69 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Matlab
		
	
	
		
		
			
		
	
	
			69 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Matlab
		
	
	
|  | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|  | % GTSAM Copyright 2010, Georgia Tech Research Corporation, | ||
|  | % Atlanta, Georgia 30332-0415 | ||
|  | % All Rights Reserved | ||
|  | % Authors: Frank Dellaert, et al. (see THANKS for the full author list) | ||
|  | % | ||
|  | % See LICENSE for the license information | ||
|  | % | ||
|  | % @brief Simple robotics example using the pre-built planar SLAM domain | ||
|  | % @author Alex Cunningham | ||
|  | % @author Frank Dellaert | ||
|  | % @author Chris Beall | ||
|  | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|  | 
 | ||
|  | %% Assumptions | ||
|  | %  - All values are axis aligned | ||
|  | %  - Robot poses are facing along the X axis (horizontal, to the right in images) | ||
|  | %  - We have full odometry for measurements | ||
|  | %  - The robot is on a grid, moving 2 meters each step | ||
|  | 
 | ||
|  | %% Create graph container and add factors to it | ||
|  | graph = pose2SLAMGraph; | ||
|  | 
 | ||
|  | %% Add prior | ||
|  | % gaussian for prior | ||
|  | priorMean = gtsamPose2(0.0, 0.0, 0.0); % prior at origin | ||
|  | priorNoise = gtsamSharedNoiseModel_Sigmas([0.3; 0.3; 0.1]); | ||
|  | graph.addPrior(1, priorMean, priorNoise); % add directly to graph | ||
|  | 
 | ||
|  | %% Add odometry | ||
|  | % general noisemodel for odometry | ||
|  | odometryNoise = gtsamSharedNoiseModel_Sigmas([0.2; 0.2; 0.1]); | ||
|  | graph.addOdometry(1, 2, gtsamPose2(2.0, 0.0, 0.0 ), odometryNoise); | ||
|  | graph.addOdometry(2, 3, gtsamPose2(2.0, 0.0, pi/2), odometryNoise); | ||
|  | graph.addOdometry(3, 4, gtsamPose2(2.0, 0.0, pi/2), odometryNoise); | ||
|  | graph.addOdometry(4, 5, gtsamPose2(2.0, 0.0, pi/2), odometryNoise); | ||
|  | 
 | ||
|  | %% Add pose constraint | ||
|  | model = gtsamSharedNoiseModel_Sigmas([0.2; 0.2; 0.1]); | ||
|  | graph.addConstraint(5, 2, gtsamPose2(2.0, 0.0, pi/2), model); | ||
|  | 
 | ||
|  | % print | ||
|  | graph.print(sprintf('\nFactor graph:\n')); | ||
|  | 
 | ||
|  | %% Initialize to noisy points | ||
|  | initialEstimate = pose2SLAMValues; | ||
|  | initialEstimate.insertPose(1, gtsamPose2(0.5, 0.0, 0.2 )); | ||
|  | initialEstimate.insertPose(2, gtsamPose2(2.3, 0.1,-0.2 )); | ||
|  | initialEstimate.insertPose(3, gtsamPose2(4.1, 0.1, pi/2)); | ||
|  | initialEstimate.insertPose(4, gtsamPose2(4.0, 2.0, pi  )); | ||
|  | initialEstimate.insertPose(5, gtsamPose2(2.1, 2.1,-pi/2)); | ||
|  | initialEstimate.print(sprintf('\nInitial estimate:\n')); | ||
|  | 
 | ||
|  | %% Optimize using Levenberg-Marquardt optimization with an ordering from colamd | ||
|  | result = graph.optimize(initialEstimate); | ||
|  | result.print(sprintf('\nFinal result:\n')); | ||
|  | 
 | ||
|  | %% Plot Covariance Ellipses | ||
|  | figure(1);clf; | ||
|  | plot(result.xs(),result.ys(),'k*-'); hold on | ||
|  | plot([result.pose(5).x;result.pose(2).x],[result.pose(5).y;result.pose(2).y],'r-'); | ||
|  | marginals = graph.marginals(result); | ||
|  | for i=1:result.size() | ||
|  |     pose_i = result.pose(i); | ||
|  |     P{i}=marginals.marginalCovariance(i); | ||
|  |     plotPose2(pose_i,'g',P{i}) | ||
|  | end | ||
|  | axis equal |