gtsam/matlab/gtsam_examples/Pose2SLAMExample.m

68 lines
2.3 KiB
Matlab
Raw Normal View History

2012-01-28 10:51:35 +08:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2012-06-04 04:12:12 +08:00
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
2012-01-28 10:51:35 +08:00
% Atlanta, Georgia 30332-0415
% All Rights Reserved
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
2012-06-04 04:12:12 +08:00
%
2012-01-28 10:51:35 +08:00
% See LICENSE for the license information
%
% @brief Simple robotics example using the pre-built planar SLAM domain
% @author Alex Cunningham
% @author Frank Dellaert
% @author Chris Beall
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2012-08-06 03:31:27 +08:00
import gtsam.*
2012-01-28 10:51:35 +08:00
%% Assumptions
% - All values are axis aligned
% - Robot poses are facing along the X axis (horizontal, to the right in images)
% - We have full odometry for measurements
% - The robot is on a grid, moving 2 meters each step
%% Create graph container and add factors to it
2012-07-24 03:21:05 +08:00
graph = NonlinearFactorGraph;
2012-01-28 10:51:35 +08:00
%% Add prior
priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]);
graph.add(PriorFactorPose2(1, Pose2(0, 0, 0), priorNoise)); % add directly to graph
2012-01-28 10:51:35 +08:00
%% Add odometry
model = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
graph.add(BetweenFactorPose2(1, 2, Pose2(2, 0, 0 ), model));
graph.add(BetweenFactorPose2(2, 3, Pose2(2, 0, pi/2), model));
graph.add(BetweenFactorPose2(3, 4, Pose2(2, 0, pi/2), model));
graph.add(BetweenFactorPose2(4, 5, Pose2(2, 0, pi/2), model));
2012-01-28 10:51:35 +08:00
2012-06-04 04:12:12 +08:00
%% Add pose constraint
graph.add(BetweenFactorPose2(5, 2, Pose2(2, 0, pi/2), model));
2012-01-28 10:51:35 +08:00
% print
2012-06-04 04:14:23 +08:00
graph.print(sprintf('\nFactor graph:\n'));
2012-01-28 10:51:35 +08:00
%% Initialize to noisy points
2012-07-24 03:21:05 +08:00
initialEstimate = Values;
initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2 ));
initialEstimate.insert(2, Pose2(2.3, 0.1, -0.2 ));
initialEstimate.insert(3, Pose2(4.1, 0.1, pi/2));
initialEstimate.insert(4, Pose2(4.0, 2.0, pi ));
initialEstimate.insert(5, Pose2(2.1, 2.1, -pi/2));
2012-06-04 04:12:12 +08:00
initialEstimate.print(sprintf('\nInitial estimate:\n'));
2012-01-28 10:51:35 +08:00
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
2012-07-24 03:21:05 +08:00
optimizer = LevenbergMarquardtOptimizer(graph, initialEstimate);
result = optimizer.optimizeSafely();
2012-06-04 04:12:12 +08:00
result.print(sprintf('\nFinal result:\n'));
2012-06-05 11:51:21 +08:00
%% Plot Covariance Ellipses
2012-06-12 12:38:05 +08:00
cla;
2012-07-24 03:21:05 +08:00
hold on
2014-11-14 07:51:11 +08:00
plot([result.atPose2(5).x;result.atPose2(2).x],[result.atPose2(5).y;result.atPose2(2).y],'r-');
2012-07-24 03:21:05 +08:00
marginals = Marginals(graph, result);
2012-08-06 03:31:27 +08:00
plot2DTrajectory(result, [], marginals);
for i=1:5,marginals.marginalCovariance(i),end
2012-06-05 11:51:21 +08:00
axis equal
axis tight
view(2)