| 
									
										
										
										
											2012-06-04 16:31:26 +08:00
										 |  |  | /* ----------------------------------------------------------------------------
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * GTSAM Copyright 2010, Georgia Tech Research Corporation, | 
					
						
							|  |  |  |  * Atlanta, Georgia 30332-0415 | 
					
						
							|  |  |  |  * All Rights Reserved | 
					
						
							|  |  |  |  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * See LICENSE for the license information | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * -------------------------------------------------------------------------- */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							| 
									
										
										
										
											2013-10-18 13:31:55 +08:00
										 |  |  |  * @file    SFMExample.cpp | 
					
						
							|  |  |  |  * @brief   A structure-from-motion problem on a simulated dataset | 
					
						
							| 
									
										
										
										
											2012-06-04 16:31:26 +08:00
										 |  |  |  * @author  Duy-Nguyen Ta | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2015-02-22 13:14:19 +08:00
										 |  |  | // For loading the data, see the comments therein for scenario (camera rotates around cube)
 | 
					
						
							| 
									
										
										
										
											2013-10-18 13:31:55 +08:00
										 |  |  | #include "SFMdata.h"
 | 
					
						
							| 
									
										
										
										
											2013-08-30 12:23:45 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-07-22 12:52:01 +08:00
										 |  |  | // Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y).
 | 
					
						
							|  |  |  | #include <gtsam/geometry/Point2.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Each variable in the system (poses and landmarks) must be identified with a unique key.
 | 
					
						
							|  |  |  | // We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
 | 
					
						
							|  |  |  | // Here we will use Symbols
 | 
					
						
							| 
									
										
										
										
											2013-08-19 23:32:16 +08:00
										 |  |  | #include <gtsam/inference/Symbol.h>
 | 
					
						
							| 
									
										
										
										
											2012-07-22 12:52:01 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | // In GTSAM, measurement functions are represented as 'factors'. Several common factors
 | 
					
						
							|  |  |  | // have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
 | 
					
						
							|  |  |  | // Here we will use Projection factors to model the camera's landmark observations.
 | 
					
						
							|  |  |  | // Also, we will initialize the robot at some location using a Prior factor.
 | 
					
						
							|  |  |  | #include <gtsam/slam/ProjectionFactor.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // When the factors are created, we will add them to a Factor Graph. As the factors we are using
 | 
					
						
							|  |  |  | // are nonlinear factors, we will need a Nonlinear Factor Graph.
 | 
					
						
							|  |  |  | #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Finally, once all of the factors have been added to our factor graph, we will want to
 | 
					
						
							|  |  |  | // solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values.
 | 
					
						
							|  |  |  | // GTSAM includes several nonlinear optimizers to perform this step. Here we will use a
 | 
					
						
							| 
									
										
										
										
											2024-10-25 08:04:24 +08:00
										 |  |  | // trust-region method known as Powell's Dogleg
 | 
					
						
							| 
									
										
										
										
											2012-07-22 12:52:01 +08:00
										 |  |  | #include <gtsam/nonlinear/DoglegOptimizer.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
 | 
					
						
							|  |  |  | // nonlinear functions around an initial linearization point, then solve the linear system
 | 
					
						
							|  |  |  | // to update the linearization point. This happens repeatedly until the solver converges
 | 
					
						
							|  |  |  | // to a consistent set of variable values. This requires us to specify an initial guess
 | 
					
						
							|  |  |  | // for each variable, held in a Values container.
 | 
					
						
							|  |  |  | #include <gtsam/nonlinear/Values.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <vector>
 | 
					
						
							| 
									
										
										
										
											2012-06-04 16:31:26 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | using namespace std; | 
					
						
							|  |  |  | using namespace gtsam; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | int main(int argc, char* argv[]) { | 
					
						
							| 
									
										
										
										
											2012-07-22 12:52:01 +08:00
										 |  |  |   // Define the camera calibration parameters
 | 
					
						
							| 
									
										
										
										
											2024-10-25 08:04:24 +08:00
										 |  |  |   auto K = std::make_shared<Cal3_S2>(50.0, 50.0, 0.0, 50.0, 50.0); | 
					
						
							| 
									
										
										
										
											2012-07-22 12:52:01 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |   // Define the camera observation noise model
 | 
					
						
							| 
									
										
										
										
											2020-05-10 07:08:31 +08:00
										 |  |  |   auto measurementNoise = | 
					
						
							|  |  |  |       noiseModel::Isotropic::Sigma(2, 1.0);  // one pixel in u and v
 | 
					
						
							| 
									
										
										
										
											2012-06-04 16:31:26 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-07-22 12:52:01 +08:00
										 |  |  |   // Create the set of ground-truth landmarks
 | 
					
						
							| 
									
										
										
										
											2013-08-31 00:53:21 +08:00
										 |  |  |   vector<Point3> points = createPoints(); | 
					
						
							| 
									
										
										
										
											2012-06-04 16:31:26 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-07-22 12:52:01 +08:00
										 |  |  |   // Create the set of ground-truth poses
 | 
					
						
							| 
									
										
										
										
											2013-08-31 00:53:21 +08:00
										 |  |  |   vector<Pose3> poses = createPoses(); | 
					
						
							| 
									
										
										
										
											2012-07-22 12:52:01 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |   // Create a factor graph
 | 
					
						
							|  |  |  |   NonlinearFactorGraph graph; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Add a prior on pose x1. This indirectly specifies where the origin is.
 | 
					
						
							| 
									
										
										
										
											2020-05-10 07:08:31 +08:00
										 |  |  |   auto poseNoise = noiseModel::Diagonal::Sigmas( | 
					
						
							|  |  |  |       (Vector(6) << Vector3::Constant(0.1), Vector3::Constant(0.3)) | 
					
						
							|  |  |  |           .finished());  // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
 | 
					
						
							|  |  |  |   graph.addPrior(Symbol('x', 0), poses[0], poseNoise);  // add directly to graph
 | 
					
						
							| 
									
										
										
										
											2012-07-22 12:52:01 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-05-10 07:08:31 +08:00
										 |  |  |   // Simulated measurements from each camera pose, adding them to the factor
 | 
					
						
							|  |  |  |   // graph
 | 
					
						
							| 
									
										
										
										
											2012-07-22 12:52:01 +08:00
										 |  |  |   for (size_t i = 0; i < poses.size(); ++i) { | 
					
						
							| 
									
										
										
										
											2020-02-22 08:42:55 +08:00
										 |  |  |     PinholeCamera<Cal3_S2> camera(poses[i], *K); | 
					
						
							| 
									
										
										
										
											2012-07-22 12:52:01 +08:00
										 |  |  |     for (size_t j = 0; j < points.size(); ++j) { | 
					
						
							|  |  |  |       Point2 measurement = camera.project(points[j]); | 
					
						
							| 
									
										
										
										
											2020-05-10 07:08:31 +08:00
										 |  |  |       graph.emplace_shared<GenericProjectionFactor<Pose3, Point3, Cal3_S2> >( | 
					
						
							|  |  |  |           measurement, measurementNoise, Symbol('x', i), Symbol('l', j), K); | 
					
						
							| 
									
										
										
										
											2012-07-22 12:52:01 +08:00
										 |  |  |     } | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-05-10 07:08:31 +08:00
										 |  |  |   // Because the structure-from-motion problem has a scale ambiguity, the
 | 
					
						
							|  |  |  |   // problem is still under-constrained Here we add a prior on the position of
 | 
					
						
							|  |  |  |   // the first landmark. This fixes the scale by indicating the distance between
 | 
					
						
							|  |  |  |   // the first camera and the first landmark. All other landmark positions are
 | 
					
						
							|  |  |  |   // interpreted using this scale.
 | 
					
						
							|  |  |  |   auto pointNoise = noiseModel::Isotropic::Sigma(3, 0.1); | 
					
						
							|  |  |  |   graph.addPrior(Symbol('l', 0), points[0], | 
					
						
							|  |  |  |                  pointNoise);  // add directly to graph
 | 
					
						
							| 
									
										
										
										
											2012-07-22 12:52:01 +08:00
										 |  |  |   graph.print("Factor Graph:\n"); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-08-31 00:53:21 +08:00
										 |  |  |   // Create the data structure to hold the initial estimate to the solution
 | 
					
						
							| 
									
										
										
										
											2012-07-22 12:52:01 +08:00
										 |  |  |   // Intentionally initialize the variables off from the ground truth
 | 
					
						
							|  |  |  |   Values initialEstimate; | 
					
						
							| 
									
										
										
										
											2020-05-10 07:08:31 +08:00
										 |  |  |   for (size_t i = 0; i < poses.size(); ++i) { | 
					
						
							|  |  |  |     auto corrupted_pose = poses[i].compose( | 
					
						
							|  |  |  |         Pose3(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20))); | 
					
						
							|  |  |  |     initialEstimate.insert( | 
					
						
							|  |  |  |         Symbol('x', i), corrupted_pose); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  |   for (size_t j = 0; j < points.size(); ++j) { | 
					
						
							| 
									
										
										
										
											2020-07-11 11:01:18 +08:00
										 |  |  |     Point3 corrupted_point = points[j] + Point3(-0.25, 0.20, 0.15); | 
					
						
							| 
									
										
										
										
											2020-05-10 07:08:31 +08:00
										 |  |  |     initialEstimate.insert<Point3>(Symbol('l', j), corrupted_point); | 
					
						
							|  |  |  |   } | 
					
						
							| 
									
										
										
										
											2012-07-22 12:52:01 +08:00
										 |  |  |   initialEstimate.print("Initial Estimates:\n"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   /* Optimize the graph and print results */ | 
					
						
							|  |  |  |   Values result = DoglegOptimizer(graph, initialEstimate).optimize(); | 
					
						
							|  |  |  |   result.print("Final results:\n"); | 
					
						
							| 
									
										
										
										
											2014-10-02 17:21:24 +08:00
										 |  |  |   cout << "initial error = " << graph.error(initialEstimate) << endl; | 
					
						
							|  |  |  |   cout << "final error = " << graph.error(result) << endl; | 
					
						
							| 
									
										
										
										
											2012-06-04 16:31:26 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |   return 0; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | 
 |