| 
									
										
										
										
											2014-06-01 03:57:13 +08:00
										 |  |  | /* ----------------------------------------------------------------------------
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * GTSAM Copyright 2010, Georgia Tech Research Corporation, | 
					
						
							|  |  |  |  * Atlanta, Georgia 30332-0415 | 
					
						
							|  |  |  |  * All Rights Reserved | 
					
						
							|  |  |  |  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * See LICENSE for the license information | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * -------------------------------------------------------------------------- */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * @file    SFMExample_SmartFactor.cpp | 
					
						
							|  |  |  |  * @brief   A structure-from-motion problem on a simulated dataset, using smart projection factor | 
					
						
							|  |  |  |  * @author  Duy-Nguyen Ta | 
					
						
							|  |  |  |  * @author  Jing Dong | 
					
						
							| 
									
										
										
										
											2014-06-23 06:39:11 +08:00
										 |  |  |  * @author  Frank Dellaert | 
					
						
							| 
									
										
										
										
											2014-06-01 03:57:13 +08:00
										 |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * A structure-from-motion example with landmarks | 
					
						
							|  |  |  |  *  - The landmarks form a 10 meter cube | 
					
						
							|  |  |  |  *  - The robot rotates around the landmarks, always facing towards the cube | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // For loading the data
 | 
					
						
							|  |  |  | #include "SFMdata.h"
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y).
 | 
					
						
							|  |  |  | #include <gtsam/geometry/Point2.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // In GTSAM, measurement functions are represented as 'factors'.
 | 
					
						
							|  |  |  | // The factor we used here is SmartProjectionPoseFactor. Every smart factor represent a single landmark,
 | 
					
						
							|  |  |  | // The SmartProjectionPoseFactor only optimize the pose of camera, not the calibration,
 | 
					
						
							|  |  |  | // The calibration should be known.
 | 
					
						
							|  |  |  | #include <gtsam/slam/SmartProjectionPoseFactor.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Also, we will initialize the robot at some location using a Prior factor.
 | 
					
						
							|  |  |  | #include <gtsam/slam/PriorFactor.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // When the factors are created, we will add them to a Factor Graph. As the factors we are using
 | 
					
						
							|  |  |  | // are nonlinear factors, we will need a Nonlinear Factor Graph.
 | 
					
						
							|  |  |  | #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Finally, once all of the factors have been added to our factor graph, we will want to
 | 
					
						
							|  |  |  | // solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values.
 | 
					
						
							|  |  |  | // GTSAM includes several nonlinear optimizers to perform this step. Here we will use a
 | 
					
						
							|  |  |  | // trust-region method known as Powell's Degleg
 | 
					
						
							|  |  |  | #include <gtsam/nonlinear/DoglegOptimizer.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
 | 
					
						
							|  |  |  | // nonlinear functions around an initial linearization point, then solve the linear system
 | 
					
						
							|  |  |  | // to update the linearization point. This happens repeatedly until the solver converges
 | 
					
						
							|  |  |  | // to a consistent set of variable values. This requires us to specify an initial guess
 | 
					
						
							|  |  |  | // for each variable, held in a Values container.
 | 
					
						
							|  |  |  | #include <gtsam/nonlinear/Values.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <vector>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | using namespace std; | 
					
						
							|  |  |  | using namespace gtsam; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Make the typename short so it looks much cleaner
 | 
					
						
							| 
									
										
										
										
											2014-06-23 06:39:11 +08:00
										 |  |  | typedef gtsam::SmartProjectionPoseFactor<gtsam::Pose3, gtsam::Point3, | 
					
						
							|  |  |  |     gtsam::Cal3_S2> SmartFactor; | 
					
						
							| 
									
										
										
										
											2014-06-01 03:57:13 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | int main(int argc, char* argv[]) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Define the camera calibration parameters
 | 
					
						
							|  |  |  |   Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Define the camera observation noise model
 | 
					
						
							| 
									
										
										
										
											2014-06-23 06:39:11 +08:00
										 |  |  |   noiseModel::Isotropic::shared_ptr measurementNoise = | 
					
						
							|  |  |  |       noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
 | 
					
						
							| 
									
										
										
										
											2014-06-01 03:57:13 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-06-23 06:39:11 +08:00
										 |  |  |   // Create the set of ground-truth landmarks and poses
 | 
					
						
							| 
									
										
										
										
											2014-06-01 03:57:13 +08:00
										 |  |  |   vector<Point3> points = createPoints(); | 
					
						
							|  |  |  |   vector<Pose3> poses = createPoses(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Create a factor graph
 | 
					
						
							|  |  |  |   NonlinearFactorGraph graph; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Simulated measurements from each camera pose, adding them to the factor graph
 | 
					
						
							| 
									
										
										
										
											2014-06-23 06:39:11 +08:00
										 |  |  |   for (size_t j = 0; j < points.size(); ++j) { | 
					
						
							| 
									
										
										
										
											2014-06-01 03:57:13 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     // every landmark represent a single landmark, we use shared pointer to init the factor, and then insert measurements.
 | 
					
						
							|  |  |  |     SmartFactor::shared_ptr smartfactor(new SmartFactor()); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-06-23 06:39:11 +08:00
										 |  |  |     for (size_t i = 0; i < poses.size(); ++i) { | 
					
						
							| 
									
										
										
										
											2014-06-01 03:57:13 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |       // generate the 2D measurement
 | 
					
						
							| 
									
										
										
										
											2014-06-23 06:39:11 +08:00
										 |  |  |       SimpleCamera camera(poses[i], *K); | 
					
						
							|  |  |  |       Point2 measurement = camera.project(points[j]); | 
					
						
							| 
									
										
										
										
											2014-06-01 03:57:13 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-06-23 06:39:11 +08:00
										 |  |  |       // call add() function to add measurement into a single factor, here we need to add:
 | 
					
						
							| 
									
										
										
										
											2014-06-01 03:57:13 +08:00
										 |  |  |       //    1. the 2D measurement
 | 
					
						
							|  |  |  |       //    2. the corresponding camera's key
 | 
					
						
							|  |  |  |       //    3. camera noise model
 | 
					
						
							|  |  |  |       //    4. camera calibration
 | 
					
						
							| 
									
										
										
										
											2014-06-23 06:39:11 +08:00
										 |  |  |       smartfactor->add(measurement, i, measurementNoise, K); | 
					
						
							| 
									
										
										
										
											2014-06-01 03:57:13 +08:00
										 |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // insert the smart factor in the graph
 | 
					
						
							|  |  |  |     graph.push_back(smartfactor); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-06-01 04:23:23 +08:00
										 |  |  |   // Add a prior on pose x0. This indirectly specifies where the origin is.
 | 
					
						
							| 
									
										
										
										
											2014-06-23 06:39:11 +08:00
										 |  |  |   // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
 | 
					
						
							|  |  |  |   noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas( | 
					
						
							| 
									
										
										
										
											2014-11-23 08:35:27 +08:00
										 |  |  |       (Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)).finished()); | 
					
						
							| 
									
										
										
										
											2014-06-23 06:39:11 +08:00
										 |  |  |   graph.push_back(PriorFactor<Pose3>(0, poses[0], poseNoise)); | 
					
						
							| 
									
										
										
										
											2014-06-01 04:23:23 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-06-23 06:39:11 +08:00
										 |  |  |   // Because the structure-from-motion problem has a scale ambiguity, the problem is
 | 
					
						
							|  |  |  |   // still under-constrained. Here we add a prior on the second pose x1, so this will
 | 
					
						
							|  |  |  |   // fix the scale by indicating the distance between x0 and x1.
 | 
					
						
							|  |  |  |   // Because these two are fixed, the rest of the poses will be also be fixed.
 | 
					
						
							|  |  |  |   graph.push_back(PriorFactor<Pose3>(1, poses[1], poseNoise)); // add directly to graph
 | 
					
						
							| 
									
										
										
										
											2014-06-01 03:57:13 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |   graph.print("Factor Graph:\n"); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-06-23 06:39:11 +08:00
										 |  |  |   // Create the initial estimate to the solution
 | 
					
						
							| 
									
										
										
										
											2014-06-01 03:57:13 +08:00
										 |  |  |   // Intentionally initialize the variables off from the ground truth
 | 
					
						
							|  |  |  |   Values initialEstimate; | 
					
						
							| 
									
										
										
										
											2014-06-23 06:39:11 +08:00
										 |  |  |   Pose3 delta(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20)); | 
					
						
							| 
									
										
										
										
											2014-06-01 03:57:13 +08:00
										 |  |  |   for (size_t i = 0; i < poses.size(); ++i) | 
					
						
							| 
									
										
										
										
											2014-06-23 06:39:11 +08:00
										 |  |  |     initialEstimate.insert(i, poses[i].compose(delta)); | 
					
						
							| 
									
										
										
										
											2014-06-01 03:57:13 +08:00
										 |  |  |   initialEstimate.print("Initial Estimates:\n"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Optimize the graph and print results
 | 
					
						
							|  |  |  |   Values result = DoglegOptimizer(graph, initialEstimate).optimize(); | 
					
						
							|  |  |  |   result.print("Final results:\n"); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-06-23 06:39:11 +08:00
										 |  |  |   // A smart factor represent the 3D point inside the factor, not as a variable.
 | 
					
						
							| 
									
										
										
										
											2014-06-01 04:23:23 +08:00
										 |  |  |   // The 3D position of the landmark is not explicitly calculated by the optimizer.
 | 
					
						
							| 
									
										
										
										
											2014-06-23 06:39:11 +08:00
										 |  |  |   // To obtain the landmark's 3D position, we use the "point" method of the smart factor.
 | 
					
						
							| 
									
										
										
										
											2014-06-01 04:23:23 +08:00
										 |  |  |   Values landmark_result; | 
					
						
							| 
									
										
										
										
											2014-06-23 06:39:11 +08:00
										 |  |  |   for (size_t j = 0; j < points.size(); ++j) { | 
					
						
							| 
									
										
										
										
											2014-06-01 04:23:23 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-06-23 06:39:11 +08:00
										 |  |  |     // The output of point() is in boost::optional<gtsam::Point3>, as sometimes
 | 
					
						
							|  |  |  |     // the triangulation operation inside smart factor will encounter degeneracy.
 | 
					
						
							| 
									
										
										
										
											2014-06-01 04:23:23 +08:00
										 |  |  |     boost::optional<Point3> point; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-06-23 06:39:11 +08:00
										 |  |  |     // The graph stores Factor shared_ptrs, so we cast back to a SmartFactor first
 | 
					
						
							| 
									
										
										
										
											2014-06-23 11:52:59 +08:00
										 |  |  |     SmartFactor::shared_ptr smart = boost::dynamic_pointer_cast<SmartFactor>(graph[j]); | 
					
						
							| 
									
										
										
										
											2014-06-23 06:39:11 +08:00
										 |  |  |     if (smart) { | 
					
						
							|  |  |  |       point = smart->point(result); | 
					
						
							|  |  |  |       if (point) // ignore if boost::optional return NULL
 | 
					
						
							|  |  |  |         landmark_result.insert(j, *point); | 
					
						
							|  |  |  |     } | 
					
						
							| 
									
										
										
										
											2014-06-01 04:23:23 +08:00
										 |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   landmark_result.print("Landmark results:\n"); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-06-01 03:57:13 +08:00
										 |  |  |   return 0; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | 
 |