartFactor4->add(measurements_cam4, views, model, K); | ||
|  | 
 | ||
|  |   const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10); | ||
|  | 
 | ||
|  |   NonlinearFactorGraph graph; | ||
|  |   graph.push_back(smartFactor1); | ||
|  |   graph.push_back(smartFactor2); | ||
|  |   graph.push_back(smartFactor3); | ||
|  |   graph.push_back(smartFactor4); | ||
|  |   graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior)); | ||
|  |   graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior)); | ||
|  | 
 | ||
|  |   Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1)); // smaller noise
 | ||
|  |   Values values; | ||
|  |   values.insert(x1, pose1); | ||
|  |   values.insert(x2, pose2); | ||
|  |   values.insert(x3, pose3); | ||
|  | 
 | ||
|  |   // All factors are disabled and pose should remain where it is
 | ||
|  |   LevenbergMarquardtParams params; | ||
|  |   Values result; | ||
|  |   LevenbergMarquardtOptimizer optimizer(graph, values, params); | ||
|  |   result = optimizer.optimize(); | ||
|  |   EXPECT(assert_equal(pose3,result.at<Pose3>(x3))); | ||
|  | } | ||
|  | //
 | ||
|  | ///* *************************************************************************/
 | ||
|  | //TEST( SmartStereoProjectionPoseFactor, jacobianQ ){
 | ||
|  | //
 | ||
|  | //  std::vector<Key> views;
 | ||
|  | //  views.push_back(x1);
 | ||
|  | //  views.push_back(x2);
 | ||
|  | //  views.push_back(x3);
 | ||
|  | //
 | ||
|  | //  // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | ||
|  | //  Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
 | ||
|  | //  StereoCamera cam1(pose1, K);
 | ||
|  | //  // create second camera 1 meter to the right of first camera
 | ||
|  | //  Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0));
 | ||
|  | //  StereoCamera cam2(pose2, K);
 | ||
|  | //  // create third camera 1 meter above the first camera
 | ||
|  | //  Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0));
 | ||
|  | //  StereoCamera cam3(pose3, K);
 | ||
|  | //
 | ||
|  | //  // three landmarks ~5 meters infront of camera
 | ||
|  | //  Point3 landmark1(5, 0.5, 1.2);
 | ||
|  | //  Point3 landmark2(5, -0.5, 1.2);
 | ||
|  | //  Point3 landmark3(3, 0, 3.0);
 | ||
|  | //
 | ||
|  | //  vector<StereoPoint2> measurements_cam1, measurements_cam2, measurements_cam3;
 | ||
|  | //
 | ||
|  | //  // 1. Project three landmarks into three cameras and triangulate
 | ||
|  | //  stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
 | ||
|  | //  stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
 | ||
|  | //  stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
 | ||
|  | //
 | ||
|  | //  SmartFactor::shared_ptr smartFactor1(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_Q));
 | ||
|  | //  smartFactor1->add(measurements_cam1, views, model, K);
 | ||
|  | //
 | ||
|  | //  SmartFactor::shared_ptr smartFactor2(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_Q));
 | ||
|  | //  smartFactor2->add(measurements_cam2, views, model, K);
 | ||
|  | //
 | ||
|  | //  SmartFactor::shared_ptr smartFactor3(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_Q));
 | ||
|  | //  smartFactor3->add(measurements_cam3, views, model, K);
 | ||
|  | //
 | ||
|  | //  const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
 | ||
|  | //
 | ||
|  | //  NonlinearFactorGraph graph;
 | ||
|  | //  graph.push_back(smartFactor1);
 | ||
|  | //  graph.push_back(smartFactor2);
 | ||
|  | //  graph.push_back(smartFactor3);
 | ||
|  | //  graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
 | ||
|  | //  graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
 | ||
|  | //
 | ||
|  | //  //  Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
 | ||
|  | //  Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1)); // smaller noise
 | ||
|  | //  Values values;
 | ||
|  | //  values.insert(x1, pose1);
 | ||
|  | //  values.insert(x2, pose2);
 | ||
|  | //  values.insert(x3, pose3*noise_pose);
 | ||
|  | //
 | ||
|  | //  LevenbergMarquardtParams params;
 | ||
|  | //  Values result;
 | ||
|  | //  LevenbergMarquardtOptimizer optimizer(graph, values, params);
 | ||
|  | //  result = optimizer.optimize();
 | ||
|  | //  EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
 | ||
|  | //}
 | ||
|  | //
 | ||
|  | ///* *************************************************************************/
 | ||
|  | //TEST( SmartStereoProjectionPoseFactor, 3poses_projection_factor ){
 | ||
|  | //  //  cout << " ************************ Normal ProjectionFactor: 3 cams + 3 landmarks **********************" << endl;
 | ||
|  | //
 | ||
|  | //  std::vector<Key> views;
 | ||
|  | //  views.push_back(x1);
 | ||
|  | //  views.push_back(x2);
 | ||
|  | //  views.push_back(x3);
 | ||
|  | //
 | ||
|  | //  // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | ||
|  | //  Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
 | ||
|  | //  StereoCamera cam1(pose1, K2);
 | ||
|  | //
 | ||
|  | //  // create second camera 1 meter to the right of first camera
 | ||
|  | //  Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0));
 | ||
|  | //  StereoCamera cam2(pose2, K2);
 | ||
|  | //
 | ||
|  | //  // create third camera 1 meter above the first camera
 | ||
|  | //  Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0));
 | ||
|  | //  StereoCamera cam3(pose3, K2);
 | ||
|  | //
 | ||
|  | //  // three landmarks ~5 meters infront of camera
 | ||
|  | //  Point3 landmark1(5, 0.5, 1.2);
 | ||
|  | //  Point3 landmark2(5, -0.5, 1.2);
 | ||
|  | //  Point3 landmark3(3, 0, 3.0);
 | ||
|  | //
 | ||
|  | //  typedef GenericStereoFactor<Pose3, Point3> ProjectionFactor;
 | ||
|  | //  NonlinearFactorGraph graph;
 | ||
|  | //
 | ||
|  | //  // 1. Project three landmarks into three cameras and triangulate
 | ||
|  | //  graph.push_back(ProjectionFactor(cam1.project(landmark1), model, x1, L(1), K2));
 | ||
|  | //  graph.push_back(ProjectionFactor(cam2.project(landmark1), model, x2, L(1), K2));
 | ||
|  | //  graph.push_back(ProjectionFactor(cam3.project(landmark1), model, x3, L(1), K2));
 | ||
|  | //
 | ||
|  | //  graph.push_back(ProjectionFactor(cam1.project(landmark2), model, x1, L(2), K2));
 | ||
|  | //  graph.push_back(ProjectionFactor(cam2.project(landmark2), model, x2, L(2), K2));
 | ||
|  | //  graph.push_back(ProjectionFactor(cam3.project(landmark2), model, x3, L(2), K2));
 | ||
|  | //
 | ||
|  | //  graph.push_back(ProjectionFactor(cam1.project(landmark3), model, x1, L(3), K2));
 | ||
|  | //  graph.push_back(ProjectionFactor(cam2.project(landmark3), model, x2, L(3), K2));
 | ||
|  | //  graph.push_back(ProjectionFactor(cam3.project(landmark3), model, x3, L(3), K2));
 | ||
|  | //
 | ||
|  | //  const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
 | ||
|  | //  graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
 | ||
|  | //  graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
 | ||
|  | //
 | ||
|  | //  Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3));
 | ||
|  | //  Values values;
 | ||
|  | //  values.insert(x1, pose1);
 | ||
|  | //  values.insert(x2, pose2);
 | ||
|  | //  values.insert(x3, pose3* noise_pose);
 | ||
|  | //  values.insert(L(1), landmark1);
 | ||
|  | //  values.insert(L(2), landmark2);
 | ||
|  | //  values.insert(L(3), landmark3);
 | ||
|  | //  if(isDebugTest)  values.at<Pose3>(x3).print("Pose3 before optimization: ");
 | ||
|  | //
 | ||
|  | //  LevenbergMarquardtParams params;
 | ||
|  | //  if(isDebugTest)  params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
 | ||
|  | //  if(isDebugTest)  params.verbosity = NonlinearOptimizerParams::ERROR;
 | ||
|  | //  LevenbergMarquardtOptimizer optimizer(graph, values, params);
 | ||
|  | //  Values result = optimizer.optimize();
 | ||
|  | //
 | ||
|  | //  if(isDebugTest)  result.at<Pose3>(x3).print("Pose3 after optimization: ");
 | ||
|  | //  EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
 | ||
|  | //}
 | ||
|  | //
 | ||
|  | /* *************************************************************************/ | ||
|  | TEST( SmartStereoProjectionPoseFactor, CheckHessian){ | ||
|  | 
 | ||
|  |   std::vector<Key> views; | ||
|  |   views.push_back(x1); | ||
|  |   views.push_back(x2); | ||
|  |   views.push_back(x3); | ||
|  | 
 | ||
|  |   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | ||
|  |   Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); | ||
|  |   StereoCamera cam1(pose1, K); | ||
|  | 
 | ||
|  |   // create second camera 1 meter to the right of first camera
 | ||
|  |   Pose3 pose2 = pose1 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0)); | ||
|  |   StereoCamera cam2(pose2, K); | ||
|  | 
 | ||
|  |   // create third camera 1 meter above the first camera
 | ||
|  |   Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0)); | ||
|  |   StereoCamera cam3(pose3, K); | ||
|  | 
 | ||
|  |   // three landmarks ~5 meters infront of camera
 | ||
|  |   Point3 landmark1(5, 0.5, 1.2); | ||
|  |   Point3 landmark2(5, -0.5, 1.2); | ||
|  |   Point3 landmark3(3, 0, 3.0); | ||
|  | 
 | ||
|  |   // 1. Project three landmarks into three cameras and triangulate
 | ||
|  |   vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1); | ||
|  |   vector<StereoPoint2> measurements_cam2 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2); | ||
|  |   vector<StereoPoint2> measurements_cam3 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark3); | ||
|  | 
 | ||
|  | 
 | ||
|  |   double rankTol = 10; | ||
|  | 
 | ||
|  |   SmartFactor::shared_ptr smartFactor1(new SmartFactor(rankTol)); | ||
|  |   smartFactor1->add(measurements_cam1, views, model, K); | ||
|  | 
 | ||
|  |   SmartFactor::shared_ptr smartFactor2(new SmartFactor(rankTol)); | ||
|  |   smartFactor2->add(measurements_cam2, views, model, K); | ||
|  | 
 | ||
|  |   SmartFactor::shared_ptr smartFactor3(new SmartFactor(rankTol)); | ||
|  |   smartFactor3->add(measurements_cam3, views, model, K); | ||
|  | 
 | ||
|  |   NonlinearFactorGraph graph; | ||
|  |   graph.push_back(smartFactor1); | ||
|  |   graph.push_back(smartFactor2); | ||
|  |   graph.push_back(smartFactor3); | ||
|  | 
 | ||
|  |   //  Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
 | ||
|  |   Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1)); // smaller noise
 | ||
|  |   Values values; | ||
|  |   values.insert(x1, pose1); | ||
|  |   values.insert(x2, pose2); | ||
|  |   // initialize third pose with some noise, we expect it to move back to original pose3
 | ||
|  |   values.insert(x3, pose3*noise_pose); | ||
|  |   if(isDebugTest) values.at<Pose3>(x3).print("Smart: Pose3 before optimization: "); | ||
|  | 
 | ||
|  |   boost::shared_ptr<GaussianFactor> hessianFactor1 = smartFactor1->linearize(values); | ||
|  |   boost::shared_ptr<GaussianFactor> hessianFactor2 = smartFactor2->linearize(values); | ||
|  |   boost::shared_ptr<GaussianFactor> hessianFactor3 = smartFactor3->linearize(values); | ||
|  | 
 | ||
|  |   Matrix CumulativeInformation = hessianFactor1->information() +  hessianFactor2->information() + hessianFactor3->information(); | ||
|  | 
 | ||
|  |   boost::shared_ptr<GaussianFactorGraph> GaussianGraph = graph.linearize(values); | ||
|  |   Matrix GraphInformation = GaussianGraph->hessian().first; | ||
|  | 
 | ||
|  |   // Check Hessian
 | ||
|  |   EXPECT(assert_equal(GraphInformation, CumulativeInformation, 1e-8)); | ||
|  | 
 | ||
|  |   Matrix AugInformationMatrix = hessianFactor1->augmentedInformation() + | ||
|  |       hessianFactor2->augmentedInformation() + hessianFactor3->augmentedInformation(); | ||
|  | 
 | ||
|  |   // Check Information vector
 | ||
|  |   // cout << AugInformationMatrix.size() << endl;
 | ||
|  |   Vector InfoVector = AugInformationMatrix.block(0,18,18,1); // 18x18 Hessian + information vector
 | ||
|  | 
 | ||
|  |   // Check Hessian
 | ||
|  |   EXPECT(assert_equal(InfoVector, GaussianGraph->hessian().second, 1e-8)); | ||
|  | } | ||
|  | //
 | ||
|  | ///* *************************************************************************/
 | ||
|  | //TEST( SmartStereoProjectionPoseFactor, 3poses_2land_rotation_only_smart_projection_factor ){
 | ||
|  | //  // cout << " ************************ SmartStereoProjectionPoseFactor: 3 cams + 2 landmarks: Rotation Only**********************" << endl;
 | ||
|  | //
 | ||
|  | //  std::vector<Key> views;
 | ||
|  | //  views.push_back(x1);
 | ||
|  | //  views.push_back(x2);
 | ||
|  | //  views.push_back(x3);
 | ||
|  | //
 | ||
|  | //  // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | ||
|  | //  Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
 | ||
|  | //  StereoCamera cam1(pose1, K2);
 | ||
|  | //
 | ||
|  | //  // create second camera 1 meter to the right of first camera
 | ||
|  | //  Pose3 pose2 = pose1 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0));
 | ||
|  | //  StereoCamera cam2(pose2, K2);
 | ||
|  | //
 | ||
|  | //  // create third camera 1 meter above the first camera
 | ||
|  | //  Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0));
 | ||
|  | //  StereoCamera cam3(pose3, K2);
 | ||
|  | //
 | ||
|  | //  // three landmarks ~5 meters infront of camera
 | ||
|  | //  Point3 landmark1(5, 0.5, 1.2);
 | ||
|  | //  Point3 landmark2(5, -0.5, 1.2);
 | ||
|  | //
 | ||
|  | //  vector<StereoPoint2> measurements_cam1, measurements_cam2, measurements_cam3;
 | ||
|  | //
 | ||
|  | //  // 1. Project three landmarks into three cameras and triangulate
 | ||
|  | //  stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
 | ||
|  | //  stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
 | ||
|  | //
 | ||
|  | //  double rankTol = 50;
 | ||
|  | //  SmartFactor::shared_ptr smartFactor1(new SmartFactor(rankTol, linThreshold, manageDegeneracy));
 | ||
|  | //  smartFactor1->add(measurements_cam1, views, model, K2);
 | ||
|  | //
 | ||
|  | //  SmartFactor::shared_ptr smartFactor2(new SmartFactor(rankTol, linThreshold, manageDegeneracy));
 | ||
|  | //  smartFactor2->add(measurements_cam2, views, model, K2);
 | ||
|  | //
 | ||
|  | //  const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
 | ||
|  | //  const SharedDiagonal noisePriorTranslation = noiseModel::Isotropic::Sigma(3, 0.10);
 | ||
|  | //  Point3 positionPrior = gtsam::Point3(0,0,1);
 | ||
|  | //
 | ||
|  | //  NonlinearFactorGraph graph;
 | ||
|  | //  graph.push_back(smartFactor1);
 | ||
|  | //  graph.push_back(smartFactor2);
 | ||
|  | //  graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
 | ||
|  | //  graph.push_back(PoseTranslationPrior<Pose3>(x2, positionPrior, noisePriorTranslation));
 | ||
|  | //  graph.push_back(PoseTranslationPrior<Pose3>(x3, positionPrior, noisePriorTranslation));
 | ||
|  | //
 | ||
|  | //  Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.1,0.1,0.1)); // smaller noise
 | ||
|  | //  Values values;
 | ||
|  | //  values.insert(x1, pose1);
 | ||
|  | //  values.insert(x2, pose2*noise_pose);
 | ||
|  | //  // initialize third pose with some noise, we expect it to move back to original pose3
 | ||
|  | //  values.insert(x3, pose3*noise_pose*noise_pose);
 | ||
|  | //  if(isDebugTest) values.at<Pose3>(x3).print("Smart: Pose3 before optimization: ");
 | ||
|  | //
 | ||
|  | //  LevenbergMarquardtParams params;
 | ||
|  | //  if(isDebugTest) params.verbosityLM = LevenbergMarquardtParams::TRYDELTA;
 | ||
|  | //  if(isDebugTest) params.verbosity = NonlinearOptimizerParams::ERROR;
 | ||
|  | //
 | ||
|  | //  Values result;
 | ||
|  | //  gttic_(SmartStereoProjectionPoseFactor);
 | ||
|  | //  LevenbergMarquardtOptimizer optimizer(graph, values, params);
 | ||
|  | //  result = optimizer.optimize();
 | ||
|  | //  gttoc_(SmartStereoProjectionPoseFactor);
 | ||
|  | //  tictoc_finishedIteration_();
 | ||
|  | //
 | ||
|  | //  // result.print("results of 3 camera, 3 landmark optimization \n");
 | ||
|  | //  if(isDebugTest) result.at<Pose3>(x3).print("Smart: Pose3 after optimization: ");
 | ||
|  | //  std::cout << "TEST COMMENTED: rotation only version of smart factors has been deprecated " << std::endl;
 | ||
|  | //  // EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
 | ||
|  | //  if(isDebugTest) tictoc_print_();
 | ||
|  | //}
 | ||
|  | //
 | ||
|  | ///* *************************************************************************/
 | ||
|  | //TEST( SmartStereoProjectionPoseFactor, 3poses_rotation_only_smart_projection_factor ){
 | ||
|  | //  // cout << " ************************ SmartStereoProjectionPoseFactor: 3 cams + 3 landmarks: Rotation Only**********************" << endl;
 | ||
|  | //
 | ||
|  | //  std::vector<Key> views;
 | ||
|  | //  views.push_back(x1);
 | ||
|  | //  views.push_back(x2);
 | ||
|  | //  views.push_back(x3);
 | ||
|  | //
 | ||
|  | //  // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | ||
|  | //  Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
 | ||
|  | //  StereoCamera cam1(pose1, K);
 | ||
|  | //
 | ||
|  | //  // create second camera 1 meter to the right of first camera
 | ||
|  | //  Pose3 pose2 = pose1 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0));
 | ||
|  | //  StereoCamera cam2(pose2, K);
 | ||
|  | //
 | ||
|  | //  // create third camera 1 meter above the first camera
 | ||
|  | //  Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0));
 | ||
|  | //  StereoCamera cam3(pose3, K);
 | ||
|  | //
 | ||
|  | //  // three landmarks ~5 meters infront of camera
 | ||
|  | //  Point3 landmark1(5, 0.5, 1.2);
 | ||
|  | //  Point3 landmark2(5, -0.5, 1.2);
 | ||
|  | //  Point3 landmark3(3, 0, 3.0);
 | ||
|  | //
 | ||
|  | //  vector<StereoPoint2> measurements_cam1, measurements_cam2, measurements_cam3;
 | ||
|  | //
 | ||
|  | //  // 1. Project three landmarks into three cameras and triangulate
 | ||
|  | //  stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
 | ||
|  | //  stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
 | ||
|  | //  stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
 | ||
|  | //
 | ||
|  | //  double rankTol = 10;
 | ||
|  | //
 | ||
|  | //  SmartFactor::shared_ptr smartFactor1(new SmartFactor(rankTol, linThreshold, manageDegeneracy));
 | ||
|  | //  smartFactor1->add(measurements_cam1, views, model, K);
 | ||
|  | //
 | ||
|  | //  SmartFactor::shared_ptr smartFactor2(new SmartFactor(rankTol, linThreshold, manageDegeneracy));
 | ||
|  | //  smartFactor2->add(measurements_cam2, views, model, K);
 | ||
|  | //
 | ||
|  | //  SmartFactor::shared_ptr smartFactor3(new SmartFactor(rankTol, linThreshold, manageDegeneracy));
 | ||
|  | //  smartFactor3->add(measurements_cam3, views, model, K);
 | ||
|  | //
 | ||
|  | //  const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
 | ||
|  | //  const SharedDiagonal noisePriorTranslation = noiseModel::Isotropic::Sigma(3, 0.10);
 | ||
|  | //  Point3 positionPrior = gtsam::Point3(0,0,1);
 | ||
|  | //
 | ||
|  | //  NonlinearFactorGraph graph;
 | ||
|  | //  graph.push_back(smartFactor1);
 | ||
|  | //  graph.push_back(smartFactor2);
 | ||
|  | //  graph.push_back(smartFactor3);
 | ||
|  | //  graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
 | ||
|  | //  graph.push_back(PoseTranslationPrior<Pose3>(x2, positionPrior, noisePriorTranslation));
 | ||
|  | //  graph.push_back(PoseTranslationPrior<Pose3>(x3, positionPrior, noisePriorTranslation));
 | ||
|  | //
 | ||
|  | //  //  Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
 | ||
|  | //  Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1)); // smaller noise
 | ||
|  | //  Values values;
 | ||
|  | //  values.insert(x1, pose1);
 | ||
|  | //  values.insert(x2, pose2);
 | ||
|  | //  // initialize third pose with some noise, we expect it to move back to original pose3
 | ||
|  | //  values.insert(x3, pose3*noise_pose);
 | ||
|  | //  if(isDebugTest) values.at<Pose3>(x3).print("Smart: Pose3 before optimization: ");
 | ||
|  | //
 | ||
|  | //  LevenbergMarquardtParams params;
 | ||
|  | //  if(isDebugTest) params.verbosityLM = LevenbergMarquardtParams::TRYDELTA;
 | ||
|  | //  if(isDebugTest) params.verbosity = NonlinearOptimizerParams::ERROR;
 | ||
|  | //
 | ||
|  | //  Values result;
 | ||
|  | //  gttic_(SmartStereoProjectionPoseFactor);
 | ||
|  | //  LevenbergMarquardtOptimizer optimizer(graph, values, params);
 | ||
|  | //  result = optimizer.optimize();
 | ||
|  | //  gttoc_(SmartStereoProjectionPoseFactor);
 | ||
|  | //  tictoc_finishedIteration_();
 | ||
|  | //
 | ||
|  | //  // result.print("results of 3 camera, 3 landmark optimization \n");
 | ||
|  | //  if(isDebugTest) result.at<Pose3>(x3).print("Smart: Pose3 after optimization: ");
 | ||
|  | //  std::cout << "TEST COMMENTED: rotation only version of smart factors has been deprecated " << std::endl;
 | ||
|  | //  // EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
 | ||
|  | //  if(isDebugTest) tictoc_print_();
 | ||
|  | //}
 | ||
|  | //
 | ||
|  | ///* *************************************************************************/
 | ||
|  | //TEST( SmartStereoProjectionPoseFactor, Hessian ){
 | ||
|  | //  // cout << " ************************ SmartStereoProjectionPoseFactor: Hessian **********************" << endl;
 | ||
|  | //
 | ||
|  | //  std::vector<Key> views;
 | ||
|  | //  views.push_back(x1);
 | ||
|  | //  views.push_back(x2);
 | ||
|  | //
 | ||
|  | //  // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | ||
|  | //  Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
 | ||
|  | //  StereoCamera cam1(pose1, K2);
 | ||
|  | //
 | ||
|  | //  // create second camera 1 meter to the right of first camera
 | ||
|  | //  Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0));
 | ||
|  | //  StereoCamera cam2(pose2, K2);
 | ||
|  | //
 | ||
|  | //  // three landmarks ~5 meters infront of camera
 | ||
|  | //  Point3 landmark1(5, 0.5, 1.2);
 | ||
|  | //
 | ||
|  | //  // 1. Project three landmarks into three cameras and triangulate
 | ||
|  | //  StereoPoint2 cam1_uv1 = cam1.project(landmark1);
 | ||
|  | //  StereoPoint2 cam2_uv1 = cam2.project(landmark1);
 | ||
|  | //  vector<StereoPoint2> measurements_cam1;
 | ||
|  | //  measurements_cam1.push_back(cam1_uv1);
 | ||
|  | //  measurements_cam1.push_back(cam2_uv1);
 | ||
|  | //
 | ||
|  | //  SmartFactor::shared_ptr smartFactor1(new SmartFactor());
 | ||
|  | //  smartFactor1->add(measurements_cam1,views, model, K2);
 | ||
|  | //
 | ||
|  | //  Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3));
 | ||
|  | //  Values values;
 | ||
|  | //  values.insert(x1, pose1);
 | ||
|  | //  values.insert(x2, pose2);
 | ||
|  | //
 | ||
|  | //  boost::shared_ptr<GaussianFactor> hessianFactor = smartFactor1->linearize(values);
 | ||
|  | //  if(isDebugTest) hessianFactor->print("Hessian factor \n");
 | ||
|  | //
 | ||
|  | //  // compute triangulation from linearization point
 | ||
|  | //  // compute reprojection errors (sum squared)
 | ||
|  | //  // compare with hessianFactor.info(): the bottom right element is the squared sum of the reprojection errors (normalized by the covariance)
 | ||
|  | //  // check that it is correctly scaled when using noiseProjection = [1/4  0; 0 1/4]
 | ||
|  | //}
 | ||
|  | //
 | ||
|  | 
 | ||
|  | /* *************************************************************************/ | ||
|  | TEST( SmartStereoProjectionPoseFactor, HessianWithRotation ){ | ||
|  |   // cout << " ************************ SmartStereoProjectionPoseFactor: rotated Hessian **********************" << endl;
 | ||
|  | 
 | ||
|  |   std::vector<Key> views; | ||
|  |   views.push_back(x1); | ||
|  |   views.push_back(x2); | ||
|  |   views.push_back(x3); | ||
|  | 
 | ||
|  |   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | ||
|  |   Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); | ||
|  |   StereoCamera cam1(pose1, K); | ||
|  | 
 | ||
|  |   // create second camera 1 meter to the right of first camera
 | ||
|  |   Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0)); | ||
|  |   StereoCamera cam2(pose2, K); | ||
|  | 
 | ||
|  |   // create third camera 1 meter above the first camera
 | ||
|  |   Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0)); | ||
|  |   StereoCamera cam3(pose3, K); | ||
|  | 
 | ||
|  |   Point3 landmark1(5, 0.5, 1.2); | ||
|  | 
 | ||
|  |   vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1); | ||
|  | 
 | ||
|  |   SmartFactor::shared_ptr smartFactorInstance(new SmartFactor()); | ||
|  |   smartFactorInstance->add(measurements_cam1, views, model, K); | ||
|  | 
 | ||
|  |   Values values; | ||
|  |   values.insert(x1, pose1); | ||
|  |   values.insert(x2, pose2); | ||
|  |   values.insert(x3, pose3); | ||
|  | 
 | ||
|  |   boost::shared_ptr<GaussianFactor> hessianFactor = smartFactorInstance->linearize(values); | ||
|  |   // hessianFactor->print("Hessian factor \n");
 | ||
|  | 
 | ||
|  |   Pose3 poseDrift = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,0)); | ||
|  | 
 | ||
|  |   Values rotValues; | ||
|  |   rotValues.insert(x1, poseDrift.compose(pose1)); | ||
|  |   rotValues.insert(x2, poseDrift.compose(pose2)); | ||
|  |   rotValues.insert(x3, poseDrift.compose(pose3)); | ||
|  | 
 | ||
|  |   boost::shared_ptr<GaussianFactor> hessianFactorRot = smartFactorInstance->linearize(rotValues); | ||
|  |   // hessianFactorRot->print("Hessian factor \n");
 | ||
|  | 
 | ||
|  |   // Hessian is invariant to rotations in the nondegenerate case
 | ||
|  |   EXPECT(assert_equal(hessianFactor->information(), hessianFactorRot->information(), 1e-8) ); | ||
|  | 
 | ||
|  |   Pose3 poseDrift2 = Pose3(Rot3::ypr(-M_PI/2, -M_PI/3, -M_PI/2), gtsam::Point3(10,-4,5)); | ||
|  | 
 | ||
|  |   Values tranValues; | ||
|  |   tranValues.insert(x1, poseDrift2.compose(pose1)); | ||
|  |   tranValues.insert(x2, poseDrift2.compose(pose2)); | ||
|  |   tranValues.insert(x3, poseDrift2.compose(pose3)); | ||
|  | 
 | ||
|  |   boost::shared_ptr<GaussianFactor> hessianFactorRotTran = smartFactorInstance->linearize(tranValues); | ||
|  | 
 | ||
|  |   // Hessian is invariant to rotations and translations in the nondegenerate case
 | ||
|  |   EXPECT(assert_equal(hessianFactor->information(), hessianFactorRotTran->information(), 1e-8) ); | ||
|  | } | ||
|  | 
 | ||
|  | /* *************************************************************************/ | ||
|  | TEST( SmartStereoProjectionPoseFactor, HessianWithRotationDegenerate ){ | ||
|  |   // cout << " ************************ SmartStereoProjectionPoseFactor: rotated Hessian (degenerate) **********************" << endl;
 | ||
|  | 
 | ||
|  |   std::vector<Key> views; | ||
|  |   views.push_back(x1); | ||
|  |   views.push_back(x2); | ||
|  |   views.push_back(x3); | ||
|  | 
 | ||
|  |   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | ||
|  |   Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); | ||
|  |   StereoCamera cam1(pose1, K2); | ||
|  | 
 | ||
|  |   // Second and third cameras in same place, which is a degenerate configuration
 | ||
|  |   Pose3 pose2 = pose1; | ||
|  |   Pose3 pose3 = pose1; | ||
|  |   StereoCamera cam2(pose2, K2); | ||
|  |   StereoCamera cam3(pose3, K2); | ||
|  | 
 | ||
|  |   Point3 landmark1(5, 0.5, 1.2); | ||
|  | 
 | ||
|  |   vector<StereoPoint2> measurements_cam1 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1); | ||
|  | 
 | ||
|  |   SmartFactor::shared_ptr smartFactor(new SmartFactor()); | ||
|  |   smartFactor->add(measurements_cam1, views, model, K2); | ||
|  | 
 | ||
|  | 
 | ||
|  |   Values values; | ||
|  |   values.insert(x1, pose1); | ||
|  |   values.insert(x2, pose2); | ||
|  |   values.insert(x3, pose3); | ||
|  | 
 | ||
|  |   boost::shared_ptr<GaussianFactor> hessianFactor = smartFactor->linearize(values); | ||
|  |   if(isDebugTest)  hessianFactor->print("Hessian factor \n"); | ||
|  | 
 | ||
|  |   Pose3 poseDrift = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,0)); | ||
|  | 
 | ||
|  |   Values rotValues; | ||
|  |   rotValues.insert(x1, poseDrift.compose(pose1)); | ||
|  |   rotValues.insert(x2, poseDrift.compose(pose2)); | ||
|  |   rotValues.insert(x3, poseDrift.compose(pose3)); | ||
|  | 
 | ||
|  |   boost::shared_ptr<GaussianFactor> hessianFactorRot = smartFactor->linearize(rotValues); | ||
|  |   if(isDebugTest)  hessianFactorRot->print("Hessian factor \n"); | ||
|  | 
 | ||
|  |   // Hessian is invariant to rotations in the nondegenerate case
 | ||
|  |   EXPECT(assert_equal(hessianFactor->information(), hessianFactorRot->information(), 1e-8) ); | ||
|  | 
 | ||
|  |   Pose3 poseDrift2 = Pose3(Rot3::ypr(-M_PI/2, -M_PI/3, -M_PI/2), gtsam::Point3(10,-4,5)); | ||
|  | 
 | ||
|  |   Values tranValues; | ||
|  |   tranValues.insert(x1, poseDrift2.compose(pose1)); | ||
|  |   tranValues.insert(x2, poseDrift2.compose(pose2)); | ||
|  |   tranValues.insert(x3, poseDrift2.compose(pose3)); | ||
|  | 
 | ||
|  |   boost::shared_ptr<GaussianFactor> hessianFactorRotTran = smartFactor->linearize(tranValues); | ||
|  | 
 | ||
|  |   // Hessian is invariant to rotations and translations in the nondegenerate case
 | ||
|  |   EXPECT(assert_equal(hessianFactor->information(), hessianFactorRotTran->information(), 1e-8) ); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | int main() { TestResult tr; return TestRegistry::runAllTests(tr); } | ||
|  | /* ************************************************************************* */ | ||
|  | 
 | ||
|  | 
 |