adding Pose2SLAM example
parent
033807321d
commit
37ba09d836
|
@ -0,0 +1,69 @@
|
|||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
% Atlanta, Georgia 30332-0415
|
||||
% All Rights Reserved
|
||||
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
%
|
||||
% See LICENSE for the license information
|
||||
%
|
||||
% @brief Simple robotics example using the pre-built planar SLAM domain
|
||||
% @author Alex Cunningham
|
||||
% @author Frank Dellaert
|
||||
% @author Chris Beall
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
%% Assumptions
|
||||
% - All values are axis aligned
|
||||
% - Robot poses are facing along the X axis (horizontal, to the right in images)
|
||||
% - We have full odometry for measurements
|
||||
% - The robot is on a grid, moving 2 meters each step
|
||||
|
||||
%% Create keys for variables
|
||||
x1 = 1; x2 = 2; x3 = 3;
|
||||
|
||||
%% Create graph container and add factors to it
|
||||
graph = pose2SLAMGraph;
|
||||
|
||||
%% Add prior
|
||||
% gaussian for prior
|
||||
prior_model = SharedNoiseModel_sharedSigmas([0.3; 0.3; 0.1]);
|
||||
prior_measurement = Pose2(0.0, 0.0, 0.0); % prior at origin
|
||||
graph.addPrior(x1, prior_measurement, prior_model); % add directly to graph
|
||||
|
||||
%% Add odometry
|
||||
% general noisemodel for odometry
|
||||
odom_model = SharedNoiseModel_sharedSigmas([0.2; 0.2; 0.1]);
|
||||
odom_measurement = Pose2(2.0, 0.0, 0.0); % create a measurement for both factors (the same in this case)
|
||||
graph.addOdometry(x1, x2, odom_measurement, odom_model);
|
||||
graph.addOdometry(x2, x3, odom_measurement, odom_model);
|
||||
|
||||
%% Add measurements
|
||||
% general noisemodel for measurements
|
||||
meas_model = SharedNoiseModel_sharedSigmas([0.1; 0.2]);
|
||||
|
||||
% print
|
||||
graph.print('full graph');
|
||||
|
||||
%% Initialize to noisy points
|
||||
initialEstimate = pose2SLAMValues;
|
||||
initialEstimate.insertPose(x1, Pose2(0.5, 0.0, 0.2));
|
||||
initialEstimate.insertPose(x2, Pose2(2.3, 0.1,-0.2));
|
||||
initialEstimate.insertPose(x3, Pose2(4.1, 0.1, 0.1));
|
||||
|
||||
initialEstimate.print('initial estimate');
|
||||
|
||||
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
|
||||
result = graph.optimize(initialEstimate);
|
||||
result.print('final result');
|
||||
|
||||
%% Get the corresponding dense matrix
|
||||
ord = graph.orderingCOLAMD(result);
|
||||
gfg = graph.linearize(result,ord);
|
||||
denseAb = gfg.denseJacobian;
|
||||
|
||||
%% Get sparse matrix A and RHS b
|
||||
IJS = gfg.sparseJacobian_();
|
||||
Ab=sparse(IJS(1,:),IJS(2,:),IJS(3,:));
|
||||
A = Ab(:,1:end-1);
|
||||
b = full(Ab(:,end));
|
||||
spy(A);
|
Loading…
Reference in New Issue