1545 lines
27 KiB
Plaintext
1545 lines
27 KiB
Plaintext
|
|
#LyX 1.6.5 created this file. For more info see http://www.lyx.org/
|
|||
|
|
\lyxformat 345
|
|||
|
|
\begin_document
|
|||
|
|
\begin_header
|
|||
|
|
\textclass article
|
|||
|
|
\use_default_options false
|
|||
|
|
\begin_modules
|
|||
|
|
theorems-std
|
|||
|
|
\end_modules
|
|||
|
|
\language english
|
|||
|
|
\inputencoding auto
|
|||
|
|
\font_roman times
|
|||
|
|
\font_sans default
|
|||
|
|
\font_typewriter default
|
|||
|
|
\font_default_family rmdefault
|
|||
|
|
\font_sc false
|
|||
|
|
\font_osf false
|
|||
|
|
\font_sf_scale 100
|
|||
|
|
\font_tt_scale 100
|
|||
|
|
|
|||
|
|
\graphics default
|
|||
|
|
\paperfontsize 12
|
|||
|
|
\spacing single
|
|||
|
|
\use_hyperref false
|
|||
|
|
\papersize default
|
|||
|
|
\use_geometry true
|
|||
|
|
\use_amsmath 1
|
|||
|
|
\use_esint 0
|
|||
|
|
\cite_engine basic
|
|||
|
|
\use_bibtopic false
|
|||
|
|
\paperorientation portrait
|
|||
|
|
\leftmargin 1in
|
|||
|
|
\topmargin 1in
|
|||
|
|
\rightmargin 1in
|
|||
|
|
\bottommargin 1in
|
|||
|
|
\secnumdepth 3
|
|||
|
|
\tocdepth 3
|
|||
|
|
\paragraph_separation indent
|
|||
|
|
\defskip medskip
|
|||
|
|
\quotes_language english
|
|||
|
|
\papercolumns 1
|
|||
|
|
\papersides 1
|
|||
|
|
\paperpagestyle default
|
|||
|
|
\tracking_changes false
|
|||
|
|
\output_changes false
|
|||
|
|
\author ""
|
|||
|
|
\author ""
|
|||
|
|
\end_header
|
|||
|
|
|
|||
|
|
\begin_body
|
|||
|
|
|
|||
|
|
\begin_layout Title
|
|||
|
|
Lie Groups for Beginners
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Author
|
|||
|
|
Frank Dellaert
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Standard
|
|||
|
|
\begin_inset CommandInset include
|
|||
|
|
LatexCommand include
|
|||
|
|
filename "macros.lyx"
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Section
|
|||
|
|
Basic Lie Group Concepts
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Subsection
|
|||
|
|
A Manifold and a Group
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Standard
|
|||
|
|
A Lie group
|
|||
|
|
\begin_inset Formula $G$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
is a manifold that possesses a smooth group operation.
|
|||
|
|
Associated with it is a Lie Algebra
|
|||
|
|
\begin_inset Formula $\gg$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
which, loosely speaking, can be identified with the tangent space at the
|
|||
|
|
identity and completely defines how the groups behaves around the identity.
|
|||
|
|
There is a mapping from
|
|||
|
|
\begin_inset Formula $\gg$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
back to
|
|||
|
|
\begin_inset Formula $G$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
, called the exponential map
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
\exp:\gg\rightarrow G\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
and a corresponding inverse
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
\log:G\rightarrow\gg\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
that maps elements in G to an element in
|
|||
|
|
\begin_inset Formula $\gg$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
.
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Subsection
|
|||
|
|
Lie Algebra
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Standard
|
|||
|
|
The Lie Algebra
|
|||
|
|
\begin_inset Formula $\gg$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
is called an algebra because it is endowed with a binary operation, the
|
|||
|
|
Lie bracket
|
|||
|
|
\begin_inset Formula $[X,Y]$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
, the properties of which are closely related to the group operation of
|
|||
|
|
|
|||
|
|
\begin_inset Formula $G$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
.
|
|||
|
|
For example, in matrix Lie groups, the Lie bracket is given by
|
|||
|
|
\begin_inset Formula $[A,B]\define AB-BA$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
.
|
|||
|
|
The relationship with the group operation is as follows: for commutative
|
|||
|
|
Lie groups vector addition
|
|||
|
|
\begin_inset Formula $X+Y$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
in
|
|||
|
|
\begin_inset Formula $\gg$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
mimicks the group operation.
|
|||
|
|
For example, if we have
|
|||
|
|
\begin_inset Formula $Z=X+Y$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
in
|
|||
|
|
\begin_inset Formula $\gg$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
, when mapped backed to
|
|||
|
|
\begin_inset Formula $G$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
via the exponential map we obtain
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
e^{Z}=e^{X+Y}=e^{X}e^{Y}\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
However, this does
|
|||
|
|
\emph on
|
|||
|
|
not
|
|||
|
|
\emph default
|
|||
|
|
hold for non-commutative Lie groups:
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
Z=\log(e^{X}e^{Y})\neq X+Y\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
Instead,
|
|||
|
|
\begin_inset Formula $Z$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
can be calculated using the Baker-Campbell-Hausdorff (BCH) formula:
|
|||
|
|
\begin_inset Foot
|
|||
|
|
status collapsed
|
|||
|
|
|
|||
|
|
\begin_layout Plain Layout
|
|||
|
|
http://en.wikipedia.org/wiki/Baker–Campbell–Hausdorff_formula
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
Z=X+Y+[X,Y]/2+[X-Y,[X,Y]]/12-[Y,[X,[X,Y]]]/24+\ldots\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
For commutative groups the bracket is zero and we recover
|
|||
|
|
\begin_inset Formula $Z=X+Y$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
.
|
|||
|
|
For non-commutative groups we can use the BCH formula to approximate it.
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Subsection
|
|||
|
|
Exponential Coordinates
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Standard
|
|||
|
|
For
|
|||
|
|
\begin_inset Formula $n$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
-dimensional matrix Lie groups, the Lie algebra
|
|||
|
|
\begin_inset Formula $\gg$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
is isomorphic to
|
|||
|
|
\begin_inset Formula $\mathbb{R}^{n}$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
, and we can define the mapping
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
\hat{}:\mathbb{R}^{n}\rightarrow\gg\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
\hat{}:x\rightarrow\xhat\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
which maps
|
|||
|
|
\begin_inset Formula $n$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
-vectors
|
|||
|
|
\begin_inset Formula $x\in$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
|
|||
|
|
\begin_inset Formula $\Rn$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
to elements of
|
|||
|
|
\begin_inset Formula $\gg$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
.
|
|||
|
|
In the case of matrix Lie groups, the elements
|
|||
|
|
\begin_inset Formula $\xhat$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
of
|
|||
|
|
\begin_inset Formula $\gg$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
are
|
|||
|
|
\begin_inset Formula $n\times n$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
matrices, and the map is given by
|
|||
|
|
\begin_inset Formula \begin{equation}
|
|||
|
|
\xhat=\sum_{i=1}^{n}x_{i}G^{i}\label{eq:generators}\end{equation}
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
where the
|
|||
|
|
\begin_inset Formula $G^{i}$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
are
|
|||
|
|
\begin_inset Formula $n\times n$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
matrices known as the Lie group generators.
|
|||
|
|
The meaning of the map
|
|||
|
|
\begin_inset Formula $x\rightarrow\xhat$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
will depend on the group
|
|||
|
|
\begin_inset Formula $G$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
and will be very intuitive.
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Subsection
|
|||
|
|
The Adjoint Map
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Standard
|
|||
|
|
Below we frequently make use of the equality
|
|||
|
|
\begin_inset Foot
|
|||
|
|
status collapsed
|
|||
|
|
|
|||
|
|
\begin_layout Plain Layout
|
|||
|
|
http://en.wikipedia.org/wiki/Exponential_map
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
ge^{\xhat}g^{-1}=e^{\Ad g{\xhat}}\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
where
|
|||
|
|
\begin_inset Formula $\Ad g:\gg\rightarrow\mathfrak{\gg}$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
is a map parameterized by a group element
|
|||
|
|
\begin_inset Formula $g$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
.
|
|||
|
|
The intuitive explanation is that a change
|
|||
|
|
\begin_inset Formula $\exp\left(\xhat\right)$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
defined around the orgin, but applied at the group element
|
|||
|
|
\begin_inset Formula $g$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
, can be written in one step by taking the adjoint
|
|||
|
|
\begin_inset Formula $\Ad g{\xhat}$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
of
|
|||
|
|
\begin_inset Formula $\xhat$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
.
|
|||
|
|
In the case of a matrix group the ajoint can be written as
|
|||
|
|
\begin_inset Foot
|
|||
|
|
status collapsed
|
|||
|
|
|
|||
|
|
\begin_layout Plain Layout
|
|||
|
|
http://en.wikipedia.org/wiki/Adjoint_representation_of_a_Lie_group
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
\Ad T{\xhat}\define Te^{\xhat}T^{-1}\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
and hence we have
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Standard
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
Te^{\xhat}T^{-1}=e^{T\xhat T^{-1}}\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
where both
|
|||
|
|
\begin_inset Formula $T$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
and
|
|||
|
|
\begin_inset Formula $\xhat$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
are
|
|||
|
|
\begin_inset Formula $n\times n$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
matrices for an
|
|||
|
|
\begin_inset Formula $n$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
-dimensional Lie group.
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Subsection
|
|||
|
|
Actions
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Standard
|
|||
|
|
The (usual) action of an
|
|||
|
|
\begin_inset Formula $n$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
-dimensional matrix group
|
|||
|
|
\begin_inset Formula $G$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
is matrix-vector multiplication on
|
|||
|
|
\begin_inset Formula $\mathbb{R}^{n}$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
,
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
q=Tp\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
with
|
|||
|
|
\begin_inset Formula $p,q\in\mathbb{R}^{n}$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
and
|
|||
|
|
\begin_inset Formula $T\in GL(n)$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
.
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Standard
|
|||
|
|
\begin_inset Newpage pagebreak
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Section
|
|||
|
|
2D Rotations
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Standard
|
|||
|
|
We first look at a very simple group, the 2D rotations.
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Subsection
|
|||
|
|
Basics
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Standard
|
|||
|
|
The Lie group
|
|||
|
|
\begin_inset Formula $\SOtwo$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
is a subgroup of the general linear group
|
|||
|
|
\begin_inset Formula $GL(2)$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
of
|
|||
|
|
\begin_inset Formula $2\times2$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
invertible matrices.
|
|||
|
|
Its Lie algebra
|
|||
|
|
\begin_inset Formula $\sotwo$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
is the vector space of
|
|||
|
|
\begin_inset Formula $2\times2$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
skew-symmetric matrices.
|
|||
|
|
Since
|
|||
|
|
\begin_inset Formula $\SOtwo$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
is a one-dimensional manifold,
|
|||
|
|
\begin_inset Formula $\sotwo$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
is isomorphic to
|
|||
|
|
\begin_inset Formula $\mathbb{R}$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
and we define
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
\hat{}:\mathbb{R}\rightarrow\sotwo\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
\hat{}:\theta\rightarrow\that=\skew{\theta}\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
which maps the angle
|
|||
|
|
\begin_inset Formula $\theta$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
to the
|
|||
|
|
\begin_inset Formula $2\times2$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
skew-symmetric matrix
|
|||
|
|
\family roman
|
|||
|
|
\series medium
|
|||
|
|
\shape up
|
|||
|
|
\size normal
|
|||
|
|
\emph off
|
|||
|
|
\bar no
|
|||
|
|
\noun off
|
|||
|
|
\color none
|
|||
|
|
|
|||
|
|
\begin_inset Formula $\skew{\theta}$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
:
|
|||
|
|
\family default
|
|||
|
|
\series default
|
|||
|
|
\shape default
|
|||
|
|
\size default
|
|||
|
|
\emph default
|
|||
|
|
\bar default
|
|||
|
|
\noun default
|
|||
|
|
\color inherit
|
|||
|
|
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
\skew{\theta}=\left[\begin{array}{cc}
|
|||
|
|
0 & -\theta\\
|
|||
|
|
\theta & 0\end{array}\right]\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
The exponential map can be computed in closed form as
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
R=e^{\skew{\theta}}=\left[\begin{array}{cc}
|
|||
|
|
\cos\theta & -\sin\theta\\
|
|||
|
|
\sin\theta & \cos\theta\end{array}\right]\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Subsection
|
|||
|
|
Actions
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Standard
|
|||
|
|
In the case of
|
|||
|
|
\begin_inset Formula $\SOtwo$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
the vector space is
|
|||
|
|
\begin_inset Formula $\Rtwo$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
, and the group action corresponds to rotating a point
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
q=Rp\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
We would now like to know what an incremental rotation parameterized by
|
|||
|
|
|
|||
|
|
\begin_inset Formula $\theta$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
would do:
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
q(\text{\theta})=Re^{\skew{\theta}}p\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
hence the derivative is:
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
\deriv{q(\omega)}{\omega}=R\deriv{}{\omega}\left(e^{\skew{\theta}}p\right)=R\deriv{}{\omega}\left(\skew{\theta}p\right)=RH_{p}\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
Note that
|
|||
|
|
\begin_inset Formula \begin{equation}
|
|||
|
|
\skew{\theta}\left[\begin{array}{c}
|
|||
|
|
x\\
|
|||
|
|
y\end{array}\right]=\theta R_{\pi/2}\left[\begin{array}{c}
|
|||
|
|
x\\
|
|||
|
|
y\end{array}\right]=\theta\left[\begin{array}{c}
|
|||
|
|
-y\\
|
|||
|
|
x\end{array}\right]\label{eq:RestrictedCross}\end{equation}
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
which acts like a restricted
|
|||
|
|
\begin_inset Quotes eld
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
cross product
|
|||
|
|
\begin_inset Quotes erd
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
in the plane.
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Standard
|
|||
|
|
\begin_inset Newpage pagebreak
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Section
|
|||
|
|
2D Rigid Transformations
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Subsection
|
|||
|
|
Basics
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Standard
|
|||
|
|
The Lie group
|
|||
|
|
\begin_inset Formula $\SEtwo$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
is a subgroup of the general linear group
|
|||
|
|
\begin_inset Formula $GL(3)$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
of
|
|||
|
|
\begin_inset Formula $3\times3$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
invertible matrices of the form
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
T\define\left[\begin{array}{cc}
|
|||
|
|
R & t\\
|
|||
|
|
0 & 1\end{array}\right]\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
where
|
|||
|
|
\begin_inset Formula $R\in\SOtwo$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
is a rotation matrix and
|
|||
|
|
\begin_inset Formula $t\in\Rtwo$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
is a translation vector.
|
|||
|
|
Its Lie algebra
|
|||
|
|
\begin_inset Formula $\setwo$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
is the vector space of
|
|||
|
|
\begin_inset Formula $3\times3$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
twists
|
|||
|
|
\begin_inset Formula $\xihat$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
parameterized by the
|
|||
|
|
\emph on
|
|||
|
|
twist coordinates
|
|||
|
|
\emph default
|
|||
|
|
|
|||
|
|
\begin_inset Formula $\xi\in\Rthree$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
, with the mapping
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
\xi\define\left[\begin{array}{c}
|
|||
|
|
v\\
|
|||
|
|
\omega\end{array}\right]\rightarrow\xihat\define\left[\begin{array}{cc}
|
|||
|
|
\skew{\omega} & v\\
|
|||
|
|
0 & 0\end{array}\right]\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
Note we think of robots as having a pose
|
|||
|
|
\begin_inset Formula $(x,y,\theta)$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
and hence I reserved the first two components for translation and the last
|
|||
|
|
for rotation.
|
|||
|
|
|
|||
|
|
\family roman
|
|||
|
|
\series medium
|
|||
|
|
\shape up
|
|||
|
|
\size normal
|
|||
|
|
\emph off
|
|||
|
|
\bar no
|
|||
|
|
\noun off
|
|||
|
|
\color none
|
|||
|
|
The Lie group generators are
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
G^{x}=\left[\begin{array}{ccc}
|
|||
|
|
0 & 0 & 1\\
|
|||
|
|
0 & 0 & 0\\
|
|||
|
|
0 & 0 & 0\end{array}\right]\mbox{ }G^{y}=\left[\begin{array}{ccc}
|
|||
|
|
0 & 0 & 0\\
|
|||
|
|
0 & 0 & 1\\
|
|||
|
|
0 & 0 & 0\end{array}\right]\mbox{ }G^{\theta}=\left[\begin{array}{ccc}
|
|||
|
|
0 & -1 & 0\\
|
|||
|
|
1 & 0 & 0\\
|
|||
|
|
0 & 0 & 0\end{array}\right]\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
|
|||
|
|
\family default
|
|||
|
|
\series default
|
|||
|
|
\shape default
|
|||
|
|
\size default
|
|||
|
|
\emph default
|
|||
|
|
\bar default
|
|||
|
|
\noun default
|
|||
|
|
\color inherit
|
|||
|
|
Applying the exponential map to a twist
|
|||
|
|
\begin_inset Formula $\xi$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
yields a screw motion yielding an element in
|
|||
|
|
\begin_inset Formula $\SEtwo$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
:
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
T=\exp\xihat\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
A closed form solution for the exponential map is in the works...
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Subsection
|
|||
|
|
The Adjoint Map
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Standard
|
|||
|
|
The adjoint is
|
|||
|
|
\begin_inset Formula \begin{eqnarray}
|
|||
|
|
\Ad T{\xihat} & = & T\xihat T^{-1}\nonumber \\
|
|||
|
|
& = & \left[\begin{array}{cc}
|
|||
|
|
R & t\\
|
|||
|
|
0 & 1\end{array}\right]\left[\begin{array}{cc}
|
|||
|
|
\skew{\omega} & v\\
|
|||
|
|
0 & 0\end{array}\right]\left[\begin{array}{cc}
|
|||
|
|
R^{T} & -R^{T}t\\
|
|||
|
|
0 & 1\end{array}\right]\nonumber \\
|
|||
|
|
& = & \left[\begin{array}{cc}
|
|||
|
|
\skew{\omega} & -\skew{\omega}t+Rv\\
|
|||
|
|
0 & 0\end{array}\right]\nonumber \\
|
|||
|
|
& = & \left[\begin{array}{cc}
|
|||
|
|
\skew{\omega} & Rv-\omega R_{\pi/2}t\\
|
|||
|
|
0 & 0\end{array}\right]\label{eq:adjointSE2}\end{eqnarray}
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
From this we can express the Adjoint map in terms of plane twist coordinates:
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
\left[\begin{array}{c}
|
|||
|
|
v'\\
|
|||
|
|
\omega'\end{array}\right]=\left[\begin{array}{cc}
|
|||
|
|
R & -R_{\pi/2}t\\
|
|||
|
|
0 & 1\end{array}\right]\left[\begin{array}{c}
|
|||
|
|
v\\
|
|||
|
|
\omega\end{array}\right]\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Subsection
|
|||
|
|
Actions
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Standard
|
|||
|
|
The action of
|
|||
|
|
\begin_inset Formula $\SEtwo$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
on 2D points is done by embedding the points in
|
|||
|
|
\begin_inset Formula $\mathbb{R}^{3}$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
by using homogeneous coordinates
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
\hat{q}=\left[\begin{array}{c}
|
|||
|
|
q\\
|
|||
|
|
1\end{array}\right]=\left[\begin{array}{cc}
|
|||
|
|
R & t\\
|
|||
|
|
0 & 1\end{array}\right]\left[\begin{array}{c}
|
|||
|
|
p\\
|
|||
|
|
1\end{array}\right]=T\hat{p}\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
Analoguous to
|
|||
|
|
\begin_inset Formula $\SEthree$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
, we can compute a velocity
|
|||
|
|
\begin_inset Formula $\xihat\hat{p}$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
in the local
|
|||
|
|
\begin_inset Formula $T$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
frame:
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
\xihat\hat{p}=\left[\begin{array}{cc}
|
|||
|
|
\skew{\omega} & v\\
|
|||
|
|
0 & 0\end{array}\right]\left[\begin{array}{c}
|
|||
|
|
p\\
|
|||
|
|
1\end{array}\right]=\left[\begin{array}{c}
|
|||
|
|
\skew{\omega}p+v\\
|
|||
|
|
0\end{array}\right]\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
By only taking the top two rows, we can write this as a velocity in
|
|||
|
|
\begin_inset Formula $\Rtwo$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
, as the product of a
|
|||
|
|
\begin_inset Formula $2\times3$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
matrix
|
|||
|
|
\begin_inset Formula $H_{p}$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
that acts upon the exponential coordinates
|
|||
|
|
\begin_inset Formula $\xi$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
directly:
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
\skew{\omega}p+v=v+R_{\pi/2}p\omega=\left[\begin{array}{cc}
|
|||
|
|
I_{2} & R_{\pi/2}p\end{array}\right]\left[\begin{array}{c}
|
|||
|
|
v\\
|
|||
|
|
\omega\end{array}\right]=H_{p}\xi\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Standard
|
|||
|
|
\begin_inset Newpage pagebreak
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Section
|
|||
|
|
3D Rotations
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Subsection
|
|||
|
|
Basics
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Standard
|
|||
|
|
The Lie group
|
|||
|
|
\begin_inset Formula $\SOthree$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
is a subgroup of the general linear group
|
|||
|
|
\begin_inset Formula $GL(3)$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
of
|
|||
|
|
\begin_inset Formula $3\times3$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
invertible matrices.
|
|||
|
|
Its Lie algebra
|
|||
|
|
\begin_inset Formula $\sothree$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
is the vector space of
|
|||
|
|
\begin_inset Formula $3\times3$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
skew-symmetric matrices.
|
|||
|
|
The exponential map can be computed in closed form using Rodrigues' formula.
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Standard
|
|||
|
|
Since
|
|||
|
|
\begin_inset Formula $\SOthree$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
is a three-dimensional manifold,
|
|||
|
|
\begin_inset Formula $\sothree$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
is isomorphic to
|
|||
|
|
\begin_inset Formula $\Rthree$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
and we define the map
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
\hat{}:\Rthree\rightarrow\sothree\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
\hat{}:\omega\rightarrow\what=\Skew{\omega}\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
which maps 3-vectors
|
|||
|
|
\begin_inset Formula $\omega$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
to skew-symmetric matrices
|
|||
|
|
\begin_inset Formula $\Skew{\omega}$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
:
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
\Skew{\omega}=\left[\begin{array}{ccc}
|
|||
|
|
0 & -\omega_{z} & \omega_{y}\\
|
|||
|
|
\omega_{z} & 0 & -\omega_{x}\\
|
|||
|
|
-\omega_{y} & \omega_{x} & 0\end{array}\right]=\omega_{x}G^{x}+\omega_{y}G^{y}+\omega_{z}G^{z}\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
where the
|
|||
|
|
\begin_inset Formula $G^{i}$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
are the generators for
|
|||
|
|
\begin_inset Formula $\SOthree$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
,
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
G^{x}=\left(\begin{array}{ccc}
|
|||
|
|
0 & 0 & 0\\
|
|||
|
|
0 & 0 & -1\\
|
|||
|
|
0 & 1 & 0\end{array}\right)\mbox{}G^{y}=\left(\begin{array}{ccc}
|
|||
|
|
0 & 0 & 1\\
|
|||
|
|
0 & 0 & 0\\
|
|||
|
|
-1 & 0 & 0\end{array}\right)\mbox{ }G^{z}=\left(\begin{array}{ccc}
|
|||
|
|
0 & -1 & 0\\
|
|||
|
|
1 & 0 & 0\\
|
|||
|
|
0 & 0 & 0\end{array}\right)\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
corresponding to a rotation around
|
|||
|
|
\begin_inset Formula $X$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
,
|
|||
|
|
\begin_inset Formula $Y$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
, and
|
|||
|
|
\begin_inset Formula $Z$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
, respectively.
|
|||
|
|
The Lie bracket
|
|||
|
|
\begin_inset Formula $[x,y]$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
corresponds to the cross product
|
|||
|
|
\begin_inset Formula $x\times y$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
in
|
|||
|
|
\begin_inset Formula $\Rthree$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
.
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Standard
|
|||
|
|
For every
|
|||
|
|
\begin_inset Formula $3-$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
vector
|
|||
|
|
\begin_inset Formula $\omega$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
there is a corresponding rotation matrix
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
R=e^{\Skew{\omega}}\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
and this is defines the canonical parameterization of
|
|||
|
|
\begin_inset Formula $\SOthree$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
, with
|
|||
|
|
\begin_inset Formula $\omega$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
known as the canonical or exponential coordinates.
|
|||
|
|
It is equivalent to the axis-angle representation for rotations, where
|
|||
|
|
the unit vector
|
|||
|
|
\begin_inset Formula $\omega/\left\Vert \omega\right\Vert $
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
defines the rotation axis, and its magnitude the amount of rotation
|
|||
|
|
\begin_inset Formula $\theta$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
.
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Subsection
|
|||
|
|
The Adjoint Map
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Standard
|
|||
|
|
For rotation matrices
|
|||
|
|
\begin_inset Formula $R$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
we can prove the following identity (see
|
|||
|
|
\begin_inset CommandInset ref
|
|||
|
|
LatexCommand vref
|
|||
|
|
reference "remove"
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
):
|
|||
|
|
\begin_inset Formula \begin{equation}
|
|||
|
|
R\Skew{\omega}R^{T}=\Skew{R\omega}\label{eq:property1}\end{equation}
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
Hence, given property
|
|||
|
|
\begin_inset CommandInset ref
|
|||
|
|
LatexCommand eqref
|
|||
|
|
reference "remove"
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
, the adjoint map for
|
|||
|
|
\begin_inset Formula $\sothree$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
simplifies to
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
\Ad R{\Skew{\omega}}=R\Skew{\omega}R^{T}=\Skew{R\omega}\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
and this can be expressed in exponential coordinates simply by rotating
|
|||
|
|
the axis
|
|||
|
|
\begin_inset Formula $\omega$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
to
|
|||
|
|
\begin_inset Formula $R\omega$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
.
|
|||
|
|
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Standard
|
|||
|
|
As an example, to apply an axis-angle rotation
|
|||
|
|
\begin_inset Formula $\omega$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
to a point
|
|||
|
|
\begin_inset Formula $p$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
in the frame
|
|||
|
|
\begin_inset Formula $R$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
, we could:
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Enumerate
|
|||
|
|
First transform
|
|||
|
|
\begin_inset Formula $p$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
back to the world frame, apply
|
|||
|
|
\begin_inset Formula $\omega$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
, and then rotate back:
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
q=Re^{\Skew{\omega}}R^{T}\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Enumerate
|
|||
|
|
Immediately apply the transformed axis-angle transformation
|
|||
|
|
\begin_inset Formula $\Ad R{\Skew{\omega}}=\Skew{R\omega}$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
:
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
q=e^{\Skew{R\omega}}p\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Subsection
|
|||
|
|
Actions
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Standard
|
|||
|
|
In the case of
|
|||
|
|
\begin_inset Formula $\SOthree$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
the vector space is
|
|||
|
|
\begin_inset Formula $\Rthree$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
, and the group action corresponds to rotating a point
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
q=Rp\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
We would now like to know what an incremental rotation parameterized by
|
|||
|
|
|
|||
|
|
\begin_inset Formula $\omega$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
would do:
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
q(\omega)=Re^{\Skew{\omega}}p\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
hence the derivative is:
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
\deriv{q(\omega)}{\omega}=R\deriv{}{\omega}\left(e^{\Skew{\omega}}p\right)=R\deriv{}{\omega}\left(\Skew{\omega}p\right)=RH_{p}\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
To calculate
|
|||
|
|
\begin_inset Formula $H_{p}$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
we make use of
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
\Skew{\omega}p=\omega\times p=-p\times\omega=\Skew{-p}\omega\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Standard
|
|||
|
|
\begin_inset Newpage pagebreak
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Section
|
|||
|
|
3D Rigid Transformations
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Standard
|
|||
|
|
The Lie group
|
|||
|
|
\begin_inset Formula $\SEthree$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
is a subgroup of the general linear group
|
|||
|
|
\begin_inset Formula $GL(4)$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
of
|
|||
|
|
\begin_inset Formula $4\times4$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
invertible matrices of the form
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
T\define\left[\begin{array}{cc}
|
|||
|
|
R & t\\
|
|||
|
|
0 & 1\end{array}\right]\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
where
|
|||
|
|
\begin_inset Formula $R\in\SOthree$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
is a rotation matrix and
|
|||
|
|
\begin_inset Formula $t\in\Rthree$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
is a translation vector.
|
|||
|
|
Its Lie algebra
|
|||
|
|
\begin_inset Formula $\sethree$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
is the vector space of
|
|||
|
|
\begin_inset Formula $4\times4$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
twists
|
|||
|
|
\begin_inset Formula $\xihat$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
parameterized by the
|
|||
|
|
\emph on
|
|||
|
|
twist coordinates
|
|||
|
|
\emph default
|
|||
|
|
|
|||
|
|
\begin_inset Formula $\xi\in\Rsix$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
, with the mapping
|
|||
|
|
\begin_inset CommandInset citation
|
|||
|
|
LatexCommand cite
|
|||
|
|
key "Murray94book"
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
\xi\define\left[\begin{array}{c}
|
|||
|
|
\omega\\
|
|||
|
|
v\end{array}\right]\rightarrow\xihat\define\left[\begin{array}{cc}
|
|||
|
|
\Skew{\omega} & v\\
|
|||
|
|
0 & 0\end{array}\right]\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
Note we follow Frank Park's convention and reserve the first three components
|
|||
|
|
for rotation, and the last three for translation.
|
|||
|
|
Hence, with this parameterization, the generators for
|
|||
|
|
\begin_inset Formula $\SEthree$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
are
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
G^{1}=\left(\begin{array}{cccc}
|
|||
|
|
0 & 0 & 0 & 0\\
|
|||
|
|
0 & 0 & -1 & 0\\
|
|||
|
|
0 & 1 & 0 & 0\\
|
|||
|
|
0 & 0 & 0 & 0\end{array}\right)\mbox{}G^{2}=\left(\begin{array}{cccc}
|
|||
|
|
0 & 0 & 1 & 0\\
|
|||
|
|
0 & 0 & 0 & 0\\
|
|||
|
|
-1 & 0 & 0 & 0\\
|
|||
|
|
0 & 0 & 0 & 0\end{array}\right)\mbox{ }G^{3}=\left(\begin{array}{cccc}
|
|||
|
|
0 & -1 & 0 & 0\\
|
|||
|
|
1 & 0 & 0 & 0\\
|
|||
|
|
0 & 0 & 0 & 0\\
|
|||
|
|
0 & 0 & 0 & 0\end{array}\right)\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
G^{4}=\left(\begin{array}{cccc}
|
|||
|
|
0 & 0 & 0 & 1\\
|
|||
|
|
0 & 0 & 0 & 0\\
|
|||
|
|
0 & 0 & 0 & 0\\
|
|||
|
|
0 & 0 & 0 & 0\end{array}\right)\mbox{}G^{5}=\left(\begin{array}{cccc}
|
|||
|
|
0 & 0 & 0 & 0\\
|
|||
|
|
0 & 0 & 0 & 1\\
|
|||
|
|
0 & 0 & 0 & 0\\
|
|||
|
|
0 & 0 & 0 & 0\end{array}\right)\mbox{ }G^{6}=\left(\begin{array}{cccc}
|
|||
|
|
0 & 0 & 0 & 0\\
|
|||
|
|
0 & 0 & 0 & 0\\
|
|||
|
|
0 & 0 & 0 & 1\\
|
|||
|
|
0 & 0 & 0 & 0\end{array}\right)\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
Applying the exponential map to a twist
|
|||
|
|
\begin_inset Formula $\xi$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
yields a screw motion yielding an element in
|
|||
|
|
\begin_inset Formula $\SEthree$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
:
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
T=\exp\xihat\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
A closed form solution for the exponential map is given in
|
|||
|
|
\begin_inset CommandInset citation
|
|||
|
|
LatexCommand cite
|
|||
|
|
after "page 42"
|
|||
|
|
key "Murray94book"
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
.
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Subsection
|
|||
|
|
The Adjoint Map
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Standard
|
|||
|
|
The adjoint is
|
|||
|
|
\begin_inset Formula \begin{eqnarray*}
|
|||
|
|
\Ad T{\xihat} & = & T\xihat T^{-1}\\
|
|||
|
|
& = & \left[\begin{array}{cc}
|
|||
|
|
R & t\\
|
|||
|
|
0 & 1\end{array}\right]\left[\begin{array}{cc}
|
|||
|
|
\Skew{\omega} & v\\
|
|||
|
|
0 & 0\end{array}\right]\left[\begin{array}{cc}
|
|||
|
|
R^{T} & -R^{T}t\\
|
|||
|
|
0 & 1\end{array}\right]\\
|
|||
|
|
& = & \left[\begin{array}{cc}
|
|||
|
|
\Skew{R\omega} & -\Skew{R\omega}t+Rv\\
|
|||
|
|
0 & 0\end{array}\right]\\
|
|||
|
|
& = & \left[\begin{array}{cc}
|
|||
|
|
\Skew{R\omega} & t\times R\omega+Rv\\
|
|||
|
|
0 & 0\end{array}\right]\end{eqnarray*}
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
From this we can express the Adjoint map in terms of twist coordinates (see
|
|||
|
|
also
|
|||
|
|
\begin_inset CommandInset citation
|
|||
|
|
LatexCommand cite
|
|||
|
|
key "Murray94book"
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
and FP):
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
\left[\begin{array}{c}
|
|||
|
|
\omega'\\
|
|||
|
|
v'\end{array}\right]=\left[\begin{array}{cc}
|
|||
|
|
R & 0\\
|
|||
|
|
\Skew tR & R\end{array}\right]\left[\begin{array}{c}
|
|||
|
|
\omega\\
|
|||
|
|
v\end{array}\right]\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Subsection
|
|||
|
|
Actions
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Standard
|
|||
|
|
The action of
|
|||
|
|
\begin_inset Formula $\SEthree$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
on 3D points is done by embedding the points in
|
|||
|
|
\begin_inset Formula $\mathbb{R}^{4}$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
by using homogeneous coordinates
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
\hat{q}=\left[\begin{array}{c}
|
|||
|
|
q\\
|
|||
|
|
1\end{array}\right]=\left[\begin{array}{cc}
|
|||
|
|
R & t\\
|
|||
|
|
0 & 1\end{array}\right]\left[\begin{array}{c}
|
|||
|
|
p\\
|
|||
|
|
1\end{array}\right]=T\hat{p}\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
We would now like to know what an incremental rotation parameterized by
|
|||
|
|
|
|||
|
|
\begin_inset Formula $\xi$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
would do:
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
\hat{q}(\xi)=Te^{\xihat}\hat{p}\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
hence the derivative (following the exposition in Section
|
|||
|
|
\begin_inset CommandInset ref
|
|||
|
|
LatexCommand ref
|
|||
|
|
reference "sec:Derivatives-of-Actions"
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
):
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
\deriv{\hat{q}(\xi)}{\xi}=T\deriv{}{\xi}\left(\xihat\hat{p}\right)=TH_{p}\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
where
|
|||
|
|
\begin_inset Formula $\xihat\hat{p}$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
corresponds to a velocity in
|
|||
|
|
\begin_inset Formula $\mathbb{R}^{4}$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
(in the local
|
|||
|
|
\begin_inset Formula $T$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
frame):
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
\xihat\hat{p}=\left[\begin{array}{cc}
|
|||
|
|
\Skew{\omega} & v\\
|
|||
|
|
0 & 0\end{array}\right]\left[\begin{array}{c}
|
|||
|
|
p\\
|
|||
|
|
1\end{array}\right]=\left[\begin{array}{c}
|
|||
|
|
\omega\times p+v\\
|
|||
|
|
0\end{array}\right]\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
Notice how velocities are anologous to points at infinity in projective
|
|||
|
|
geometry: they correspond to free vectors indicating a direction and magnitude
|
|||
|
|
of change.
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Standard
|
|||
|
|
By only taking the top three rows, we can write this as a velocity in
|
|||
|
|
\begin_inset Formula $\Rthree$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
, as the product of a
|
|||
|
|
\begin_inset Formula $3\times6$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
matrix
|
|||
|
|
\begin_inset Formula $H_{p}$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
that acts upon the exponential coordinates
|
|||
|
|
\begin_inset Formula $\xi$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
directly:
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
\omega\times p+v=-p\times\omega+v=\left[\begin{array}{cc}
|
|||
|
|
-\Skew p & I_{3}\end{array}\right]\left[\begin{array}{c}
|
|||
|
|
\omega\\
|
|||
|
|
v\end{array}\right]=H_{p}\xi\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Standard
|
|||
|
|
\begin_inset Newpage pagebreak
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Section*
|
|||
|
|
Appendix: Proof of Property
|
|||
|
|
\begin_inset CommandInset ref
|
|||
|
|
LatexCommand ref
|
|||
|
|
reference "remove"
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Standard
|
|||
|
|
We can prove the following identity for rotation matrices
|
|||
|
|
\begin_inset Formula $R$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
,
|
|||
|
|
\begin_inset Formula \begin{eqnarray}
|
|||
|
|
R\Skew{\omega}R^{T} & = & R\Skew{\omega}\left[\begin{array}{ccc}
|
|||
|
|
a_{1} & a_{2} & a_{3}\end{array}\right]\nonumber \\
|
|||
|
|
& = & R\left[\begin{array}{ccc}
|
|||
|
|
\omega\times a_{1} & \omega\times a_{2} & \omega\times a_{3}\end{array}\right]\nonumber \\
|
|||
|
|
& = & \left[\begin{array}{ccc}
|
|||
|
|
a_{1}(\omega\times a_{1}) & a_{1}(\omega\times a_{2}) & a_{1}(\omega\times a_{3})\\
|
|||
|
|
a_{2}(\omega\times a_{1}) & a_{2}(\omega\times a_{2}) & a_{2}(\omega\times a_{3})\\
|
|||
|
|
a_{3}(\omega\times a_{1}) & a_{3}(\omega\times a_{2}) & a_{3}(\omega\times a_{3})\end{array}\right]\nonumber \\
|
|||
|
|
& = & \left[\begin{array}{ccc}
|
|||
|
|
\omega(a_{1}\times a_{1}) & \omega(a_{2}\times a_{1}) & \omega(a_{3}\times a_{1})\\
|
|||
|
|
\omega(a_{1}\times a_{2}) & \omega(a_{2}\times a_{2}) & \omega(a_{3}\times a_{2})\\
|
|||
|
|
\omega(a_{1}\times a_{3}) & \omega(a_{2}\times a_{3}) & \omega(a_{3}\times a_{3})\end{array}\right]\nonumber \\
|
|||
|
|
& = & \left[\begin{array}{ccc}
|
|||
|
|
0 & -\omega a_{3} & \omega a_{2}\\
|
|||
|
|
\omega a_{3} & 0 & -\omega a_{1}\\
|
|||
|
|
-\omega a_{2} & \omega a_{1} & 0\end{array}\right]\nonumber \\
|
|||
|
|
& = & \Skew{R\omega}\label{remove}\end{eqnarray}
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
where
|
|||
|
|
\begin_inset Formula $a_{1}$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
,
|
|||
|
|
\begin_inset Formula $a_{2}$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
, and
|
|||
|
|
\begin_inset Formula $a_{3}$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
are the
|
|||
|
|
\emph on
|
|||
|
|
rows
|
|||
|
|
\emph default
|
|||
|
|
of
|
|||
|
|
\begin_inset Formula $R$
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
.
|
|||
|
|
Above we made use of the orthogonality of rotation matrices and the triple
|
|||
|
|
product rule:
|
|||
|
|
\begin_inset Formula \[
|
|||
|
|
a(b\times c)=b(c\times a)=c(a\times b)\]
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\begin_layout Standard
|
|||
|
|
\begin_inset CommandInset bibtex
|
|||
|
|
LatexCommand bibtex
|
|||
|
|
bibfiles "/Users/dellaert/papers/refs"
|
|||
|
|
options "plain"
|
|||
|
|
|
|||
|
|
\end_inset
|
|||
|
|
|
|||
|
|
|
|||
|
|
\end_layout
|
|||
|
|
|
|||
|
|
\end_body
|
|||
|
|
\end_document
|