2014-06-01 03:57:13 +08:00
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010 , Georgia Tech Research Corporation ,
* Atlanta , Georgia 30332 - 0415
* All Rights Reserved
* Authors : Frank Dellaert , et al . ( see THANKS for the full author list )
* See LICENSE for the license information
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/**
* @ file SFMExample_SmartFactor . cpp
* @ brief A structure - from - motion problem on a simulated dataset , using smart projection factor
* @ author Duy - Nguyen Ta
* @ author Jing Dong
*/
/**
* A structure - from - motion example with landmarks
* - The landmarks form a 10 meter cube
* - The robot rotates around the landmarks , always facing towards the cube
*/
// For loading the data
# include "SFMdata.h"
// Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y).
# include <gtsam/geometry/Point2.h>
// Each variable in the system (poses and landmarks) must be identified with a unique key.
// We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
// Here we will use Symbols
# include <gtsam/inference/Symbol.h>
// In GTSAM, measurement functions are represented as 'factors'.
// The factor we used here is SmartProjectionPoseFactor. Every smart factor represent a single landmark,
// The SmartProjectionPoseFactor only optimize the pose of camera, not the calibration,
// The calibration should be known.
# include <gtsam/slam/SmartProjectionPoseFactor.h>
// Also, we will initialize the robot at some location using a Prior factor.
# include <gtsam/slam/PriorFactor.h>
// When the factors are created, we will add them to a Factor Graph. As the factors we are using
// are nonlinear factors, we will need a Nonlinear Factor Graph.
# include <gtsam/nonlinear/NonlinearFactorGraph.h>
// Finally, once all of the factors have been added to our factor graph, we will want to
// solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values.
// GTSAM includes several nonlinear optimizers to perform this step. Here we will use a
// trust-region method known as Powell's Degleg
# include <gtsam/nonlinear/DoglegOptimizer.h>
// The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
// nonlinear functions around an initial linearization point, then solve the linear system
// to update the linearization point. This happens repeatedly until the solver converges
// to a consistent set of variable values. This requires us to specify an initial guess
// for each variable, held in a Values container.
# include <gtsam/nonlinear/Values.h>
# include <vector>
using namespace std ;
using namespace gtsam ;
// Make the typename short so it looks much cleaner
typedef gtsam : : SmartProjectionPoseFactor < gtsam : : Pose3 , gtsam : : Point3 , gtsam : : Cal3_S2 >
SmartFactor ;
/* ************************************************************************* */
int main ( int argc , char * argv [ ] ) {
// Define the camera calibration parameters
Cal3_S2 : : shared_ptr K ( new Cal3_S2 ( 50.0 , 50.0 , 0.0 , 50.0 , 50.0 ) ) ;
// Define the camera observation noise model
noiseModel : : Isotropic : : shared_ptr measurementNoise = noiseModel : : Isotropic : : Sigma ( 2 , 1.0 ) ; // one pixel in u and v
// Create the set of ground-truth landmarks
vector < Point3 > points = createPoints ( ) ;
// Create the set of ground-truth poses
vector < Pose3 > poses = createPoses ( ) ;
// Create a factor graph
NonlinearFactorGraph graph ;
2014-06-01 04:23:23 +08:00
// A vector saved all Smart factors (for get landmark position after optimization)
vector < SmartFactor : : shared_ptr > smartfactors_ptr ;
2014-06-01 03:57:13 +08:00
// Simulated measurements from each camera pose, adding them to the factor graph
for ( size_t i = 0 ; i < points . size ( ) ; + + i ) {
// every landmark represent a single landmark, we use shared pointer to init the factor, and then insert measurements.
SmartFactor : : shared_ptr smartfactor ( new SmartFactor ( ) ) ;
for ( size_t j = 0 ; j < poses . size ( ) ; + + j ) {
// generate the 2D measurement
SimpleCamera camera ( poses [ j ] , * K ) ;
Point2 measurement = camera . project ( points [ i ] ) ;
// call add() function to add measurment into a single factor, here we need to add:
// 1. the 2D measurement
// 2. the corresponding camera's key
// 3. camera noise model
// 4. camera calibration
smartfactor - > add ( measurement , Symbol ( ' x ' , j ) , measurementNoise , K ) ;
}
2014-06-01 04:23:23 +08:00
// save smartfactors to get landmark position
smartfactors_ptr . push_back ( smartfactor ) ;
2014-06-01 03:57:13 +08:00
// insert the smart factor in the graph
graph . push_back ( smartfactor ) ;
}
2014-06-01 04:23:23 +08:00
// Add a prior on pose x0. This indirectly specifies where the origin is.
noiseModel : : Diagonal : : shared_ptr poseNoise = noiseModel : : Diagonal : : Sigmas ( ( Vector ( 6 ) < < Vector3 : : Constant ( 0.3 ) , Vector3 : : Constant ( 0.1 ) ) ) ; // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
graph . push_back ( PriorFactor < Pose3 > ( Symbol ( ' x ' , 0 ) , poses [ 0 ] , poseNoise ) ) ; // add directly to graph
2014-06-01 03:57:13 +08:00
// Because the structure-from-motion problem has a scale ambiguity, the problem is still under-constrained
// Here we add a prior on the second pose x1, so this will fix the scale by indicating the distance between x0 and x1.
// Because these two are fixed, the rest poses will be alse fixed.
graph . push_back ( PriorFactor < Pose3 > ( Symbol ( ' x ' , 1 ) , poses [ 1 ] , poseNoise ) ) ; // add directly to graph
graph . print ( " Factor Graph: \n " ) ;
// Create the data structure to hold the initial estimate to the solution
// Intentionally initialize the variables off from the ground truth
Values initialEstimate ;
for ( size_t i = 0 ; i < poses . size ( ) ; + + i )
initialEstimate . insert ( Symbol ( ' x ' , i ) , poses [ i ] . compose ( Pose3 ( Rot3 : : rodriguez ( - 0.1 , 0.2 , 0.25 ) , Point3 ( 0.05 , - 0.10 , 0.20 ) ) ) ) ;
initialEstimate . print ( " Initial Estimates: \n " ) ;
// Optimize the graph and print results
Values result = DoglegOptimizer ( graph , initialEstimate ) . optimize ( ) ;
result . print ( " Final results: \n " ) ;
2014-06-01 04:23:23 +08:00
// Notice: Smart factor represent the 3D point as a factor, not a variable.
// The 3D position of the landmark is not explicitly calculated by the optimizer.
// If you do want to output the landmark's 3D position, you should use the internal function point()
// of the smart factor to get the 3D point.
Values landmark_result ;
for ( size_t i = 0 ; i < points . size ( ) ; + + i ) {
// The output of point() is in boost::optional<gtsam::Point3>, since sometimes
// the triangulation opterations inside smart factor will encounter degeneracy.
// Check the manual of boost::optional for more details for the usages.
boost : : optional < Point3 > point ;
// here we use the saved smart factors to call, pass in all optimized pose to calculate landmark positions
point = smartfactors_ptr . at ( i ) - > point ( result ) ;
// ignore if boost::optional return NULL
if ( point )
landmark_result . insert ( Symbol ( ' l ' , i ) , * point ) ;
}
landmark_result . print ( " Landmark results: \n " ) ;
2014-06-01 03:57:13 +08:00
return 0 ;
}
/* ************************************************************************* */