| 
									
										
										
										
											2012-07-22 23:15:12 +08:00
										 |  |  | /* ----------------------------------------------------------------------------
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * GTSAM Copyright 2010, Georgia Tech Research Corporation, | 
					
						
							|  |  |  |  * Atlanta, Georgia 30332-0415 | 
					
						
							|  |  |  |  * All Rights Reserved | 
					
						
							|  |  |  |  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * See LICENSE for the license information | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * -------------------------------------------------------------------------- */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * @file    VisualISAM2Example.cpp | 
					
						
							| 
									
										
										
										
											2018-10-01 05:22:53 +08:00
										 |  |  |  * @brief   A visualSLAM example for the structure-from-motion problem on a | 
					
						
							|  |  |  |  * simulated dataset This version uses iSAM2 to solve the problem incrementally | 
					
						
							| 
									
										
										
										
											2012-07-22 23:15:12 +08:00
										 |  |  |  * @author  Duy-Nguyen Ta | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * A structure-from-motion example with landmarks | 
					
						
							|  |  |  |  *  - The landmarks form a 10 meter cube | 
					
						
							|  |  |  |  *  - The robot rotates around the landmarks, always facing towards the cube | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-08-30 12:23:45 +08:00
										 |  |  | // For loading the data
 | 
					
						
							| 
									
										
										
										
											2013-10-18 13:31:55 +08:00
										 |  |  | #include "SFMdata.h"
 | 
					
						
							| 
									
										
										
										
											2013-08-30 12:23:45 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2018-10-01 05:22:53 +08:00
										 |  |  | // Camera observations of landmarks will be stored as Point2 (x, y).
 | 
					
						
							| 
									
										
										
										
											2012-07-22 23:15:12 +08:00
										 |  |  | #include <gtsam/geometry/Point2.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2018-10-01 05:22:53 +08:00
										 |  |  | // Each variable in the system (poses and landmarks) must be identified with a
 | 
					
						
							|  |  |  | // unique key. We can either use simple integer keys (1, 2, 3, ...) or symbols
 | 
					
						
							|  |  |  | // (X1, X2, L1). Here we will use Symbols
 | 
					
						
							| 
									
										
										
										
											2013-08-19 23:32:16 +08:00
										 |  |  | #include <gtsam/inference/Symbol.h>
 | 
					
						
							| 
									
										
										
										
											2012-07-22 23:15:12 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2018-10-01 05:22:53 +08:00
										 |  |  | // We want to use iSAM2 to solve the structure-from-motion problem
 | 
					
						
							|  |  |  | // incrementally, so include iSAM2 here
 | 
					
						
							| 
									
										
										
										
											2012-07-22 23:15:12 +08:00
										 |  |  | #include <gtsam/nonlinear/ISAM2.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2018-10-01 05:22:53 +08:00
										 |  |  | // iSAM2 requires as input a set of new factors to be added stored in a factor
 | 
					
						
							|  |  |  | // graph, and initial guesses for any new variables used in the added factors
 | 
					
						
							| 
									
										
										
										
											2012-07-22 23:15:12 +08:00
										 |  |  | #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | 
					
						
							|  |  |  | #include <gtsam/nonlinear/Values.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2018-10-01 05:22:53 +08:00
										 |  |  | // In GTSAM, measurement functions are represented as 'factors'. Several common
 | 
					
						
							|  |  |  | // factors have been provided with the library for solving robotics/SLAM/Bundle
 | 
					
						
							|  |  |  | // Adjustment problems. Here we will use Projection factors to model the
 | 
					
						
							|  |  |  | // camera's landmark observations. Also, we will initialize the robot at some
 | 
					
						
							|  |  |  | // location using a Prior factor.
 | 
					
						
							| 
									
										
										
										
											2013-06-21 22:13:59 +08:00
										 |  |  | #include <gtsam/slam/ProjectionFactor.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-07-22 23:15:12 +08:00
										 |  |  | #include <vector>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | using namespace std; | 
					
						
							|  |  |  | using namespace gtsam; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | int main(int argc, char* argv[]) { | 
					
						
							|  |  |  |   // Define the camera calibration parameters
 | 
					
						
							|  |  |  |   Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2018-10-01 05:22:53 +08:00
										 |  |  |   // Define the camera observation noise model, 1 pixel stddev
 | 
					
						
							|  |  |  |   auto measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0); | 
					
						
							| 
									
										
										
										
											2012-07-22 23:15:12 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |   // Create the set of ground-truth landmarks
 | 
					
						
							| 
									
										
										
										
											2013-08-31 00:53:21 +08:00
										 |  |  |   vector<Point3> points = createPoints(); | 
					
						
							| 
									
										
										
										
											2012-07-22 23:15:12 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |   // Create the set of ground-truth poses
 | 
					
						
							| 
									
										
										
										
											2013-08-31 00:53:21 +08:00
										 |  |  |   vector<Pose3> poses = createPoses(); | 
					
						
							| 
									
										
										
										
											2012-07-22 23:15:12 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2018-10-01 05:22:53 +08:00
										 |  |  |   // Create an iSAM2 object. Unlike iSAM1, which performs periodic batch steps
 | 
					
						
							|  |  |  |   // to maintain proper linearization and efficient variable ordering, iSAM2
 | 
					
						
							|  |  |  |   // performs partial relinearization/reordering at each step. A parameter
 | 
					
						
							|  |  |  |   // structure is available that allows the user to set various properties, such
 | 
					
						
							|  |  |  |   // as the relinearization threshold and type of linear solver. For this
 | 
					
						
							|  |  |  |   // example, we we set the relinearization threshold small so the iSAM2 result
 | 
					
						
							| 
									
										
										
										
											2012-07-22 23:15:12 +08:00
										 |  |  |   // will approach the batch result.
 | 
					
						
							|  |  |  |   ISAM2Params parameters; | 
					
						
							|  |  |  |   parameters.relinearizeThreshold = 0.01; | 
					
						
							|  |  |  |   parameters.relinearizeSkip = 1; | 
					
						
							|  |  |  |   ISAM2 isam(parameters); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Create a Factor Graph and Values to hold the new data
 | 
					
						
							|  |  |  |   NonlinearFactorGraph graph; | 
					
						
							|  |  |  |   Values initialEstimate; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2018-10-01 05:22:53 +08:00
										 |  |  |   // Loop over the poses, adding the observations to iSAM incrementally
 | 
					
						
							| 
									
										
										
										
											2012-07-22 23:15:12 +08:00
										 |  |  |   for (size_t i = 0; i < poses.size(); ++i) { | 
					
						
							|  |  |  |     // Add factors for each landmark observation
 | 
					
						
							|  |  |  |     for (size_t j = 0; j < points.size(); ++j) { | 
					
						
							| 
									
										
										
										
											2020-02-22 08:42:55 +08:00
										 |  |  |       PinholeCamera<Cal3_S2> camera(poses[i], *K); | 
					
						
							| 
									
										
										
										
											2012-07-22 23:15:12 +08:00
										 |  |  |       Point2 measurement = camera.project(points[j]); | 
					
						
							| 
									
										
										
										
											2018-10-01 05:22:53 +08:00
										 |  |  |       graph.emplace_shared<GenericProjectionFactor<Pose3, Point3, Cal3_S2> >( | 
					
						
							|  |  |  |           measurement, measurementNoise, Symbol('x', i), Symbol('l', j), K); | 
					
						
							| 
									
										
										
										
											2012-07-22 23:15:12 +08:00
										 |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Add an initial guess for the current pose
 | 
					
						
							|  |  |  |     // Intentionally initialize the variables off from the ground truth
 | 
					
						
							| 
									
										
										
										
											2018-10-01 05:22:53 +08:00
										 |  |  |     static Pose3 kDeltaPose(Rot3::Rodrigues(-0.1, 0.2, 0.25), | 
					
						
							|  |  |  |                             Point3(0.05, -0.10, 0.20)); | 
					
						
							|  |  |  |     initialEstimate.insert(Symbol('x', i), poses[i] * kDeltaPose); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // If this is the first iteration, add a prior on the first pose to set the
 | 
					
						
							|  |  |  |     // coordinate frame and a prior on the first landmark to set the scale Also,
 | 
					
						
							|  |  |  |     // as iSAM solves incrementally, we must wait until each is observed at
 | 
					
						
							|  |  |  |     // least twice before adding it to iSAM.
 | 
					
						
							|  |  |  |     if (i == 0) { | 
					
						
							|  |  |  |       // Add a prior on pose x0, 30cm std on x,y,z and 0.1 rad on roll,pitch,yaw
 | 
					
						
							|  |  |  |       static auto kPosePrior = noiseModel::Diagonal::Sigmas( | 
					
						
							| 
									
										
										
										
											2020-01-05 08:57:22 +08:00
										 |  |  |           (Vector(6) << Vector3::Constant(0.1), Vector3::Constant(0.3)) | 
					
						
							| 
									
										
										
										
											2018-10-01 05:22:53 +08:00
										 |  |  |               .finished()); | 
					
						
							| 
									
										
										
										
											2020-04-13 01:10:09 +08:00
										 |  |  |       graph.addPrior(Symbol('x', 0), poses[0], kPosePrior); | 
					
						
							| 
									
										
										
										
											2012-07-22 23:15:12 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |       // Add a prior on landmark l0
 | 
					
						
							| 
									
										
										
										
											2018-10-01 05:22:53 +08:00
										 |  |  |       static auto kPointPrior = noiseModel::Isotropic::Sigma(3, 0.1); | 
					
						
							| 
									
										
										
										
											2020-04-13 01:10:09 +08:00
										 |  |  |       graph.addPrior(Symbol('l', 0), points[0], kPointPrior); | 
					
						
							| 
									
										
										
										
											2012-07-22 23:15:12 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |       // Add initial guesses to all observed landmarks
 | 
					
						
							|  |  |  |       // Intentionally initialize the variables off from the ground truth
 | 
					
						
							| 
									
										
										
										
											2018-10-01 05:22:53 +08:00
										 |  |  |       static Point3 kDeltaPoint(-0.25, 0.20, 0.15); | 
					
						
							| 
									
										
										
										
											2012-07-22 23:15:12 +08:00
										 |  |  |       for (size_t j = 0; j < points.size(); ++j) | 
					
						
							| 
									
										
										
										
											2018-10-01 05:22:53 +08:00
										 |  |  |         initialEstimate.insert<Point3>(Symbol('l', j), points[j] + kDeltaPoint); | 
					
						
							| 
									
										
										
										
											2012-07-22 23:15:12 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     } else { | 
					
						
							|  |  |  |       // Update iSAM with the new factors
 | 
					
						
							|  |  |  |       isam.update(graph, initialEstimate); | 
					
						
							| 
									
										
										
										
											2018-10-01 05:22:53 +08:00
										 |  |  |       // Each call to iSAM2 update(*) performs one iteration of the iterative
 | 
					
						
							|  |  |  |       // nonlinear solver. If accuracy is desired at the expense of time,
 | 
					
						
							|  |  |  |       // update(*) can be called additional times to perform multiple optimizer
 | 
					
						
							|  |  |  |       // iterations every step.
 | 
					
						
							| 
									
										
										
										
											2012-07-22 23:15:12 +08:00
										 |  |  |       isam.update(); | 
					
						
							|  |  |  |       Values currentEstimate = isam.calculateEstimate(); | 
					
						
							|  |  |  |       cout << "****************************************************" << endl; | 
					
						
							|  |  |  |       cout << "Frame " << i << ": " << endl; | 
					
						
							|  |  |  |       currentEstimate.print("Current estimate: "); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       // Clear the factor graph and values for the next iteration
 | 
					
						
							|  |  |  |       graph.resize(0); | 
					
						
							|  |  |  |       initialEstimate.clear(); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   return 0; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | /* ************************************************************************* */ |