| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | #LyX 1.6.5 created this file. For more info see http://www.lyx.org/ | 
					
						
							|  |  |  |  | \lyxformat 345 | 
					
						
							|  |  |  |  | \begin_document | 
					
						
							|  |  |  |  | \begin_header | 
					
						
							|  |  |  |  | \textclass article | 
					
						
							|  |  |  |  | \use_default_options false | 
					
						
							|  |  |  |  | \begin_modules | 
					
						
							|  |  |  |  | theorems-std | 
					
						
							|  |  |  |  | \end_modules | 
					
						
							|  |  |  |  | \language english | 
					
						
							|  |  |  |  | \inputencoding auto | 
					
						
							|  |  |  |  | \font_roman times | 
					
						
							|  |  |  |  | \font_sans default | 
					
						
							|  |  |  |  | \font_typewriter default | 
					
						
							|  |  |  |  | \font_default_family rmdefault | 
					
						
							|  |  |  |  | \font_sc false | 
					
						
							|  |  |  |  | \font_osf false | 
					
						
							|  |  |  |  | \font_sf_scale 100 | 
					
						
							|  |  |  |  | \font_tt_scale 100 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \graphics default | 
					
						
							|  |  |  |  | \paperfontsize 12 | 
					
						
							|  |  |  |  | \spacing single | 
					
						
							|  |  |  |  | \use_hyperref false | 
					
						
							|  |  |  |  | \papersize default | 
					
						
							|  |  |  |  | \use_geometry true | 
					
						
							|  |  |  |  | \use_amsmath 1 | 
					
						
							|  |  |  |  | \use_esint 0 | 
					
						
							|  |  |  |  | \cite_engine basic | 
					
						
							|  |  |  |  | \use_bibtopic false | 
					
						
							|  |  |  |  | \paperorientation portrait | 
					
						
							|  |  |  |  | \leftmargin 1in | 
					
						
							|  |  |  |  | \topmargin 1in | 
					
						
							|  |  |  |  | \rightmargin 1in | 
					
						
							|  |  |  |  | \bottommargin 1in | 
					
						
							|  |  |  |  | \secnumdepth 3 | 
					
						
							|  |  |  |  | \tocdepth 3 | 
					
						
							|  |  |  |  | \paragraph_separation indent | 
					
						
							|  |  |  |  | \defskip medskip | 
					
						
							|  |  |  |  | \quotes_language english | 
					
						
							|  |  |  |  | \papercolumns 1 | 
					
						
							|  |  |  |  | \papersides 1 | 
					
						
							|  |  |  |  | \paperpagestyle default | 
					
						
							|  |  |  |  | \tracking_changes false | 
					
						
							|  |  |  |  | \output_changes false | 
					
						
							|  |  |  |  | \author ""  | 
					
						
							|  |  |  |  | \author ""  | 
					
						
							|  |  |  |  | \end_header | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_body | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Title | 
					
						
							|  |  |  |  | Lie Groups for Beginners | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Author | 
					
						
							|  |  |  |  | Frank Dellaert | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset Note Comment | 
					
						
							|  |  |  |  | status open | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_layout Plain Layout | 
					
						
							|  |  |  |  | Derivatives | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\deriv}[2]{\frac{\partial#1}{\partial#2}} | 
					
						
							|  |  |  |  | {\frac{\partial#1}{\partial#2}} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\at}[2]{#1\biggr\rvert_{#2}} | 
					
						
							|  |  |  |  | {#1\biggr\rvert_{#2}} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |   | 
					
						
							|  |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\Jac}[3]{ \at{\deriv{#1}{#2}} {#3} } | 
					
						
							|  |  |  |  | {\at{\deriv{#1}{#2}}{#3}} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \end_layout | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | \begin_inset Note Comment | 
					
						
							|  |  |  |  | status open | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_layout Plain Layout | 
					
						
							|  |  |  |  | Lie Groups | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\xhat}{\hat{x}} | 
					
						
							|  |  |  |  | {\hat{x}} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\yhat}{\hat{y}} | 
					
						
							|  |  |  |  | {\hat{y}} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\Ad}[1]{Ad_{#1}} | 
					
						
							|  |  |  |  | {Ad_{#1}} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \end_layout | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\define}{\stackrel{\Delta}{=}} | 
					
						
							|  |  |  |  | {\stackrel{\Delta}{=}} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\gg}{\mathfrak{g}} | 
					
						
							|  |  |  |  | {\mathfrak{g}} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\Rn}{\mathbb{R}^{n}} | 
					
						
							|  |  |  |  | {\mathbb{R}^{n}} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | \begin_inset Note Comment | 
					
						
							|  |  |  |  | status open | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Plain Layout | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | SO(2), 1 | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \end_layout | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\Rtwo}{\mathfrak{\mathbb{R}^{2}}} | 
					
						
							|  |  |  |  | {\mathfrak{\mathbb{R}^{2}}} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\SOtwo}{SO(2)} | 
					
						
							|  |  |  |  | {SO(2)} | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\sotwo}{\mathfrak{so(2)}} | 
					
						
							|  |  |  |  | {\mathfrak{so(2)}} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\that}{\hat{\theta}} | 
					
						
							|  |  |  |  | {\hat{\theta}} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\skew}[1]{[#1]_{+}} | 
					
						
							|  |  |  |  | {[#1]_{+}} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \end_layout | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | \begin_inset Note Comment | 
					
						
							|  |  |  |  | status open | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_layout Plain Layout | 
					
						
							|  |  |  |  | SE(2), 3 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \end_layout | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\SEtwo}{SE(2)} | 
					
						
							|  |  |  |  | {SE(2)} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\setwo}{\mathfrak{se(2)}} | 
					
						
							|  |  |  |  | {\mathfrak{se(2)}} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\Skew}[1]{[#1]_{\times}} | 
					
						
							|  |  |  |  | {[#1]_{\times}} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | \begin_inset Note Comment | 
					
						
							|  |  |  |  | status open | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Plain Layout | 
					
						
							|  |  |  |  | SO(3), 3 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\Rthree}{\mathfrak{\mathbb{R}^{3}}} | 
					
						
							|  |  |  |  | {\mathfrak{\mathbb{R}^{3}}} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\SOthree}{SO(3)} | 
					
						
							|  |  |  |  | {SO(3)} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\sothree}{\mathfrak{so(3)}} | 
					
						
							|  |  |  |  | {\mathfrak{so(3)}} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\what}{\hat{\omega}} | 
					
						
							|  |  |  |  | {\hat{\omega}} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset Note Comment | 
					
						
							|  |  |  |  | status open | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Plain Layout | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | SE(3),6 | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \end_layout | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\Rsix}{\mathfrak{\mathbb{R}^{6}}} | 
					
						
							|  |  |  |  | {\mathfrak{\mathbb{R}^{6}}} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\SEthree}{SE(3)} | 
					
						
							|  |  |  |  | {SE(3)} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\sethree}{\mathfrak{se(3)}} | 
					
						
							|  |  |  |  | {\mathfrak{se(3)}} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\xihat}{\hat{\xi}} | 
					
						
							|  |  |  |  | {\hat{\xi}} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | \begin_inset Note Comment | 
					
						
							|  |  |  |  | status open | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_layout Plain Layout | 
					
						
							|  |  |  |  | Aff(2),6 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\Afftwo}{Aff(2)} | 
					
						
							|  |  |  |  | {Aff(2)} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\afftwo}{\mathfrak{aff(2)}} | 
					
						
							|  |  |  |  | {\mathfrak{aff(2)}} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\aa}{a} | 
					
						
							|  |  |  |  | {a} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\ahat}{\hat{a}} | 
					
						
							|  |  |  |  | {\hat{a}} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset Note Comment | 
					
						
							| 
									
										
										
										
											2010-03-08 01:50:27 +08:00
										 |  |  |  | status collapsed | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_layout Plain Layout | 
					
						
							|  |  |  |  | SL(3),8 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\SLthree}{SL(3)} | 
					
						
							|  |  |  |  | {SL(3)} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\slthree}{\mathfrak{sl(3)}} | 
					
						
							|  |  |  |  | {\mathfrak{sl(3)}} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\hh}{h} | 
					
						
							|  |  |  |  | {h} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  |  | \newcommand{\hhat}{\hat{h}} | 
					
						
							|  |  |  |  | {\hat{h}} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Section | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | Motivation: Rigid Motions in the Plane | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | We will start with a small example of a robot moving in a plane, parameterized | 
					
						
							|  |  |  |  |  by a  | 
					
						
							|  |  |  |  | \emph on | 
					
						
							|  |  |  |  | 2D pose | 
					
						
							|  |  |  |  | \emph default | 
					
						
							|  |  |  |  |   | 
					
						
							|  |  |  |  | \begin_inset Formula $(x,\, y,\,\theta)$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | . | 
					
						
							|  |  |  |  |  When we give it a small forward velocity  | 
					
						
							|  |  |  |  | \begin_inset Formula $v_{x}$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | , we know that the location changes as  | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | \dot{x}=v_{x}\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | The solution to this trivial differential equation is, with  | 
					
						
							|  |  |  |  | \begin_inset Formula $x_{0}$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  the initial  | 
					
						
							|  |  |  |  | \begin_inset Formula $x$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-11 21:45:39 +08:00
										 |  |  |  | -position of the robot, | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-11 21:45:39 +08:00
										 |  |  |  | x_{t}=x_{0}+v_{x}t\] | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | A similar story holds for translation in the  | 
					
						
							|  |  |  |  | \begin_inset Formula $y$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  direction, and in fact for translations in general: | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-11 21:45:39 +08:00
										 |  |  |  | (x_{t},\, y_{t},\,\theta_{t})=(x_{0}+v_{x}t,\, y_{0}+v_{y}t,\,\theta_{0})\] | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | Similarly for rotation we have  | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-11 21:45:39 +08:00
										 |  |  |  | (x_{t},\, y_{t},\,\theta_{t})=(x_{0},\, y_{0},\,\theta_{0}+\omega t)\] | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | where  | 
					
						
							|  |  |  |  | \begin_inset Formula $\omega$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  is angular velocity, measured in  | 
					
						
							|  |  |  |  | \begin_inset Formula $rad/s$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  in counterclockwise direction. | 
					
						
							| 
									
										
										
										
											2010-03-08 01:50:27 +08:00
										 |  |  |  |   | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | \begin_inset Float figure | 
					
						
							|  |  |  |  | placement h | 
					
						
							|  |  |  |  | wide false | 
					
						
							|  |  |  |  | sideways false | 
					
						
							|  |  |  |  | status collapsed | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Plain Layout | 
					
						
							| 
									
										
										
										
											2010-03-08 01:50:27 +08:00
										 |  |  |  | \align center | 
					
						
							|  |  |  |  | \begin_inset Graphics | 
					
						
							|  |  |  |  | 	filename images/circular.pdf | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset Caption | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Plain Layout | 
					
						
							|  |  |  |  | Robot moving along a circular trajectory. | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | However, if we combine translation and rotation, the story breaks down! | 
					
						
							|  |  |  |  |  We cannot write | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-11 21:45:39 +08:00
										 |  |  |  | (x_{t},\, y_{t},\,\theta_{t})=(x_{0}+v_{x}t,\, y_{0}+v_{y}t,\,\theta_{0}+\omega t)\] | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | The reason is that, if we move the robot a tiny bit according to the velocity | 
					
						
							|  |  |  |  |  vector  | 
					
						
							|  |  |  |  | \begin_inset Formula $(v_{x},\, v_{y},\,\omega)$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-08 01:50:27 +08:00
										 |  |  |  | , we have (to first order) | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-11 21:45:39 +08:00
										 |  |  |  | (x_{\delta},\, y_{\delta},\,\theta_{\delta})=(x_{0}+v_{x}\delta,\, y_{0}+v_{y}\delta,\,\theta_{0}+\omega\delta)\] | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | but now the robot has rotated, and for the next incremental change, the | 
					
						
							|  |  |  |  |  velocity vector would have to be rotated before it can be applied. | 
					
						
							|  |  |  |  |  In fact, the robot will move on a  | 
					
						
							|  |  |  |  | \emph on | 
					
						
							|  |  |  |  | circular | 
					
						
							|  |  |  |  | \emph default | 
					
						
							|  |  |  |  |  trajectory. | 
					
						
							|  |  |  |  |   | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | The reason is that  | 
					
						
							|  |  |  |  | \emph on | 
					
						
							|  |  |  |  | translation and rotation do not commute | 
					
						
							|  |  |  |  | \emph default | 
					
						
							|  |  |  |  | : if we rotate and then move we will end up in a different place than if | 
					
						
							|  |  |  |  |  we moved first, then rotated. | 
					
						
							|  |  |  |  |  In fact, someone once said (I forget who, kudos for who can track down | 
					
						
							|  |  |  |  |  the exact quote): | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_layout Quote | 
					
						
							|  |  |  |  | If rotation and translation commuted, we could do all rotations before leaving | 
					
						
							|  |  |  |  |  home. | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							| 
									
										
										
										
											2010-03-11 21:45:39 +08:00
										 |  |  |  | \begin_inset Float figure | 
					
						
							|  |  |  |  | placement h | 
					
						
							|  |  |  |  | wide false | 
					
						
							|  |  |  |  | sideways false | 
					
						
							|  |  |  |  | status collapsed | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Plain Layout | 
					
						
							|  |  |  |  | \align center | 
					
						
							|  |  |  |  | \begin_inset Graphics | 
					
						
							|  |  |  |  | 	filename /Users/dellaert/borg/gtsam/doc/images/n-steps.pdf | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_inset Caption | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Plain Layout | 
					
						
							|  |  |  |  | \begin_inset CommandInset label | 
					
						
							|  |  |  |  | LatexCommand label | 
					
						
							|  |  |  |  | name "fig:n-step-program" | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Approximating a circular trajectory with  | 
					
						
							|  |  |  |  | \begin_inset Formula $n$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  steps. | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | To make progress, we have to be more precise about how the robot behaves. | 
					
						
							|  |  |  |  |  Specifically, let us define composition of two poses  | 
					
						
							|  |  |  |  | \begin_inset Formula $T_{1}$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  and  | 
					
						
							|  |  |  |  | \begin_inset Formula $T_{2}$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  as | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | T_{1}T_{2}=(x_{1},\, y_{1},\,\theta_{1})(x_{2},\, y_{2},\,\theta_{2})=(x_{1}+\cos\theta_{1}x_{2}-\sin\theta y_{2},\, y_{1}+\sin\theta_{1}x_{2}+\cos\theta_{1}y_{2},\,\theta_{1}+\theta_{2})\] | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | This is a bit clumsy, so we resort to a trick: embed the 2D poses in the | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  |   | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset Formula $3\times3$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  matrices, so we can define composition as matrix multiplication: | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | T_{1}T_{2}=\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | R_{1} & t_{1}\\ | 
					
						
							|  |  |  |  | 0 & 1\end{array}\right]\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | R_{2} & t_{2}\\ | 
					
						
							|  |  |  |  | 0 & 1\end{array}\right]=\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | R_{1}R_{2} & R_{1}t_{2}+t_{1}\\ | 
					
						
							|  |  |  |  | 0 & 1\end{array}\right]\] | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | where the matrices  | 
					
						
							|  |  |  |  | \begin_inset Formula $R$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  are 2D rotation matrices defined as  | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | R=\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | \cos\theta & -\sin\theta\\ | 
					
						
							|  |  |  |  | \sin\theta & \cos\theta\end{array}\right]\] | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-11 21:45:39 +08:00
										 |  |  |  | Now a  | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset Quotes eld | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | tiny | 
					
						
							|  |  |  |  | \begin_inset Quotes erd | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  motion of the robot can be written as | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | T(\delta)=\left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | \cos\omega\delta & -\sin\omega\delta & v_{x}\delta\\ | 
					
						
							|  |  |  |  | \sin\omega\delta & \cos\omega\delta & v_{y}\delta\\ | 
					
						
							|  |  |  |  | 0 & 0 & 1\end{array}\right]\approx\left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | 1 & -\omega\delta & v_{x}\delta\\ | 
					
						
							|  |  |  |  | \omega\delta & 1 & v_{y}\delta\\ | 
					
						
							|  |  |  |  | 0 & 0 & 1\end{array}\right]=I+\delta\left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | 0 & -\omega & v_{x}\\ | 
					
						
							|  |  |  |  | \omega & 0 & v_{y}\\ | 
					
						
							| 
									
										
										
										
											2010-03-11 21:45:39 +08:00
										 |  |  |  | 0 & 0 & 0\end{array}\right]\] | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | Let us define the  | 
					
						
							|  |  |  |  | \emph on | 
					
						
							|  |  |  |  | 2D twist | 
					
						
							|  |  |  |  | \emph default | 
					
						
							|  |  |  |  |  vector  | 
					
						
							|  |  |  |  | \begin_inset Formula $\xi=(v,\omega)$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | , and the matrix above as | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \xihat\define\left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | 0 & -\omega & v_{x}\\ | 
					
						
							|  |  |  |  | \omega & 0 & v_{y}\\ | 
					
						
							| 
									
										
										
										
											2010-03-11 21:45:39 +08:00
										 |  |  |  | 0 & 0 & 0\end{array}\right]\] | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | If we wanted  | 
					
						
							|  |  |  |  | \begin_inset Formula $t$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  to be large, we could split up  | 
					
						
							|  |  |  |  | \begin_inset Formula $t$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  into smaller timesteps, say  | 
					
						
							|  |  |  |  | \begin_inset Formula $n$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  of them, and compose them as follows: | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | T(t)\approx\left(I+\frac{t}{n}\xihat\right)\ldots\mbox{n times}\ldots\left(I+\frac{t}{n}\xihat\right)=\left(I+\frac{t}{n}\xihat\right)^{n}\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | The result is shown in Figure  | 
					
						
							|  |  |  |  | \begin_inset CommandInset ref | 
					
						
							|  |  |  |  | LatexCommand ref | 
					
						
							|  |  |  |  | reference "fig:n-step-program" | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | . | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | Of course, the perfect solution would be obtained if we take  | 
					
						
							|  |  |  |  | \begin_inset Formula $n$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  to infinity: | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | T(t)=\lim_{n\rightarrow\infty}\left(I+\frac{t}{n}\xihat\right)^{n}\] | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | For real numbers, this series is familiar and is actually a way to compute | 
					
						
							|  |  |  |  |  the exponential function: | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-08 01:50:27 +08:00
										 |  |  |  | e^{x}=\lim_{n\rightarrow\infty}\left(1+\frac{x}{n}\right)^{n}=\sum_{k=0}^{\infty}\frac{x^{k}}{k!}\] | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-08 01:50:27 +08:00
										 |  |  |  | The series can be similarly defined for square matrices,and the final result | 
					
						
							|  |  |  |  |  is that we can write the motion of a robot along a circular trajectory, | 
					
						
							|  |  |  |  |  resulting from the 2D twist  | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset Formula $\xi=(v,\omega)$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_inset Formula $ $ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-11 21:45:39 +08:00
										 |  |  |  |  as the  | 
					
						
							|  |  |  |  | \emph on | 
					
						
							|  |  |  |  | matrix exponential | 
					
						
							|  |  |  |  | \emph default | 
					
						
							|  |  |  |  |  of  | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset Formula $\xihat$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | : | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-11 21:45:39 +08:00
										 |  |  |  | T(t)=e^{t\xihat}\define\lim_{n\rightarrow\infty}\left(I+\frac{t}{n}\xihat\right)^{n}=\sum_{k=0}^{\infty}\frac{t^{k}}{k!}\xihat^{k}\] | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | We call this mapping from 2D twists matrices  | 
					
						
							|  |  |  |  | \begin_inset Formula $\xihat$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  to 2D rigid transformations the  | 
					
						
							|  |  |  |  | \emph on | 
					
						
							|  |  |  |  | exponential map. | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							| 
									
										
										
										
											2010-03-08 01:50:27 +08:00
										 |  |  |  | The above has all elements of Lie group theory. | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  We call the space of 2D rigid transformations, along with the composition | 
					
						
							|  |  |  |  |  operation, the  | 
					
						
							|  |  |  |  | \emph on | 
					
						
							|  |  |  |  | special Euclidean group | 
					
						
							|  |  |  |  | \emph default | 
					
						
							|  |  |  |  |   | 
					
						
							|  |  |  |  | \begin_inset Formula $\SEtwo$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | . | 
					
						
							| 
									
										
										
										
											2010-03-11 21:45:39 +08:00
										 |  |  |  |  It is called a Lie group because it is both a manifold and a group, and | 
					
						
							|  |  |  |  |  its group operation is smooth when operating on this manifold. | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  The space of 2D twists, together with a special binary operation to be | 
					
						
							|  |  |  |  |  defined below, is called the Lie algebra  | 
					
						
							|  |  |  |  | \begin_inset Formula $\setwo$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  associated with  | 
					
						
							|  |  |  |  | \begin_inset Formula $\SEtwo$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | . | 
					
						
							|  |  |  |  |  Below we generalize these concepts and then introduce the most commonly | 
					
						
							|  |  |  |  |  used Lie groups and their Lie algebras. | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | \begin_inset Newpage pagebreak | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_layout Section | 
					
						
							|  |  |  |  | Basic Lie Group Concepts | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \begin_layout Subsection | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | A Manifold and a Group | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | A Lie group  | 
					
						
							|  |  |  |  | \begin_inset Formula $G$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  is a manifold that possesses a smooth group operation. | 
					
						
							|  |  |  |  |  Associated with it is a Lie Algebra  | 
					
						
							|  |  |  |  | \begin_inset Formula $\gg$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  which, loosely speaking, can be identified with the tangent space at the | 
					
						
							|  |  |  |  |  identity and completely defines how the groups behaves around the identity. | 
					
						
							|  |  |  |  |  There is a mapping from  | 
					
						
							|  |  |  |  | \begin_inset Formula $\gg$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  back to  | 
					
						
							|  |  |  |  | \begin_inset Formula $G$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | , called the exponential map | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \exp:\gg\rightarrow G\] | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | which is typically a many-to-one mapping. | 
					
						
							|  |  |  |  |  The corresponding inverse can be define locally around the origin and hence | 
					
						
							|  |  |  |  |  is a  | 
					
						
							|  |  |  |  | \begin_inset Quotes eld | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | logarithm | 
					
						
							|  |  |  |  | \begin_inset Quotes erd | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-11 21:45:39 +08:00
										 |  |  |  |   | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \log:G\rightarrow\gg\] | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | that maps elements in a neighborhood of  | 
					
						
							|  |  |  |  | \begin_inset Formula $id$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  in G to an element in  | 
					
						
							|  |  |  |  | \begin_inset Formula $\gg$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | . | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Subsection | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | Lie Algebra | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | The Lie Algebra  | 
					
						
							|  |  |  |  | \begin_inset Formula $\gg$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  is called an algebra because it is endowed with a binary operation, the | 
					
						
							|  |  |  |  |  Lie bracket  | 
					
						
							|  |  |  |  | \begin_inset Formula $[X,Y]$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | , the properties of which are closely related to the group operation of | 
					
						
							|  |  |  |  |   | 
					
						
							|  |  |  |  | \begin_inset Formula $G$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | . | 
					
						
							|  |  |  |  |  For example, in matrix Lie groups, the Lie bracket is given by  | 
					
						
							|  |  |  |  | \begin_inset Formula $[A,B]\define AB-BA$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | . | 
					
						
							| 
									
										
										
										
											2010-03-11 21:45:39 +08:00
										 |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | The relationship of the Lie bracket to the group operation is as follows: | 
					
						
							|  |  |  |  |  for commutative Lie groups vector addition  | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset Formula $X+Y$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  in  | 
					
						
							|  |  |  |  | \begin_inset Formula $\gg$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  mimicks the group operation. | 
					
						
							|  |  |  |  |  For example, if we have  | 
					
						
							|  |  |  |  | \begin_inset Formula $Z=X+Y$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  in  | 
					
						
							|  |  |  |  | \begin_inset Formula $\gg$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | , when mapped backed to  | 
					
						
							|  |  |  |  | \begin_inset Formula $G$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  via the exponential map we obtain  | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | e^{Z}=e^{X+Y}=e^{X}e^{Y}\] | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | However, this does  | 
					
						
							|  |  |  |  | \emph on | 
					
						
							|  |  |  |  | not | 
					
						
							|  |  |  |  | \emph default | 
					
						
							|  |  |  |  |  hold for non-commutative Lie groups: | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | Z=\log(e^{X}e^{Y})\neq X+Y\] | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | Instead,  | 
					
						
							|  |  |  |  | \begin_inset Formula $Z$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  can be calculated using the Baker-Campbell-Hausdorff (BCH) formula: | 
					
						
							|  |  |  |  | \begin_inset Foot | 
					
						
							|  |  |  |  | status collapsed | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Plain Layout | 
					
						
							|  |  |  |  | http://en.wikipedia.org/wiki/Baker–Campbell–Hausdorff_formula | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | Z=X+Y+[X,Y]/2+[X-Y,[X,Y]]/12-[Y,[X,[X,Y]]]/24+\ldots\] | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | For commutative groups the bracket is zero and we recover  | 
					
						
							|  |  |  |  | \begin_inset Formula $Z=X+Y$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | . | 
					
						
							|  |  |  |  |  For non-commutative groups we can use the BCH formula to approximate it. | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_layout Subsection | 
					
						
							|  |  |  |  | Exponential Coordinates | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | For  | 
					
						
							|  |  |  |  | \begin_inset Formula $n$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | -dimensional matrix Lie groups, the Lie algebra  | 
					
						
							|  |  |  |  | \begin_inset Formula $\gg$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  is isomorphic to  | 
					
						
							|  |  |  |  | \begin_inset Formula $\mathbb{R}^{n}$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | , and we can define the wedge operator  | 
					
						
							|  |  |  |  | \begin_inset CommandInset citation | 
					
						
							|  |  |  |  | LatexCommand cite | 
					
						
							|  |  |  |  | after "page 41" | 
					
						
							|  |  |  |  | key "Murray94book" | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | , | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | \hat{}:x\in\mathbb{R}^{n}\rightarrow\xhat\in\gg\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | which maps  | 
					
						
							|  |  |  |  | \begin_inset Formula $n$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | -vectors  | 
					
						
							|  |  |  |  | \begin_inset Formula $x\in\mathbb{R}^{n}$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  to elements of  | 
					
						
							|  |  |  |  | \begin_inset Formula $\gg$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | . | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  In the case of matrix Lie groups, the elements  | 
					
						
							|  |  |  |  | \begin_inset Formula $\xhat$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  of  | 
					
						
							|  |  |  |  | \begin_inset Formula $\gg$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  are  | 
					
						
							|  |  |  |  | \begin_inset Formula $n\times n$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  matrices, and the map is given by | 
					
						
							|  |  |  |  | \begin_inset Formula \begin{equation} | 
					
						
							|  |  |  |  | \xhat=\sum_{i=1}^{n}x_{i}G^{i}\label{eq:generators}\end{equation} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | where the  | 
					
						
							|  |  |  |  | \begin_inset Formula $G^{i}$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  are  | 
					
						
							|  |  |  |  | \begin_inset Formula $n\times n$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  matrices known as the Lie group generators. | 
					
						
							|  |  |  |  |  The meaning of the map  | 
					
						
							|  |  |  |  | \begin_inset Formula $x\rightarrow\xhat$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  will depend on the group  | 
					
						
							|  |  |  |  | \begin_inset Formula $G$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  and will generally have an intuitive interpretation. | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Subsection | 
					
						
							|  |  |  |  | The Adjoint Map | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | Below we frequently make use of the equality | 
					
						
							|  |  |  |  | \begin_inset Foot | 
					
						
							|  |  |  |  | status collapsed | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_layout Plain Layout | 
					
						
							|  |  |  |  | http://en.wikipedia.org/wiki/Exponential_map | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | ge^{\xhat}g^{-1}=e^{\Ad g{\xhat}}\] | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | where  | 
					
						
							|  |  |  |  | \begin_inset Formula $\Ad g:\gg\rightarrow\mathfrak{\gg}$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  is a map parameterized by a group element  | 
					
						
							|  |  |  |  | \begin_inset Formula $g$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | . | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  The intuitive explanation is that a change  | 
					
						
							|  |  |  |  | \begin_inset Formula $\exp\left(\xhat\right)$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  defined around the orgin, but applied at the group element  | 
					
						
							|  |  |  |  | \begin_inset Formula $g$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | , can be written in one step by taking the adjoint  | 
					
						
							|  |  |  |  | \begin_inset Formula $\Ad g{\xhat}$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  of  | 
					
						
							|  |  |  |  | \begin_inset Formula $\xhat$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | . | 
					
						
							|  |  |  |  |  In the case of a matrix group the ajoint can be written as  | 
					
						
							|  |  |  |  | \begin_inset Foot | 
					
						
							|  |  |  |  | status collapsed | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Plain Layout | 
					
						
							|  |  |  |  | http://en.wikipedia.org/wiki/Adjoint_representation_of_a_Lie_group | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \Ad T{\xhat}\define T\xhat T^{-1}\] | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | and hence we have | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | Te^{\xhat}T^{-1}=e^{T\xhat T^{-1}}\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | where both  | 
					
						
							|  |  |  |  | \begin_inset Formula $T\in G$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  and  | 
					
						
							|  |  |  |  | \begin_inset Formula $\xhat\in\gg$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  are  | 
					
						
							|  |  |  |  | \begin_inset Formula $n\times n$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  matrices for an  | 
					
						
							|  |  |  |  | \begin_inset Formula $n$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | -dimensional Lie group. | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Subsection | 
					
						
							|  |  |  |  | Actions | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | The (usual) action of an  | 
					
						
							|  |  |  |  | \begin_inset Formula $n$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | -dimensional matrix group  | 
					
						
							|  |  |  |  | \begin_inset Formula $G$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  is matrix-vector multiplication on  | 
					
						
							|  |  |  |  | \begin_inset Formula $\mathbb{R}^{n}$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | ,  | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | q=Tp\] | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | with  | 
					
						
							|  |  |  |  | \begin_inset Formula $p,q\in\mathbb{R}^{n}$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  and  | 
					
						
							|  |  |  |  | \begin_inset Formula $T\in GL(n)$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | . | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | \begin_inset Newpage pagebreak | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Section | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 2D Rotations | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | We first look at a very simple group, the 2D rotations. | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Subsection | 
					
						
							|  |  |  |  | Basics | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | The Lie group  | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset Formula $\SOtwo$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  is a subgroup of the general linear group  | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset Formula $GL(2)$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  of  | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset Formula $2\times2$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  invertible matrices. | 
					
						
							|  |  |  |  |  Its Lie algebra  | 
					
						
							|  |  |  |  | \begin_inset Formula $\sotwo$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  is the vector space of  | 
					
						
							|  |  |  |  | \begin_inset Formula $2\times2$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  skew-symmetric matrices. | 
					
						
							|  |  |  |  |  Since  | 
					
						
							|  |  |  |  | \begin_inset Formula $\SOtwo$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  is a one-dimensional manifold,  | 
					
						
							|  |  |  |  | \begin_inset Formula $\sotwo$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  is isomorphic to  | 
					
						
							|  |  |  |  | \begin_inset Formula $\mathbb{R}$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  and we define | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | \hat{}:\mathbb{R}\rightarrow\sotwo\] | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-08 01:50:27 +08:00
										 |  |  |  | \hat{}:\omega\rightarrow\what=\skew{\omega}\] | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | which maps the angle  | 
					
						
							|  |  |  |  | \begin_inset Formula $\theta$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  to the  | 
					
						
							|  |  |  |  | \begin_inset Formula $2\times2$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  skew-symmetric matrix  | 
					
						
							|  |  |  |  | \family roman | 
					
						
							|  |  |  |  | \series medium | 
					
						
							|  |  |  |  | \shape up | 
					
						
							|  |  |  |  | \size normal | 
					
						
							|  |  |  |  | \emph off | 
					
						
							|  |  |  |  | \bar no | 
					
						
							|  |  |  |  | \noun off | 
					
						
							|  |  |  |  | \color none | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_inset Formula $\skew{\theta}$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | : | 
					
						
							|  |  |  |  | \family default | 
					
						
							|  |  |  |  | \series default | 
					
						
							|  |  |  |  | \shape default | 
					
						
							|  |  |  |  | \size default | 
					
						
							|  |  |  |  | \emph default | 
					
						
							|  |  |  |  | \bar default | 
					
						
							|  |  |  |  | \noun default | 
					
						
							|  |  |  |  | \color inherit | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | \skew{\theta}=\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | 0 & -\theta\\ | 
					
						
							|  |  |  |  | \theta & 0\end{array}\right]\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | The exponential map can be computed in closed form as | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-08 01:50:27 +08:00
										 |  |  |  | R=e^{\skew{\omega t}}=e^{\skew{\theta}}=\left[\begin{array}{cc} | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \cos\theta & -\sin\theta\\ | 
					
						
							|  |  |  |  | \sin\theta & \cos\theta\end{array}\right]\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-08 01:50:27 +08:00
										 |  |  |  | This can be proven  | 
					
						
							|  |  |  |  | \begin_inset CommandInset citation | 
					
						
							|  |  |  |  | LatexCommand cite | 
					
						
							|  |  |  |  | key "Hall00book" | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  by realizing  | 
					
						
							|  |  |  |  | \begin_inset Formula $\skew 1$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  is diagonizable with eigenvalues  | 
					
						
							|  |  |  |  | \begin_inset Formula $-i$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  and  | 
					
						
							|  |  |  |  | \begin_inset Formula $i$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-08 01:50:27 +08:00
										 |  |  |  |  , and eigenvectors  | 
					
						
							|  |  |  |  | \begin_inset Formula $\left[\begin{array}{c} | 
					
						
							|  |  |  |  | 1\\ | 
					
						
							|  |  |  |  | i\end{array}\right]$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  and  | 
					
						
							|  |  |  |  | \begin_inset Formula $\left[\begin{array}{c} | 
					
						
							|  |  |  |  | i\\ | 
					
						
							|  |  |  |  | 1\end{array}\right]$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | . | 
					
						
							|  |  |  |  |  Readers familiar with projective geometry will recognize these as the circular | 
					
						
							|  |  |  |  |  points when promoted to homogeneous coordinates. | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Subsection | 
					
						
							|  |  |  |  | Adjoint | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | The adjoint map for  | 
					
						
							|  |  |  |  | \begin_inset Formula $\sotwo$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  is trivially equal to the identity, as is the case for  | 
					
						
							|  |  |  |  | \emph on | 
					
						
							|  |  |  |  | all | 
					
						
							|  |  |  |  | \emph default | 
					
						
							|  |  |  |  |  commutative groups: | 
					
						
							|  |  |  |  | \begin_inset Formula \begin{eqnarray*} | 
					
						
							|  |  |  |  | \Ad R\what & = & \left[\begin{array}{cc} | 
					
						
							|  |  |  |  | \cos\theta & -\sin\theta\\ | 
					
						
							|  |  |  |  | \sin\theta & \cos\theta\end{array}\right]\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | 0 & -\omega\\ | 
					
						
							|  |  |  |  | \omega & 0\end{array}\right]\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | \cos\theta & -\sin\theta\\ | 
					
						
							|  |  |  |  | \sin\theta & \cos\theta\end{array}\right]^{T}\\ | 
					
						
							|  |  |  |  |  & = & \omega\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | -\sin\theta & -\cos\theta\\ | 
					
						
							|  |  |  |  | \cos\theta & -\sin\theta\end{array}\right]\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | \cos\theta & \sin\theta\\ | 
					
						
							|  |  |  |  | -\sin\theta & \cos\theta\end{array}\right]=\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | 0 & -\omega\\ | 
					
						
							|  |  |  |  | \omega & 0\end{array}\right]\end{eqnarray*} | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | which we can write in terms of  | 
					
						
							|  |  |  |  | \begin_inset Formula $\omega$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  as | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | \Ad R\omega=\omega\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Subsection | 
					
						
							|  |  |  |  | Actions | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | In the case of  | 
					
						
							|  |  |  |  | \begin_inset Formula $\SOtwo$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  the vector space is  | 
					
						
							|  |  |  |  | \begin_inset Formula $\Rtwo$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | , and the group action corresponds to rotating a point | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | q=Rp\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | We would now like to know what an incremental rotation parameterized by | 
					
						
							|  |  |  |  |   | 
					
						
							|  |  |  |  | \begin_inset Formula $\theta$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  would do: | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-08 01:50:27 +08:00
										 |  |  |  | q(\text{\omega t})=Re^{\skew{\omega t}}p\] | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | hence the derivative is: | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-08 01:50:27 +08:00
										 |  |  |  | \deriv{q(\omega t)}t=R\deriv{}t\left(e^{\skew{\omega t}}p\right)=R\deriv{}t\left(\skew{\omega t}p\right)=RH_{p}\] | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Note that  | 
					
						
							|  |  |  |  | \begin_inset Formula \begin{equation} | 
					
						
							|  |  |  |  | \skew{\theta}\left[\begin{array}{c} | 
					
						
							|  |  |  |  | x\\ | 
					
						
							|  |  |  |  | y\end{array}\right]=\theta R_{\pi/2}\left[\begin{array}{c} | 
					
						
							|  |  |  |  | x\\ | 
					
						
							|  |  |  |  | y\end{array}\right]=\theta\left[\begin{array}{c} | 
					
						
							|  |  |  |  | -y\\ | 
					
						
							|  |  |  |  | x\end{array}\right]\label{eq:RestrictedCross}\end{equation} | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | which acts like a restricted  | 
					
						
							|  |  |  |  | \begin_inset Quotes eld | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | cross product | 
					
						
							|  |  |  |  | \begin_inset Quotes erd | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  in the plane. | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | \begin_inset Newpage pagebreak | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Section | 
					
						
							|  |  |  |  | 2D Rigid Transformations | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Subsection | 
					
						
							|  |  |  |  | Basics | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | The Lie group  | 
					
						
							|  |  |  |  | \begin_inset Formula $\SEtwo$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  is a subgroup of the general linear group  | 
					
						
							|  |  |  |  | \begin_inset Formula $GL(3)$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  of  | 
					
						
							|  |  |  |  | \begin_inset Formula $3\times3$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  invertible matrices of the form | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | T\define\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | R & t\\ | 
					
						
							|  |  |  |  | 0 & 1\end{array}\right]\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | where  | 
					
						
							|  |  |  |  | \begin_inset Formula $R\in\SOtwo$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  is a rotation matrix and  | 
					
						
							|  |  |  |  | \begin_inset Formula $t\in\Rtwo$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  is a translation vector. | 
					
						
							|  |  |  |  |   | 
					
						
							|  |  |  |  | \begin_inset Formula $\SEtwo$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  is the  | 
					
						
							|  |  |  |  | \emph on | 
					
						
							|  |  |  |  | semi-direct product | 
					
						
							|  |  |  |  | \emph default | 
					
						
							|  |  |  |  |  of  | 
					
						
							|  |  |  |  | \begin_inset Formula $\Rtwo$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  by  | 
					
						
							|  |  |  |  | \begin_inset Formula $SO(2)$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | , written as  | 
					
						
							|  |  |  |  | \begin_inset Formula $\SEtwo=\Rtwo\rtimes\SOtwo$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | . | 
					
						
							|  |  |  |  |  In particular, any element  | 
					
						
							|  |  |  |  | \begin_inset Formula $T$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  of  | 
					
						
							|  |  |  |  | \begin_inset Formula $\SEtwo$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  can be written as | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | T=\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | 0 & t\\ | 
					
						
							|  |  |  |  | 0 & 1\end{array}\right]\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | R & 0\\ | 
					
						
							| 
									
										
										
										
											2010-03-11 21:45:39 +08:00
										 |  |  |  | 0 & 1\end{array}\right]\] | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | and they compose as | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | T_{1}T_{2}=\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | R_{1} & t_{1}\\ | 
					
						
							|  |  |  |  | 0 & 1\end{array}\right]\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | R_{2} & t_{2}\\ | 
					
						
							|  |  |  |  | 0 & 1\end{array}\right]=\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | R_{1}R_{2} & R_{1}t_{2}+t_{1}\\ | 
					
						
							|  |  |  |  | 0 & 1\end{array}\right]\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Hence, an alternative way of writing down elements of  | 
					
						
							|  |  |  |  | \begin_inset Formula $\SEtwo$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  is as the ordered pair  | 
					
						
							|  |  |  |  | \begin_inset Formula $(R,\, t)$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | , with composition defined a | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | (R_{1},\, t_{1})(R_{2},\, t_{2})=(R_{1}R_{2},\, R{}_{1}t_{2}+t_{1})\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | The corresponding Lie algebra  | 
					
						
							|  |  |  |  | \begin_inset Formula $\setwo$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  is the vector space of  | 
					
						
							|  |  |  |  | \begin_inset Formula $3\times3$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  twists  | 
					
						
							|  |  |  |  | \begin_inset Formula $\xihat$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  parameterized by the  | 
					
						
							|  |  |  |  | \emph on | 
					
						
							|  |  |  |  | twist coordinates | 
					
						
							|  |  |  |  | \emph default | 
					
						
							|  |  |  |  |   | 
					
						
							|  |  |  |  | \begin_inset Formula $\xi\in\Rthree$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | , with the mapping  | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | \xi\define\left[\begin{array}{c} | 
					
						
							|  |  |  |  | v\\ | 
					
						
							|  |  |  |  | \omega\end{array}\right]\rightarrow\xihat\define\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | \skew{\omega} & v\\ | 
					
						
							|  |  |  |  | 0 & 0\end{array}\right]\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Note we think of robots as having a pose  | 
					
						
							|  |  |  |  | \begin_inset Formula $(x,y,\theta)$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  and hence I reserved the first two components for translation and the last | 
					
						
							|  |  |  |  |  for rotation. | 
					
						
							|  |  |  |  |   | 
					
						
							|  |  |  |  | \family roman | 
					
						
							|  |  |  |  | \series medium | 
					
						
							|  |  |  |  | \shape up | 
					
						
							|  |  |  |  | \size normal | 
					
						
							|  |  |  |  | \emph off | 
					
						
							|  |  |  |  | \bar no | 
					
						
							|  |  |  |  | \noun off | 
					
						
							|  |  |  |  | \color none | 
					
						
							|  |  |  |  | The corresponding Lie group generators are | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | G^{x}=\left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | 0 & 0 & 1\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0\end{array}\right]\mbox{ }G^{y}=\left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 1\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0\end{array}\right]\mbox{ }G^{\theta}=\left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | 0 & -1 & 0\\ | 
					
						
							|  |  |  |  | 1 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0\end{array}\right]\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \family default | 
					
						
							|  |  |  |  | \series default | 
					
						
							|  |  |  |  | \shape default | 
					
						
							|  |  |  |  | \size default | 
					
						
							|  |  |  |  | \emph default | 
					
						
							|  |  |  |  | \bar default | 
					
						
							|  |  |  |  | \noun default | 
					
						
							|  |  |  |  | \color inherit | 
					
						
							|  |  |  |  | Applying the exponential map to a twist  | 
					
						
							|  |  |  |  | \begin_inset Formula $\xi$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  yields a screw motion yielding an element in  | 
					
						
							|  |  |  |  | \begin_inset Formula $\SEtwo$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | :  | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | T=e^{\xihat}=\left(e^{\skew{\omega}},(I-e^{\skew{\omega}})\frac{v^{\perp}}{\omega}\right)\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Subsection | 
					
						
							|  |  |  |  | The Adjoint Map | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | The adjoint is  | 
					
						
							|  |  |  |  | \begin_inset Formula \begin{eqnarray} | 
					
						
							|  |  |  |  | \Ad T{\xihat} & = & T\xihat T^{-1}\nonumber \\ | 
					
						
							|  |  |  |  |  & = & \left[\begin{array}{cc} | 
					
						
							|  |  |  |  | R & t\\ | 
					
						
							|  |  |  |  | 0 & 1\end{array}\right]\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | \skew{\omega} & v\\ | 
					
						
							|  |  |  |  | 0 & 0\end{array}\right]\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | R^{T} & -R^{T}t\\ | 
					
						
							|  |  |  |  | 0 & 1\end{array}\right]\nonumber \\ | 
					
						
							|  |  |  |  |  & = & \left[\begin{array}{cc} | 
					
						
							|  |  |  |  | \skew{\omega} & -\skew{\omega}t+Rv\\ | 
					
						
							|  |  |  |  | 0 & 0\end{array}\right]\nonumber \\ | 
					
						
							|  |  |  |  |  & = & \left[\begin{array}{cc} | 
					
						
							|  |  |  |  | \skew{\omega} & Rv-\omega R_{\pi/2}t\\ | 
					
						
							|  |  |  |  | 0 & 0\end{array}\right]\label{eq:adjointSE2}\end{eqnarray} | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | From this we can express the Adjoint map in terms of plane twist coordinates: | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | \left[\begin{array}{c} | 
					
						
							|  |  |  |  | v'\\ | 
					
						
							|  |  |  |  | \omega'\end{array}\right]=\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | R & -R_{\pi/2}t\\ | 
					
						
							|  |  |  |  | 0 & 1\end{array}\right]\left[\begin{array}{c} | 
					
						
							|  |  |  |  | v\\ | 
					
						
							|  |  |  |  | \omega\end{array}\right]\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Subsection | 
					
						
							|  |  |  |  | Actions | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | The action of  | 
					
						
							|  |  |  |  | \begin_inset Formula $\SEtwo$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  on 2D points is done by embedding the points in  | 
					
						
							|  |  |  |  | \begin_inset Formula $\mathbb{R}^{3}$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  by using homogeneous coordinates | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | \hat{q}=\left[\begin{array}{c} | 
					
						
							|  |  |  |  | q\\ | 
					
						
							|  |  |  |  | 1\end{array}\right]=\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | R & t\\ | 
					
						
							|  |  |  |  | 0 & 1\end{array}\right]\left[\begin{array}{c} | 
					
						
							|  |  |  |  | p\\ | 
					
						
							|  |  |  |  | 1\end{array}\right]=T\hat{p}\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Analoguous to  | 
					
						
							|  |  |  |  | \begin_inset Formula $\SEthree$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | , we can compute a velocity  | 
					
						
							|  |  |  |  | \begin_inset Formula $\xihat\hat{p}$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  in the local  | 
					
						
							|  |  |  |  | \begin_inset Formula $T$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  frame:  | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | \xihat\hat{p}=\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | \skew{\omega} & v\\ | 
					
						
							|  |  |  |  | 0 & 0\end{array}\right]\left[\begin{array}{c} | 
					
						
							|  |  |  |  | p\\ | 
					
						
							|  |  |  |  | 1\end{array}\right]=\left[\begin{array}{c} | 
					
						
							|  |  |  |  | \skew{\omega}p+v\\ | 
					
						
							|  |  |  |  | 0\end{array}\right]\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | By only taking the top two rows, we can write this as a velocity in  | 
					
						
							|  |  |  |  | \begin_inset Formula $\Rtwo$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | , as the product of a  | 
					
						
							|  |  |  |  | \begin_inset Formula $2\times3$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  matrix  | 
					
						
							|  |  |  |  | \begin_inset Formula $H_{p}$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  that acts upon the exponential coordinates  | 
					
						
							|  |  |  |  | \begin_inset Formula $\xi$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  directly: | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | \skew{\omega}p+v=v+R_{\pi/2}p\omega=\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | I_{2} & R_{\pi/2}p\end{array}\right]\left[\begin{array}{c} | 
					
						
							|  |  |  |  | v\\ | 
					
						
							|  |  |  |  | \omega\end{array}\right]=H_{p}\xi\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | \begin_inset Newpage pagebreak | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Section | 
					
						
							|  |  |  |  | 3D Rotations | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Subsection | 
					
						
							|  |  |  |  | Basics | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | The Lie group  | 
					
						
							|  |  |  |  | \begin_inset Formula $\SOthree$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  is a subgroup of the general linear group  | 
					
						
							|  |  |  |  | \begin_inset Formula $GL(3)$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  of  | 
					
						
							|  |  |  |  | \begin_inset Formula $3\times3$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  invertible matrices. | 
					
						
							|  |  |  |  |  Its Lie algebra  | 
					
						
							|  |  |  |  | \begin_inset Formula $\sothree$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  is the vector space of  | 
					
						
							|  |  |  |  | \begin_inset Formula $3\times3$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  skew-symmetric matrices  | 
					
						
							|  |  |  |  | \begin_inset Formula $\what$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | . | 
					
						
							|  |  |  |  |  The exponential map can be computed in closed form using Rodrigues' formula | 
					
						
							|  |  |  |  |   | 
					
						
							|  |  |  |  | \begin_inset CommandInset citation | 
					
						
							|  |  |  |  | LatexCommand cite | 
					
						
							|  |  |  |  | after "page 28" | 
					
						
							|  |  |  |  | key "Murray94book" | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | : | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | e^{\what}=I+\what\sin\theta+\what^{2}(1\text{−}\cos\theta)\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | where  | 
					
						
							|  |  |  |  | \begin_inset Formula $\what^{2}=\omega\omega^{T}-I$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | , with  | 
					
						
							|  |  |  |  | \begin_inset Formula $\omega\omega^{T}$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  the outer product of  | 
					
						
							|  |  |  |  | \begin_inset Formula $\omega$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | . | 
					
						
							|  |  |  |  |  Hence, a slightly more efficient variant is | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | e^{\what}=\cos\theta I+\what sin\theta+\omega\omega^{T}(1\text{−}cos\theta)\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Since  | 
					
						
							|  |  |  |  | \begin_inset Formula $\SOthree$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  is a three-dimensional manifold,  | 
					
						
							|  |  |  |  | \begin_inset Formula $\sothree$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  is isomorphic to  | 
					
						
							|  |  |  |  | \begin_inset Formula $\Rthree$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  and we define the map | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | \hat{}:\Rthree\rightarrow\sothree\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | \hat{}:\omega\rightarrow\what=\Skew{\omega}\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | which maps 3-vectors  | 
					
						
							|  |  |  |  | \begin_inset Formula $\omega$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  to skew-symmetric matrices  | 
					
						
							|  |  |  |  | \begin_inset Formula $\Skew{\omega}$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  : | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | \Skew{\omega}=\left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | 0 & -\omega_{z} & \omega_{y}\\ | 
					
						
							|  |  |  |  | \omega_{z} & 0 & -\omega_{x}\\ | 
					
						
							|  |  |  |  | -\omega_{y} & \omega_{x} & 0\end{array}\right]=\omega_{x}G^{x}+\omega_{y}G^{y}+\omega_{z}G^{z}\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | where the  | 
					
						
							|  |  |  |  | \begin_inset Formula $G^{i}$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  are the generators for  | 
					
						
							|  |  |  |  | \begin_inset Formula $\SOthree$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | , | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | G^{x}=\left(\begin{array}{ccc} | 
					
						
							|  |  |  |  | 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & -1\\ | 
					
						
							|  |  |  |  | 0 & 1 & 0\end{array}\right)\mbox{}G^{y}=\left(\begin{array}{ccc} | 
					
						
							|  |  |  |  | 0 & 0 & 1\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | -1 & 0 & 0\end{array}\right)\mbox{ }G^{z}=\left(\begin{array}{ccc} | 
					
						
							|  |  |  |  | 0 & -1 & 0\\ | 
					
						
							|  |  |  |  | 1 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0\end{array}\right)\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | corresponding to a rotation around  | 
					
						
							|  |  |  |  | \begin_inset Formula $X$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | ,  | 
					
						
							|  |  |  |  | \begin_inset Formula $Y$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | , and  | 
					
						
							|  |  |  |  | \begin_inset Formula $Z$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | , respectively. | 
					
						
							|  |  |  |  |  The Lie bracket  | 
					
						
							|  |  |  |  | \begin_inset Formula $[x,y]$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  corresponds to the cross product  | 
					
						
							|  |  |  |  | \begin_inset Formula $x\times y$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  in  | 
					
						
							|  |  |  |  | \begin_inset Formula $\Rthree$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | . | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | For every  | 
					
						
							|  |  |  |  | \begin_inset Formula $3-$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | vector  | 
					
						
							|  |  |  |  | \begin_inset Formula $\omega$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  there is a corresponding rotation matrix | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | R=e^{\Skew{\omega}}\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | and this is defines the canonical parameterization of  | 
					
						
							|  |  |  |  | \begin_inset Formula $\SOthree$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | , with  | 
					
						
							|  |  |  |  | \begin_inset Formula $\omega$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  known as the canonical or exponential coordinates. | 
					
						
							|  |  |  |  |  It is equivalent to the axis-angle representation for rotations, where | 
					
						
							|  |  |  |  |  the unit vector  | 
					
						
							|  |  |  |  | \begin_inset Formula $\omega/\left\Vert \omega\right\Vert $ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  defines the rotation axis, and its magnitude the amount of rotation  | 
					
						
							|  |  |  |  | \begin_inset Formula $\theta$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | . | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Subsection | 
					
						
							|  |  |  |  | The Adjoint Map | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | For rotation matrices  | 
					
						
							|  |  |  |  | \begin_inset Formula $R$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  we can prove the following identity (see  | 
					
						
							|  |  |  |  | \begin_inset CommandInset ref | 
					
						
							|  |  |  |  | LatexCommand vref | 
					
						
							|  |  |  |  | reference "proof1" | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | ):  | 
					
						
							|  |  |  |  | \begin_inset Formula \begin{equation} | 
					
						
							|  |  |  |  | R\Skew{\omega}R^{T}=\Skew{R\omega}\label{eq:property1}\end{equation} | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Hence, given property  | 
					
						
							|  |  |  |  | \begin_inset CommandInset ref | 
					
						
							|  |  |  |  | LatexCommand eqref | 
					
						
							| 
									
										
										
										
											2010-03-11 21:45:39 +08:00
										 |  |  |  | reference "eq:property1" | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | , the adjoint map for  | 
					
						
							|  |  |  |  | \begin_inset Formula $\sothree$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  simplifies to | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | \Ad R{\Skew{\omega}}=R\Skew{\omega}R^{T}=\Skew{R\omega}\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | and this can be expressed in exponential coordinates simply by rotating | 
					
						
							|  |  |  |  |  the axis  | 
					
						
							|  |  |  |  | \begin_inset Formula $\omega$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  to  | 
					
						
							|  |  |  |  | \begin_inset Formula $R\omega$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | . | 
					
						
							|  |  |  |  |   | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | As an example, to apply an axis-angle rotation  | 
					
						
							|  |  |  |  | \begin_inset Formula $\omega$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  to a point  | 
					
						
							|  |  |  |  | \begin_inset Formula $p$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  in the frame  | 
					
						
							|  |  |  |  | \begin_inset Formula $R$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | , we could: | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Enumerate | 
					
						
							|  |  |  |  | First transform  | 
					
						
							|  |  |  |  | \begin_inset Formula $p$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  back to the world frame, apply  | 
					
						
							|  |  |  |  | \begin_inset Formula $\omega$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | , and then rotate back: | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | q=Re^{\Skew{\omega}}R^{T}\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Enumerate | 
					
						
							|  |  |  |  | Immediately apply the transformed axis-angle transformation  | 
					
						
							|  |  |  |  | \begin_inset Formula $\Ad R{\Skew{\omega}}=\Skew{R\omega}$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | : | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | q=e^{\Skew{R\omega}}p\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Subsection | 
					
						
							|  |  |  |  | Actions | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | In the case of  | 
					
						
							|  |  |  |  | \begin_inset Formula $\SOthree$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  the vector space is   | 
					
						
							|  |  |  |  | \begin_inset Formula $\Rthree$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | , and the group action corresponds to rotating a point | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | q=Rp\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | We would now like to know what an incremental rotation parameterized by | 
					
						
							|  |  |  |  |   | 
					
						
							|  |  |  |  | \begin_inset Formula $\omega$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  would do: | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | q(\omega)=Re^{\Skew{\omega}}p\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | hence the derivative is: | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-10 08:12:05 +08:00
										 |  |  |  | \deriv{q(\omega)}{\omega}=R\deriv{}{\omega}\left(e^{\Skew{\omega}}p\right)=R\deriv{}{\omega}\left(\Skew{\omega}p\right)=R\Skew{-p}\] | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-10 08:12:05 +08:00
										 |  |  |  | To show the last equality note that  | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | \Skew{\omega}p=\omega\times p=-p\times\omega=\Skew{-p}\omega\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | \begin_inset Newpage pagebreak | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Section | 
					
						
							|  |  |  |  | 3D Rigid Transformations | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | The Lie group  | 
					
						
							|  |  |  |  | \begin_inset Formula $\SEthree$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  is a subgroup of the general linear group  | 
					
						
							|  |  |  |  | \begin_inset Formula $GL(4)$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  of  | 
					
						
							|  |  |  |  | \begin_inset Formula $4\times4$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  invertible matrices of the form | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | T\define\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | R & t\\ | 
					
						
							|  |  |  |  | 0 & 1\end{array}\right]\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | where  | 
					
						
							|  |  |  |  | \begin_inset Formula $R\in\SOthree$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  is a rotation matrix and  | 
					
						
							|  |  |  |  | \begin_inset Formula $t\in\Rthree$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  is a translation vector. | 
					
						
							|  |  |  |  |  An alternative way of writing down elements of  | 
					
						
							|  |  |  |  | \begin_inset Formula $\SEthree$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  is as the ordered pair  | 
					
						
							|  |  |  |  | \begin_inset Formula $(R,\, t)$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | , with composition defined as | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | (R_{1},\, t_{1})(R_{2},\, t_{2})=(R_{1}R_{2},\, R{}_{1}t_{2}+t_{1})\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  Its Lie algebra  | 
					
						
							|  |  |  |  | \begin_inset Formula $\sethree$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  is the vector space of  | 
					
						
							|  |  |  |  | \begin_inset Formula $4\times4$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  twists  | 
					
						
							|  |  |  |  | \begin_inset Formula $\xihat$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  parameterized by the  | 
					
						
							|  |  |  |  | \emph on | 
					
						
							|  |  |  |  | twist coordinates | 
					
						
							|  |  |  |  | \emph default | 
					
						
							|  |  |  |  |   | 
					
						
							|  |  |  |  | \begin_inset Formula $\xi\in\Rsix$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | , with the mapping  | 
					
						
							|  |  |  |  | \begin_inset CommandInset citation | 
					
						
							|  |  |  |  | LatexCommand cite | 
					
						
							|  |  |  |  | key "Murray94book" | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |   | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | \xi\define\left[\begin{array}{c} | 
					
						
							|  |  |  |  | \omega\\ | 
					
						
							|  |  |  |  | v\end{array}\right]\rightarrow\xihat\define\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | \Skew{\omega} & v\\ | 
					
						
							|  |  |  |  | 0 & 0\end{array}\right]\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Note we follow Frank Park's convention and reserve the first three components | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  |  for rotation, and the last three for translation. | 
					
						
							|  |  |  |  |  Hence, with this parameterization, the generators for  | 
					
						
							|  |  |  |  | \begin_inset Formula $\SEthree$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  are | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | G^{1}=\left(\begin{array}{cccc} | 
					
						
							|  |  |  |  | 0 & 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & -1 & 0\\ | 
					
						
							|  |  |  |  | 0 & 1 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0 & 0\end{array}\right)\mbox{}G^{2}=\left(\begin{array}{cccc} | 
					
						
							|  |  |  |  | 0 & 0 & 1 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | -1 & 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0 & 0\end{array}\right)\mbox{ }G^{3}=\left(\begin{array}{cccc} | 
					
						
							|  |  |  |  | 0 & -1 & 0 & 0\\ | 
					
						
							|  |  |  |  | 1 & 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0 & 0\end{array}\right)\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | G^{4}=\left(\begin{array}{cccc} | 
					
						
							|  |  |  |  | 0 & 0 & 0 & 1\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0 & 0\end{array}\right)\mbox{}G^{5}=\left(\begin{array}{cccc} | 
					
						
							|  |  |  |  | 0 & 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0 & 1\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0 & 0\end{array}\right)\mbox{ }G^{6}=\left(\begin{array}{cccc} | 
					
						
							|  |  |  |  | 0 & 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0 & 1\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0 & 0\end{array}\right)\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Applying the exponential map to a twist  | 
					
						
							|  |  |  |  | \begin_inset Formula $\xi$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  yields a screw motion yielding an element in  | 
					
						
							|  |  |  |  | \begin_inset Formula $\SEthree$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | :  | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | T=\exp\xihat\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | A closed form solution for the exponential map is given in  | 
					
						
							|  |  |  |  | \begin_inset CommandInset citation | 
					
						
							|  |  |  |  | LatexCommand cite | 
					
						
							|  |  |  |  | after "page 42" | 
					
						
							|  |  |  |  | key "Murray94book" | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | . | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \family roman | 
					
						
							|  |  |  |  | \series medium | 
					
						
							|  |  |  |  | \shape up | 
					
						
							|  |  |  |  | \size normal | 
					
						
							|  |  |  |  | \emph off | 
					
						
							|  |  |  |  | \bar no | 
					
						
							|  |  |  |  | \noun off | 
					
						
							|  |  |  |  | \color none | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | \exp\left(\left[\begin{array}{c} | 
					
						
							|  |  |  |  | \omega\\ | 
					
						
							|  |  |  |  | v\end{array}\right]t\right)=\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | e^{\Skew{\omega}t} & (I-e^{\Skew{\omega}t})\left(\omega\times v\right)+\omega\omega^{T}vt\\ | 
					
						
							|  |  |  |  | 0 & 1\end{array}\right]\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Subsection | 
					
						
							|  |  |  |  | The Adjoint Map | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | The adjoint is  | 
					
						
							|  |  |  |  | \begin_inset Formula \begin{eqnarray*} | 
					
						
							|  |  |  |  | \Ad T{\xihat} & = & T\xihat T^{-1}\\ | 
					
						
							|  |  |  |  |  & = & \left[\begin{array}{cc} | 
					
						
							|  |  |  |  | R & t\\ | 
					
						
							|  |  |  |  | 0 & 1\end{array}\right]\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | \Skew{\omega} & v\\ | 
					
						
							|  |  |  |  | 0 & 0\end{array}\right]\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | R^{T} & -R^{T}t\\ | 
					
						
							|  |  |  |  | 0 & 1\end{array}\right]\\ | 
					
						
							|  |  |  |  |  & = & \left[\begin{array}{cc} | 
					
						
							|  |  |  |  | \Skew{R\omega} & -\Skew{R\omega}t+Rv\\ | 
					
						
							|  |  |  |  | 0 & 0\end{array}\right]\\ | 
					
						
							|  |  |  |  |  & = & \left[\begin{array}{cc} | 
					
						
							|  |  |  |  | \Skew{R\omega} & t\times R\omega+Rv\\ | 
					
						
							|  |  |  |  | 0 & 0\end{array}\right]\end{eqnarray*} | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | From this we can express the Adjoint map in terms of twist coordinates (see | 
					
						
							|  |  |  |  |  also  | 
					
						
							|  |  |  |  | \begin_inset CommandInset citation | 
					
						
							|  |  |  |  | LatexCommand cite | 
					
						
							|  |  |  |  | key "Murray94book" | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  and FP): | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | \left[\begin{array}{c} | 
					
						
							|  |  |  |  | \omega'\\ | 
					
						
							|  |  |  |  | v'\end{array}\right]=\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | R & 0\\ | 
					
						
							|  |  |  |  | \Skew tR & R\end{array}\right]\left[\begin{array}{c} | 
					
						
							|  |  |  |  | \omega\\ | 
					
						
							|  |  |  |  | v\end{array}\right]\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Subsection | 
					
						
							|  |  |  |  | Actions | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | The action of  | 
					
						
							|  |  |  |  | \begin_inset Formula $\SEthree$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  on 3D points is done by embedding the points in  | 
					
						
							|  |  |  |  | \begin_inset Formula $\mathbb{R}^{4}$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  by using homogeneous coordinates | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | \hat{q}=\left[\begin{array}{c} | 
					
						
							|  |  |  |  | q\\ | 
					
						
							|  |  |  |  | 1\end{array}\right]=\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | R & t\\ | 
					
						
							|  |  |  |  | 0 & 1\end{array}\right]\left[\begin{array}{c} | 
					
						
							|  |  |  |  | p\\ | 
					
						
							|  |  |  |  | 1\end{array}\right]=T\hat{p}\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | We would now like to know what an incremental rotation parameterized by | 
					
						
							|  |  |  |  |   | 
					
						
							|  |  |  |  | \begin_inset Formula $\xi$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  would do: | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | \hat{q}(\xi)=Te^{\xihat}\hat{p}\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-10 08:12:05 +08:00
										 |  |  |  | hence the derivative is | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-10 08:12:05 +08:00
										 |  |  |  | \deriv{\hat{q}(\xi)}{\xi}=T\deriv{}{\xi}\left(\xihat\hat{p}\right)\] | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | where  | 
					
						
							|  |  |  |  | \begin_inset Formula $\xihat\hat{p}$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  corresponds to a velocity in  | 
					
						
							|  |  |  |  | \begin_inset Formula $\mathbb{R}^{4}$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  (in the local  | 
					
						
							|  |  |  |  | \begin_inset Formula $T$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  frame):  | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | \xihat\hat{p}=\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | \Skew{\omega} & v\\ | 
					
						
							|  |  |  |  | 0 & 0\end{array}\right]\left[\begin{array}{c} | 
					
						
							|  |  |  |  | p\\ | 
					
						
							|  |  |  |  | 1\end{array}\right]=\left[\begin{array}{c} | 
					
						
							|  |  |  |  | \omega\times p+v\\ | 
					
						
							|  |  |  |  | 0\end{array}\right]\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Notice how velocities are anologous to points at infinity in projective | 
					
						
							|  |  |  |  |  geometry: they correspond to free vectors indicating a direction and magnitude | 
					
						
							|  |  |  |  |  of change. | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | By only taking the top three rows, we can write this as a velocity in  | 
					
						
							|  |  |  |  | \begin_inset Formula $\Rthree$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | , as the product of a  | 
					
						
							|  |  |  |  | \begin_inset Formula $3\times6$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  matrix  | 
					
						
							|  |  |  |  | \begin_inset Formula $H_{p}$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  that acts upon the exponential coordinates  | 
					
						
							|  |  |  |  | \begin_inset Formula $\xi$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  directly: | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | \omega\times p+v=-p\times\omega+v=\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | -\Skew p & I_{3}\end{array}\right]\left[\begin{array}{c} | 
					
						
							|  |  |  |  | \omega\\ | 
					
						
							| 
									
										
										
										
											2010-03-10 08:12:05 +08:00
										 |  |  |  | v\end{array}\right]\] | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | \begin_inset Newpage pagebreak | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Section | 
					
						
							|  |  |  |  | 2D Affine Transformations | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | The Lie group  | 
					
						
							|  |  |  |  | \begin_inset Formula $Aff(2)$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  is a subgroup of the general linear group  | 
					
						
							|  |  |  |  | \begin_inset Formula $GL(3)$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  of  | 
					
						
							|  |  |  |  | \begin_inset Formula $3\times3$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  invertible matrices that maps the line infinity to itself, and hence preserves | 
					
						
							|  |  |  |  |  paralellism. | 
					
						
							|  |  |  |  |  The affine transformation matrices  | 
					
						
							|  |  |  |  | \begin_inset Formula $A$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  can be written as  | 
					
						
							|  |  |  |  | \begin_inset CommandInset citation | 
					
						
							|  |  |  |  | LatexCommand cite | 
					
						
							|  |  |  |  | key "Mei08tro" | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \family roman | 
					
						
							|  |  |  |  | \series medium | 
					
						
							|  |  |  |  | \shape up | 
					
						
							|  |  |  |  | \size normal | 
					
						
							|  |  |  |  | \emph off | 
					
						
							|  |  |  |  | \bar no | 
					
						
							|  |  |  |  | \noun off | 
					
						
							|  |  |  |  | \color none | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | m_{11} & m_{12} & t_{1}\\ | 
					
						
							|  |  |  |  | m_{21} & m_{22} & t_{2}\\ | 
					
						
							|  |  |  |  | 0 & 0 & k\end{array}\right]\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | with  | 
					
						
							|  |  |  |  | \begin_inset Formula $M\in GL(2)$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | ,  | 
					
						
							|  |  |  |  | \begin_inset Formula $t\in\Rtwo$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | , and  | 
					
						
							|  |  |  |  | \begin_inset Formula $k$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  a scalar chosen such that  | 
					
						
							|  |  |  |  | \begin_inset Formula $det(A)=1$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | . | 
					
						
							|  |  |  |  |   | 
					
						
							|  |  |  |  | \family default | 
					
						
							|  |  |  |  | \series default | 
					
						
							|  |  |  |  | \shape default | 
					
						
							|  |  |  |  | \size default | 
					
						
							|  |  |  |  | \emph default | 
					
						
							|  |  |  |  | \bar default | 
					
						
							|  |  |  |  | \noun default | 
					
						
							|  |  |  |  | \color inherit | 
					
						
							|  |  |  |  | Note that just as  | 
					
						
							|  |  |  |  | \begin_inset Formula $\SEtwo$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  is a semi-direct product, so too is  | 
					
						
							|  |  |  |  | \begin_inset Formula $Aff(2)=\Rtwo\rtimes GL(2)$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | . | 
					
						
							|  |  |  |  |  In particular, any affine transformation  | 
					
						
							|  |  |  |  | \begin_inset Formula $A$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  can be written as | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | A=\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | 0 & t\\ | 
					
						
							|  |  |  |  | 0 & 1\end{array}\right]\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | M & 0\\ | 
					
						
							|  |  |  |  | 0 & k\end{array}\right]\] | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | and they compose as | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | A_{1}A_{2}=\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | M_{1} & t_{1}\\ | 
					
						
							|  |  |  |  | 0 & k_{1}\end{array}\right]\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | M_{2} & t_{2}\\ | 
					
						
							|  |  |  |  | 0 & k_{2}\end{array}\right]=\left[\begin{array}{cc} | 
					
						
							|  |  |  |  | M_{1}M_{2} & M_{2}t_{2}+k_{2}t_{1}\\ | 
					
						
							|  |  |  |  | 0 & k_{1}k_{2}\end{array}\right]\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | From this it can be gleaned that the groups  | 
					
						
							|  |  |  |  | \begin_inset Formula $\SOtwo$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  and  | 
					
						
							|  |  |  |  | \begin_inset Formula $\SEtwo$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  are both subgroups, with  | 
					
						
							|  |  |  |  | \begin_inset Formula $\SOtwo\subset\SEtwo\subset\Afftwo$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | . | 
					
						
							|  |  |  |  |   | 
					
						
							|  |  |  |  | \family roman | 
					
						
							|  |  |  |  | \series medium | 
					
						
							|  |  |  |  | \shape up | 
					
						
							|  |  |  |  | \size normal | 
					
						
							|  |  |  |  | \emph off | 
					
						
							|  |  |  |  | \bar no | 
					
						
							|  |  |  |  | \noun off | 
					
						
							|  |  |  |  | \color none | 
					
						
							| 
									
										
										
										
											2010-03-11 21:45:39 +08:00
										 |  |  |  | By choosing the generators carefully we maintain this hierarchy among the | 
					
						
							|  |  |  |  |  associated Lie algebras. | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  In particular,  | 
					
						
							|  |  |  |  | \begin_inset Formula $\setwo$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |   | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | G^{1}=\left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | 0 & 0 & 1\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0\end{array}\right]\mbox{ }G^{2}=\left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 1\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0\end{array}\right]\mbox{ }G^{3}=\left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | 0 & -1 & 0\\ | 
					
						
							|  |  |  |  | 1 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0\end{array}\right]\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | can be extended to the  | 
					
						
							|  |  |  |  | \family default | 
					
						
							|  |  |  |  | \series default | 
					
						
							|  |  |  |  | \shape default | 
					
						
							|  |  |  |  | \size default | 
					
						
							|  |  |  |  | \emph default | 
					
						
							|  |  |  |  | \bar default | 
					
						
							|  |  |  |  | \noun default | 
					
						
							|  |  |  |  | \color inherit | 
					
						
							|  |  |  |  | Lie algebra | 
					
						
							|  |  |  |  | \family roman | 
					
						
							|  |  |  |  | \series medium | 
					
						
							|  |  |  |  | \shape up | 
					
						
							|  |  |  |  | \size normal | 
					
						
							|  |  |  |  | \emph off | 
					
						
							|  |  |  |  | \bar no | 
					
						
							|  |  |  |  | \noun off | 
					
						
							|  |  |  |  | \color none | 
					
						
							|  |  |  |  |   | 
					
						
							|  |  |  |  | \begin_inset Formula $\afftwo$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  using the three additional generators | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | G^{4}=\left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | 0 & 1 & 0\\ | 
					
						
							|  |  |  |  | 1 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0\end{array}\right]\mbox{ }G^{5}=\left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | 1 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & -1 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0\end{array}\right]\mbox{ }G^{6}=\left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & -1 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 1\end{array}\right]\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \family default | 
					
						
							|  |  |  |  | \series default | 
					
						
							|  |  |  |  | \shape default | 
					
						
							|  |  |  |  | \size default | 
					
						
							|  |  |  |  | \emph default | 
					
						
							|  |  |  |  | \bar default | 
					
						
							|  |  |  |  | \noun default | 
					
						
							|  |  |  |  | \color inherit | 
					
						
							|  |  |  |  | Hence, the Lie algebra  | 
					
						
							|  |  |  |  | \begin_inset Formula $\afftwo$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  is the vector space of  | 
					
						
							|  |  |  |  | \begin_inset Formula $3\times3$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  incremental affine transformations  | 
					
						
							|  |  |  |  | \begin_inset Formula $\ahat$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  parameterized by 6 parameters  | 
					
						
							|  |  |  |  | \begin_inset Formula $\aa\in\mathbb{R}^{6}$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | , with the mapping  | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | \aa\rightarrow\ahat\define\left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | a_{5} & a_{4}-a_{3} & a_{1}\\ | 
					
						
							|  |  |  |  | a_{4}+a_{3} & -a_{5}-a_{6} & a_{2}\\ | 
					
						
							|  |  |  |  | 0 & 0 & a_{6}\end{array}\right]\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Note that  | 
					
						
							|  |  |  |  | \begin_inset Formula $G_{5}$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  and  | 
					
						
							|  |  |  |  | \begin_inset Formula $G_{6}$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  change the relative scale of  | 
					
						
							|  |  |  |  | \begin_inset Formula $x$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  and  | 
					
						
							|  |  |  |  | \begin_inset Formula $y$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  but without changing the determinant:  | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-11 21:45:39 +08:00
										 |  |  |  | e^{xG_{5}}=\exp\left[\begin{array}{ccc} | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | x & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & -x & 0\\ | 
					
						
							| 
									
										
										
										
											2010-03-11 21:45:39 +08:00
										 |  |  |  | 0 & 0 & 0\end{array}\right]=\left[\begin{array}{ccc} | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | e^{x} & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 1/e^{x} & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 1\end{array}\right]\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-11 21:45:39 +08:00
										 |  |  |  | e^{xG_{6}}=\exp\left[\begin{array}{ccc} | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & -x & 0\\ | 
					
						
							| 
									
										
										
										
											2010-03-11 21:45:39 +08:00
										 |  |  |  | 0 & 0 & x\end{array}\right]=\left[\begin{array}{ccc} | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 1 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 1/e^{x} & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & e^{x}\end{array}\right]\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | It might be nicer to have the correspondence with scaling  | 
					
						
							|  |  |  |  | \begin_inset Formula $x$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  and  | 
					
						
							|  |  |  |  | \begin_inset Formula $y$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  more direct, by choosing | 
					
						
							|  |  |  |  | \family roman | 
					
						
							|  |  |  |  | \series medium | 
					
						
							|  |  |  |  | \shape up | 
					
						
							|  |  |  |  | \size normal | 
					
						
							|  |  |  |  | \emph off | 
					
						
							|  |  |  |  | \bar no | 
					
						
							|  |  |  |  | \noun off | 
					
						
							|  |  |  |  | \color none | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | \mbox{ }G^{5}=\left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | 1 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & -1\end{array}\right]\mbox{ }G^{6}=\left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 1 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & -1\end{array}\right]\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | and hence | 
					
						
							|  |  |  |  | \family default | 
					
						
							|  |  |  |  | \series default | 
					
						
							|  |  |  |  | \shape default | 
					
						
							|  |  |  |  | \size default | 
					
						
							|  |  |  |  | \emph default | 
					
						
							|  |  |  |  | \bar default | 
					
						
							|  |  |  |  | \noun default | 
					
						
							|  |  |  |  | \color inherit | 
					
						
							|  |  |  |  |   | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-11 21:45:39 +08:00
										 |  |  |  | e^{xG_{5}}=\exp\left[\begin{array}{ccc} | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | x & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0\\ | 
					
						
							| 
									
										
										
										
											2010-03-11 21:45:39 +08:00
										 |  |  |  | 0 & 0 & -x\end{array}\right]=\left[\begin{array}{ccc} | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | e^{x} & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 1 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 1/e^{x}\end{array}\right]\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-11 21:45:39 +08:00
										 |  |  |  | e^{xG_{6}}=\exp\left[\begin{array}{ccc} | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & x & 0\\ | 
					
						
							| 
									
										
										
										
											2010-03-11 21:45:39 +08:00
										 |  |  |  | 0 & 0 & -x\end{array}\right]=\left[\begin{array}{ccc} | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 1 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & e^{x} & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 1/e^{x}\end{array}\right]\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Section | 
					
						
							|  |  |  |  | 2D Homographies | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | When viewed as operations on images, represented by 2D projective space | 
					
						
							|  |  |  |  |   | 
					
						
							|  |  |  |  | \begin_inset Formula $\mathcal{P}^{3}$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | , 3D rotations are a special case of 2D homographies. | 
					
						
							|  |  |  |  |  These are now treated, loosely based on the exposition in  | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \begin_inset CommandInset citation | 
					
						
							|  |  |  |  | LatexCommand cite | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | key "Mei06iros,Mei08tro" | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | . | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Subsection | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | Basics | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | The Lie group  | 
					
						
							|  |  |  |  | \begin_inset Formula $\SLthree$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  is a subgroup of the general linear group  | 
					
						
							|  |  |  |  | \begin_inset Formula $GL(3)$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  of  | 
					
						
							|  |  |  |  | \begin_inset Formula $3\times3$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  invertible matrices with determinant  | 
					
						
							|  |  |  |  | \begin_inset Formula $1$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | . | 
					
						
							|  |  |  |  |  The homographies generalize transformations of the 2D projective space, | 
					
						
							|  |  |  |  |  and  | 
					
						
							|  |  |  |  | \begin_inset Formula $\Afftwo\subset\SLthree$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | . | 
					
						
							|  |  |  |  |   | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \family roman | 
					
						
							|  |  |  |  | \series medium | 
					
						
							|  |  |  |  | \shape up | 
					
						
							|  |  |  |  | \size normal | 
					
						
							|  |  |  |  | \emph off | 
					
						
							|  |  |  |  | \bar no | 
					
						
							|  |  |  |  | \noun off | 
					
						
							|  |  |  |  | \color none | 
					
						
							|  |  |  |  | We can extend  | 
					
						
							|  |  |  |  | \begin_inset Formula $\afftwo$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  to the Lie algebra  | 
					
						
							|  |  |  |  | \begin_inset Formula $\slthree$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  by adding two generators | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | G^{7}=\left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 1 & 0 & 0\end{array}\right]\mbox{ }G^{8}=\left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 1 & 0\end{array}\right]\] | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \family default | 
					
						
							|  |  |  |  | \series default | 
					
						
							|  |  |  |  | \shape default | 
					
						
							|  |  |  |  | \size default | 
					
						
							|  |  |  |  | \emph default | 
					
						
							|  |  |  |  | \bar default | 
					
						
							|  |  |  |  | \noun default | 
					
						
							|  |  |  |  | \color inherit | 
					
						
							|  |  |  |  | obtaining the vector space of  | 
					
						
							|  |  |  |  | \begin_inset Formula $3\times3$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  incremental homographies  | 
					
						
							|  |  |  |  | \begin_inset Formula $\hhat$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  parameterized by 8 parameters  | 
					
						
							|  |  |  |  | \begin_inset Formula $\hh\in\mathbb{R}^{8}$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | , with the mapping  | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | h\rightarrow\hhat\define\left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | h_{5} & h_{4}-h_{3} & h_{1}\\ | 
					
						
							|  |  |  |  | h_{4}+h_{3} & -h_{5}-h_{6} & h_{2}\\ | 
					
						
							|  |  |  |  | h_{7} & h_{8} & h_{6}\end{array}\right]\] | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Subsection | 
					
						
							|  |  |  |  | Tensor Notation | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Itemize | 
					
						
							|  |  |  |  | A homography between 2D projective spaces  | 
					
						
							|  |  |  |  | \begin_inset Formula $A$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  and  | 
					
						
							|  |  |  |  | \begin_inset Formula $B$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  can be written in tensor notation  | 
					
						
							|  |  |  |  | \begin_inset Formula $H_{A}^{B}$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Itemize | 
					
						
							|  |  |  |  | Applying a homography is then a tensor contraction  | 
					
						
							|  |  |  |  | \begin_inset Formula $x^{B}=H_{A}^{B}x^{A}$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | , mapping points in  | 
					
						
							|  |  |  |  | \begin_inset Formula $A$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  to points in  | 
					
						
							|  |  |  |  | \begin_inset Formula $B$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | . | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-08 01:50:27 +08:00
										 |  |  |  | \begin_layout Standard | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \begin_inset Note Note | 
					
						
							|  |  |  |  | status collapsed | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Plain Layout | 
					
						
							|  |  |  |  | The inverse of a homography can be found by contracting with two permutation | 
					
						
							|  |  |  |  |  tensors: | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \begin_inset Formula \[ | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | H_{B}^{A}=H_{A_{1}}^{B_{1}}H_{A_{2}}^{B_{2}}\epsilon_{B_{1}B_{2}B}\epsilon^{A_{1}A_{2}A}\] | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_inset Note Note | 
					
						
							|  |  |  |  | status collapsed | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Subsection | 
					
						
							|  |  |  |  | The Adjoint Map | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Plain Layout | 
					
						
							|  |  |  |  | The adjoint can be done using tensor notation. | 
					
						
							|  |  |  |  |  Denoting an incremental homography in space  | 
					
						
							|  |  |  |  | \begin_inset Formula $A$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  as  | 
					
						
							|  |  |  |  | \begin_inset Formula $\hhat_{A_{1}}^{A_{2}}$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | , we have, for example for  | 
					
						
							|  |  |  |  | \begin_inset Formula $G_{1}$ | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_inset Formula \begin{eqnarray*} | 
					
						
							|  |  |  |  | \hhat_{B_{1}}^{B_{2}}=\Ad{H_{A}^{B}}{\hhat_{A_{1}}^{A_{2}}} & = & H_{A_{2}}^{B_{2}}\hhat_{A_{1}}^{A_{2}}H_{B_{1}}^{A_{1}}\\ | 
					
						
							|  |  |  |  |  & = & H_{A_{2}}^{B_{2}}\left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | 0 & 0 & 1\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0\end{array}\right]H_{A_{2}}^{B_{2}}H_{A_{3}}^{B_{3}}\epsilon_{B_{1}B_{2}B_{3}}\epsilon^{A_{1}A_{2}A_{3}}\\ | 
					
						
							|  |  |  |  |  & = & H_{1}^{B_{2}}H_{A_{2}}^{B_{2}}H_{A_{3}}^{B_{3}}\epsilon_{B_{1}B_{2}B_{3}}\epsilon^{3A_{2}A_{3}}\end{eqnarray*} | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | This does not seem to help. | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | \begin_inset Newpage pagebreak | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Section* | 
					
						
							|  |  |  |  | Appendix: Proof of Property  | 
					
						
							|  |  |  |  | \begin_inset CommandInset ref | 
					
						
							|  |  |  |  | LatexCommand ref | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | reference "proof1" | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | We can prove the following identity for rotation matrices  | 
					
						
							|  |  |  |  | \begin_inset Formula $R$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | , | 
					
						
							|  |  |  |  | \begin_inset Formula \begin{eqnarray} | 
					
						
							|  |  |  |  | R\Skew{\omega}R^{T} & = & R\Skew{\omega}\left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | a_{1} & a_{2} & a_{3}\end{array}\right]\nonumber \\ | 
					
						
							|  |  |  |  |  & = & R\left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | \omega\times a_{1} & \omega\times a_{2} & \omega\times a_{3}\end{array}\right]\nonumber \\ | 
					
						
							|  |  |  |  |  & = & \left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | a_{1}(\omega\times a_{1}) & a_{1}(\omega\times a_{2}) & a_{1}(\omega\times a_{3})\\ | 
					
						
							|  |  |  |  | a_{2}(\omega\times a_{1}) & a_{2}(\omega\times a_{2}) & a_{2}(\omega\times a_{3})\\ | 
					
						
							|  |  |  |  | a_{3}(\omega\times a_{1}) & a_{3}(\omega\times a_{2}) & a_{3}(\omega\times a_{3})\end{array}\right]\nonumber \\ | 
					
						
							|  |  |  |  |  & = & \left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | \omega(a_{1}\times a_{1}) & \omega(a_{2}\times a_{1}) & \omega(a_{3}\times a_{1})\\ | 
					
						
							|  |  |  |  | \omega(a_{1}\times a_{2}) & \omega(a_{2}\times a_{2}) & \omega(a_{3}\times a_{2})\\ | 
					
						
							|  |  |  |  | \omega(a_{1}\times a_{3}) & \omega(a_{2}\times a_{3}) & \omega(a_{3}\times a_{3})\end{array}\right]\nonumber \\ | 
					
						
							|  |  |  |  |  & = & \left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | 0 & -\omega a_{3} & \omega a_{2}\\ | 
					
						
							|  |  |  |  | \omega a_{3} & 0 & -\omega a_{1}\\ | 
					
						
							|  |  |  |  | -\omega a_{2} & \omega a_{1} & 0\end{array}\right]\nonumber \\ | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  |  & = & \Skew{R\omega}\label{proof1}\end{eqnarray} | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | where  | 
					
						
							|  |  |  |  | \begin_inset Formula $a_{1}$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | ,  | 
					
						
							|  |  |  |  | \begin_inset Formula $a_{2}$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | , and  | 
					
						
							|  |  |  |  | \begin_inset Formula $a_{3}$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  are the  | 
					
						
							|  |  |  |  | \emph on | 
					
						
							|  |  |  |  | rows | 
					
						
							|  |  |  |  | \emph default | 
					
						
							|  |  |  |  |  of  | 
					
						
							|  |  |  |  | \begin_inset Formula $R$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | . | 
					
						
							|  |  |  |  |  Above we made use of the orthogonality of rotation matrices and the triple | 
					
						
							|  |  |  |  |  product rule: | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | a(b\times c)=b(c\times a)=c(a\times b)\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | Similarly, without proof  | 
					
						
							|  |  |  |  | \begin_inset CommandInset citation | 
					
						
							|  |  |  |  | LatexCommand cite | 
					
						
							|  |  |  |  | after "Lemma 2.3" | 
					
						
							|  |  |  |  | key "Murray94book" | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | :  | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | R(a\times b)=Ra\times Rb\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Section* | 
					
						
							|  |  |  |  | Appendix: Alternative Generators for  | 
					
						
							|  |  |  |  | \begin_inset Formula $\slthree$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | \begin_inset CommandInset citation | 
					
						
							|  |  |  |  | LatexCommand cite | 
					
						
							|  |  |  |  | key "Mei06iros" | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  uses the following generators for  | 
					
						
							|  |  |  |  | \begin_inset Formula $\slthree$ | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | : | 
					
						
							|  |  |  |  | \family roman | 
					
						
							|  |  |  |  | \series medium | 
					
						
							|  |  |  |  | \shape up | 
					
						
							|  |  |  |  | \size normal | 
					
						
							|  |  |  |  | \emph off | 
					
						
							|  |  |  |  | \bar no | 
					
						
							|  |  |  |  | \noun off | 
					
						
							|  |  |  |  | \color none | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | G^{1}=\left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | 0 & 0 & 1\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0\end{array}\right]\mbox{ }G^{2}=\left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 1\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0\end{array}\right]\mbox{ }G^{3}=\left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | 0 & 1 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0\end{array}\right]\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | G^{4}=\left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 1 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0\end{array}\right]\mbox{ }G^{5}=\left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | 1 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & -1 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0\end{array}\right]\mbox{ }G^{6}=\left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & -1 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 1\end{array}\right]\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_inset Formula \[ | 
					
						
							|  |  |  |  | G^{7}=\left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 1 & 0 & 0\end{array}\right]\mbox{ }G^{8}=\left[\begin{array}{ccc} | 
					
						
							|  |  |  |  | 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 0 & 0\\ | 
					
						
							|  |  |  |  | 0 & 1 & 0\end{array}\right]\] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-03-04 14:34:45 +08:00
										 |  |  |  | \family default | 
					
						
							|  |  |  |  | \series default | 
					
						
							|  |  |  |  | \shape default | 
					
						
							|  |  |  |  | \size default | 
					
						
							|  |  |  |  | \emph default | 
					
						
							|  |  |  |  | \bar default | 
					
						
							|  |  |  |  | \noun default | 
					
						
							|  |  |  |  | \color inherit | 
					
						
							|  |  |  |  | We choose to use a different linear combination as the basis. | 
					
						
							| 
									
										
										
										
											2010-03-02 09:47:58 +08:00
										 |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \begin_layout Standard | 
					
						
							|  |  |  |  | \begin_inset CommandInset bibtex | 
					
						
							|  |  |  |  | LatexCommand bibtex | 
					
						
							|  |  |  |  | bibfiles "/Users/dellaert/papers/refs" | 
					
						
							|  |  |  |  | options "plain" | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_inset | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_layout | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | \end_body | 
					
						
							|  |  |  |  | \end_document |