| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  | /* ----------------------------------------------------------------------------
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-02-11 22:39:48 +08:00
										 |  |  |  * GTSAM Copyright 2010, Georgia Tech Research Corporation, | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  |  * Atlanta, Georgia 30332-0415 | 
					
						
							|  |  |  |  * All Rights Reserved | 
					
						
							|  |  |  |  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * See LICENSE for the license information | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * -------------------------------------------------------------------------- */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  *  @file  TransformBtwRobotsUnaryFactorEM.h | 
					
						
							|  |  |  |  *  @brief Unary factor for determining transformation between given trajectories of two robots | 
					
						
							|  |  |  |  *  @author Vadim Indelman | 
					
						
							|  |  |  |  **/ | 
					
						
							|  |  |  | #pragma once
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-12-22 05:02:06 +08:00
										 |  |  | #include <gtsam/slam/BetweenFactor.h>
 | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  | #include <gtsam/nonlinear/NonlinearFactor.h>
 | 
					
						
							| 
									
										
										
										
											2014-09-14 06:12:28 +08:00
										 |  |  | #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | 
					
						
							|  |  |  | #include <gtsam/nonlinear/Marginals.h>
 | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  | #include <gtsam/linear/GaussianFactor.h>
 | 
					
						
							| 
									
										
										
										
											2014-12-22 05:02:06 +08:00
										 |  |  | #include <gtsam/base/Testable.h>
 | 
					
						
							|  |  |  | #include <gtsam/base/Lie.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <ostream>
 | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | namespace gtsam { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   /**
 | 
					
						
							|  |  |  |    * A class for a measurement predicted by "between(config[key1],config[key2])" | 
					
						
							|  |  |  |    * @tparam VALUE the Value type | 
					
						
							|  |  |  |    * @addtogroup SLAM | 
					
						
							|  |  |  |    */ | 
					
						
							|  |  |  |   template<class VALUE> | 
					
						
							|  |  |  |   class TransformBtwRobotsUnaryFactorEM: public NonlinearFactor { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   public: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     typedef VALUE T; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   private: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     typedef TransformBtwRobotsUnaryFactorEM<VALUE> This; | 
					
						
							| 
									
										
										
										
											2018-11-08 13:58:50 +08:00
										 |  |  |     typedef NonlinearFactor Base; | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2018-11-08 13:58:50 +08:00
										 |  |  |     Key key_; | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     VALUE measured_; /** The measurement */ | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2018-11-08 13:58:50 +08:00
										 |  |  |     Values valA_; // given values for robot A map\trajectory
 | 
					
						
							|  |  |  |     Values valB_; // given values for robot B map\trajectory
 | 
					
						
							|  |  |  |     Key keyA_;    // key of robot A to which the measurement refers
 | 
					
						
							|  |  |  |     Key keyB_;    // key of robot B to which the measurement refers
 | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     // TODO: create function to update valA_ and valB_
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     SharedGaussian model_inlier_; | 
					
						
							|  |  |  |     SharedGaussian model_outlier_; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     double prior_inlier_; | 
					
						
							|  |  |  |     double prior_outlier_; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     bool flag_bump_up_near_zero_probs_; | 
					
						
							| 
									
										
										
										
											2013-08-29 00:56:57 +08:00
										 |  |  |     mutable bool start_with_M_step_; | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     /** concept check by type */ | 
					
						
							|  |  |  |     GTSAM_CONCEPT_LIE_TYPE(T) | 
					
						
							|  |  |  |     GTSAM_CONCEPT_TESTABLE_TYPE(T) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   public: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // shorthand for a smart pointer to a factor
 | 
					
						
							|  |  |  |     typedef typename boost::shared_ptr<TransformBtwRobotsUnaryFactorEM> shared_ptr; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** default constructor - only use for serialization */ | 
					
						
							|  |  |  |     TransformBtwRobotsUnaryFactorEM() {} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** Constructor */ | 
					
						
							|  |  |  |     TransformBtwRobotsUnaryFactorEM(Key key, const VALUE& measured, Key keyA, Key keyB, | 
					
						
							| 
									
										
										
										
											2018-11-08 13:58:50 +08:00
										 |  |  |         const Values& valA, const Values& valB, | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  |         const SharedGaussian& model_inlier, const SharedGaussian& model_outlier, | 
					
						
							| 
									
										
										
										
											2013-08-30 06:43:09 +08:00
										 |  |  |         const double prior_inlier, const double prior_outlier, | 
					
						
							|  |  |  |         const bool flag_bump_up_near_zero_probs = false, | 
					
						
							|  |  |  |         const bool start_with_M_step = false) : | 
					
						
							| 
									
										
										
										
											2013-08-24 02:12:59 +08:00
										 |  |  |           Base(cref_list_of<1>(key)), key_(key), measured_(measured), keyA_(keyA), keyB_(keyB), | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  |           model_inlier_(model_inlier), model_outlier_(model_outlier), | 
					
						
							| 
									
										
										
										
											2013-08-30 06:43:09 +08:00
										 |  |  |           prior_inlier_(prior_inlier), prior_outlier_(prior_outlier), flag_bump_up_near_zero_probs_(flag_bump_up_near_zero_probs), | 
					
						
							| 
									
										
										
										
											2013-08-29 00:56:57 +08:00
										 |  |  |           start_with_M_step_(false){ | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |       setValAValB(valA, valB); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-01-29 12:02:13 +08:00
										 |  |  |     ~TransformBtwRobotsUnaryFactorEM() override {} | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** Clone */ | 
					
						
							| 
									
										
										
										
											2020-07-26 15:57:54 +08:00
										 |  |  |     NonlinearFactor::shared_ptr clone() const override { return boost::make_shared<This>(*this); } | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** implement functions needed for Testable */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** print */ | 
					
						
							| 
									
										
										
										
											2020-07-26 15:57:54 +08:00
										 |  |  |     void print(const std::string& s, const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override { | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  |       std::cout << s << "TransformBtwRobotsUnaryFactorEM(" | 
					
						
							|  |  |  |           << keyFormatter(key_) << ")\n"; | 
					
						
							|  |  |  |       std::cout << "MR between factor keys: " | 
					
						
							|  |  |  |           << keyFormatter(keyA_) << "," | 
					
						
							|  |  |  |           << keyFormatter(keyB_) << "\n"; | 
					
						
							|  |  |  |       measured_.print("  measured: "); | 
					
						
							|  |  |  |       model_inlier_->print("  noise model inlier: "); | 
					
						
							|  |  |  |       model_outlier_->print("  noise model outlier: "); | 
					
						
							|  |  |  |       std::cout << "(prior_inlier, prior_outlier_) = (" | 
					
						
							|  |  |  |                 << prior_inlier_ << "," | 
					
						
							|  |  |  |                 << prior_outlier_ << ")\n"; | 
					
						
							|  |  |  |       //      Base::print(s, keyFormatter);
 | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** equals */ | 
					
						
							| 
									
										
										
										
											2020-07-26 15:57:54 +08:00
										 |  |  |     bool equals(const NonlinearFactor& f, double tol=1e-9) const override { | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  |       const This *t =  dynamic_cast<const This*> (&f); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       if(t && Base::equals(f)) | 
					
						
							|  |  |  |         return key_ == t->key_ && measured_.equals(t->measured_) && | 
					
						
							|  |  |  |             //            model_inlier_->equals(t->model_inlier_ ) && // TODO: fix here
 | 
					
						
							|  |  |  |             //            model_outlier_->equals(t->model_outlier_ ) &&
 | 
					
						
							|  |  |  |             prior_outlier_ == t->prior_outlier_ && prior_inlier_ == t->prior_inlier_; | 
					
						
							|  |  |  |       else | 
					
						
							|  |  |  |         return false; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** implement functions needed to derive from Factor */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /* ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2018-11-08 13:58:50 +08:00
										 |  |  |     void setValAValB(const Values& valA, const Values& valB){ | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  |       if ( (!valA.exists(keyA_)) && (!valB.exists(keyA_)) && (!valA.exists(keyB_)) && (!valB.exists(keyB_)) ) | 
					
						
							|  |  |  |         throw("something is wrong!"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       // TODO: make sure the two keys belong to different robots
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       if (valA.exists(keyA_)){ | 
					
						
							|  |  |  |         valA_ = valA; | 
					
						
							|  |  |  |         valB_ = valB; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       else { | 
					
						
							|  |  |  |         valA_ = valB; | 
					
						
							|  |  |  |         valB_ = valA; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /* ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2020-07-26 15:57:54 +08:00
										 |  |  |     double error(const Values& x) const override { | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  |       return whitenedError(x).squaredNorm(); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /* ************************************************************************* */ | 
					
						
							|  |  |  |     /**
 | 
					
						
							| 
									
										
										
										
											2018-11-08 13:58:50 +08:00
										 |  |  |      * Linearize a non-linearFactorN to get a GaussianFactor, | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  |      * \f$ Ax-b \approx h(x+\delta x)-z = h(x) + A \delta x - z \f$ | 
					
						
							|  |  |  |      * Hence \f$ b = z - h(x) = - \mathtt{error\_vector}(x) \f$ | 
					
						
							|  |  |  |      */ | 
					
						
							|  |  |  |     /* This version of linearize recalculates the noise model each time */ | 
					
						
							| 
									
										
										
										
											2020-07-26 15:57:54 +08:00
										 |  |  |     boost::shared_ptr<GaussianFactor> linearize(const Values& x) const override { | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  |       // Only linearize if the factor is active
 | 
					
						
							|  |  |  |       if (!this->active(x)) | 
					
						
							| 
									
										
										
										
											2018-11-08 13:58:50 +08:00
										 |  |  |         return boost::shared_ptr<JacobianFactor>(); | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |       //std::cout<<"About to linearize"<<std::endl;
 | 
					
						
							| 
									
										
										
										
											2018-11-08 13:58:50 +08:00
										 |  |  |       Matrix A1; | 
					
						
							|  |  |  |       std::vector<Matrix> A(this->size()); | 
					
						
							|  |  |  |       Vector b = -whitenedError(x, A); | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  |       A1 = A[0]; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2018-11-08 13:58:50 +08:00
										 |  |  |       return GaussianFactor::shared_ptr( | 
					
						
							|  |  |  |           new JacobianFactor(key_, A1, b, noiseModel::Unit::Create(b.size()))); | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /* ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2018-11-08 13:58:50 +08:00
										 |  |  |     Vector whitenedError(const Values& x, | 
					
						
							|  |  |  |         boost::optional<std::vector<Matrix>&> H = boost::none) const { | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |       bool debug = true; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       Matrix H_compose, H_between1, H_dummy; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       T orgA_T_currA = valA_.at<T>(keyA_); | 
					
						
							|  |  |  |       T orgB_T_currB = valB_.at<T>(keyB_); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       T orgA_T_orgB = x.at<T>(key_); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       T orgA_T_currB = orgA_T_orgB.compose(orgB_T_currB, H_compose, H_dummy); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       T currA_T_currB_pred = orgA_T_currA.between(orgA_T_currB, H_dummy, H_between1); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       T currA_T_currB_msr  = measured_; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       Vector err = currA_T_currB_msr.localCoordinates(currA_T_currB_pred); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       // Calculate indicator probabilities (inlier and outlier)
 | 
					
						
							| 
									
										
										
										
											2014-07-19 05:11:21 +08:00
										 |  |  |       Vector p_inlier_outlier = calcIndicatorProb(x, err); | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  |       double p_inlier  = p_inlier_outlier[0]; | 
					
						
							|  |  |  |       double p_outlier = p_inlier_outlier[1]; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-08-29 00:56:57 +08:00
										 |  |  |       if (start_with_M_step_){ | 
					
						
							|  |  |  |         start_with_M_step_ = false; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         p_inlier  = 0.5; | 
					
						
							|  |  |  |         p_outlier = 0.5; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  |       Vector err_wh_inlier  = model_inlier_->whiten(err); | 
					
						
							|  |  |  |       Vector err_wh_outlier = model_outlier_->whiten(err); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       Matrix invCov_inlier  = model_inlier_->R().transpose() * model_inlier_->R(); | 
					
						
							|  |  |  |       Matrix invCov_outlier = model_outlier_->R().transpose() * model_outlier_->R(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       Vector err_wh_eq; | 
					
						
							|  |  |  |       err_wh_eq.resize(err_wh_inlier.rows()*2); | 
					
						
							|  |  |  |       err_wh_eq << sqrt(p_inlier) * err_wh_inlier.array() , sqrt(p_outlier) * err_wh_outlier.array(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       Matrix H_unwh = H_compose * H_between1; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       if (H){ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         Matrix H_inlier  = sqrt(p_inlier)*model_inlier_->Whiten(H_unwh); | 
					
						
							|  |  |  |         Matrix H_outlier = sqrt(p_outlier)*model_outlier_->Whiten(H_unwh); | 
					
						
							| 
									
										
										
										
											2018-11-08 13:58:50 +08:00
										 |  |  |         Matrix H_aug = stack(2, &H_inlier, &H_outlier); | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |         (*H)[0].resize(H_aug.rows(),H_aug.cols()); | 
					
						
							|  |  |  |         (*H)[0] = H_aug; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       if (debug){ | 
					
						
							|  |  |  |         //        std::cout<<"H_compose - rows, cols, : "<<H_compose.rows()<<", "<< H_compose.cols()<<std::endl;
 | 
					
						
							|  |  |  |         //        std::cout<<"H_between1 - rows, cols, : "<<H_between1.rows()<<", "<< H_between1.cols()<<std::endl;
 | 
					
						
							|  |  |  |         //        std::cout<<"H_unwh - rows, cols, : "<<H_unwh.rows()<<", "<< H_unwh.cols()<<std::endl;
 | 
					
						
							|  |  |  |         //        std::cout<<"H_unwh: "<<std:endl<<H_unwh[0]
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       return err_wh_eq; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /* ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2018-11-08 13:58:50 +08:00
										 |  |  |     Vector calcIndicatorProb(const Values& x) const { | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |       Vector err =  unwhitenedError(x); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-07-19 05:11:21 +08:00
										 |  |  |       return this->calcIndicatorProb(x, err); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /* ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2018-11-08 13:58:50 +08:00
										 |  |  |     Vector calcIndicatorProb(const Values& x, const Vector& err) const { | 
					
						
							| 
									
										
										
										
											2014-07-19 05:11:21 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  |       // Calculate indicator probabilities (inlier and outlier)
 | 
					
						
							|  |  |  |       Vector err_wh_inlier  = model_inlier_->whiten(err); | 
					
						
							|  |  |  |       Vector err_wh_outlier = model_outlier_->whiten(err); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       Matrix invCov_inlier  = model_inlier_->R().transpose() * model_inlier_->R(); | 
					
						
							|  |  |  |       Matrix invCov_outlier = model_outlier_->R().transpose() * model_outlier_->R(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       double p_inlier  = prior_inlier_ * sqrt(invCov_inlier.norm()) * exp( -0.5 * err_wh_inlier.dot(err_wh_inlier) ); | 
					
						
							|  |  |  |       double p_outlier = prior_outlier_ * sqrt(invCov_outlier.norm()) * exp( -0.5 * err_wh_outlier.dot(err_wh_outlier) ); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       double sumP = p_inlier + p_outlier; | 
					
						
							|  |  |  |       p_inlier  /= sumP; | 
					
						
							|  |  |  |       p_outlier /= sumP; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-08-30 06:43:09 +08:00
										 |  |  |       if (flag_bump_up_near_zero_probs_){ | 
					
						
							|  |  |  |         // Bump up near-zero probabilities (as in linerFlow.h)
 | 
					
						
							|  |  |  |         double minP = 0.05; // == 0.1 / 2 indicator variables
 | 
					
						
							|  |  |  |         if (p_inlier < minP || p_outlier < minP){ | 
					
						
							|  |  |  |           if (p_inlier < minP) | 
					
						
							|  |  |  |             p_inlier = minP; | 
					
						
							|  |  |  |           if (p_outlier < minP) | 
					
						
							|  |  |  |             p_outlier = minP; | 
					
						
							|  |  |  |           sumP = p_inlier + p_outlier; | 
					
						
							|  |  |  |           p_inlier  /= sumP; | 
					
						
							|  |  |  |           p_outlier /= sumP; | 
					
						
							|  |  |  |         } | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-11-23 08:35:27 +08:00
										 |  |  |       return (Vector(2) << p_inlier, p_outlier).finished(); | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /* ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2018-11-08 13:58:50 +08:00
										 |  |  |     Vector unwhitenedError(const Values& x) const { | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |       T orgA_T_currA = valA_.at<T>(keyA_); | 
					
						
							|  |  |  |       T orgB_T_currB = valB_.at<T>(keyB_); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       T orgA_T_orgB = x.at<T>(key_); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       T orgA_T_currB = orgA_T_orgB.compose(orgB_T_currB); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       T currA_T_currB_pred = orgA_T_currA.between(orgA_T_currB); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       T currA_T_currB_msr  = measured_; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       return currA_T_currB_msr.localCoordinates(currA_T_currB_pred); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-09-10 05:22:59 +08:00
										 |  |  |     /* ************************************************************************* */ | 
					
						
							|  |  |  |     SharedGaussian get_model_inlier() const { | 
					
						
							|  |  |  |       return model_inlier_; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /* ************************************************************************* */ | 
					
						
							|  |  |  |     SharedGaussian get_model_outlier() const { | 
					
						
							|  |  |  |       return model_outlier_; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /* ************************************************************************* */ | 
					
						
							|  |  |  |     Matrix get_model_inlier_cov() const { | 
					
						
							|  |  |  |       return (model_inlier_->R().transpose()*model_inlier_->R()).inverse(); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /* ************************************************************************* */ | 
					
						
							|  |  |  |     Matrix get_model_outlier_cov() const { | 
					
						
							|  |  |  |       return (model_outlier_->R().transpose()*model_outlier_->R()).inverse(); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-09-15 15:03:25 +08:00
										 |  |  |     /* ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2018-11-08 13:58:50 +08:00
										 |  |  |     void updateNoiseModels(const Values& values, const Marginals& marginals) { | 
					
						
							| 
									
										
										
										
											2014-09-15 15:03:25 +08:00
										 |  |  |       /* given marginals version, don't need to marginal multiple times if update a lot */ | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2018-11-08 13:58:50 +08:00
										 |  |  |       KeyVector Keys; | 
					
						
							| 
									
										
										
										
											2014-09-15 15:03:25 +08:00
										 |  |  |       Keys.push_back(keyA_); | 
					
						
							|  |  |  |       Keys.push_back(keyB_); | 
					
						
							|  |  |  |       JointMarginal joint_marginal12 = marginals.jointMarginalCovariance(Keys); | 
					
						
							|  |  |  |       Matrix cov1 = joint_marginal12(keyA_, keyA_); | 
					
						
							|  |  |  |       Matrix cov2 = joint_marginal12(keyB_, keyB_); | 
					
						
							|  |  |  |       Matrix cov12 = joint_marginal12(keyA_, keyB_); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       updateNoiseModels_givenCovs(values, cov1, cov2, cov12); | 
					
						
							|  |  |  |     } | 
					
						
							| 
									
										
										
										
											2014-09-10 05:22:59 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     /* ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2018-11-08 13:58:50 +08:00
										 |  |  |     void updateNoiseModels(const Values& values, const NonlinearFactorGraph& graph){ | 
					
						
							| 
									
										
										
										
											2014-09-10 05:22:59 +08:00
										 |  |  |       /* Update model_inlier_ and model_outlier_ to account for uncertainty in robot trajectories
 | 
					
						
							|  |  |  |        * (note these are given in the E step, where indicator probabilities are calculated). | 
					
						
							|  |  |  |        * | 
					
						
							|  |  |  |        * Principle: R += [H1 H2] * joint_cov12 * [H1 H2]', where H1, H2 are Jacobians of the | 
					
						
							|  |  |  |        * unwhitened error w.r.t. states, and R is the measurement covariance (inlier or outlier modes). | 
					
						
							|  |  |  |        * | 
					
						
							|  |  |  |        * TODO: improve efficiency (info form) | 
					
						
							|  |  |  |        */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |        // get joint covariance of the involved states
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-09-15 15:03:25 +08:00
										 |  |  |        Marginals marginals(graph, values, Marginals::QR); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |        this->updateNoiseModels(values, marginals); | 
					
						
							|  |  |  |     } | 
					
						
							| 
									
										
										
										
											2014-09-10 05:22:59 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     /* ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2018-11-08 13:58:50 +08:00
										 |  |  |     void updateNoiseModels_givenCovs(const Values& values, const Matrix& cov1, const Matrix& cov2, const Matrix& cov12){ | 
					
						
							| 
									
										
										
										
											2014-09-10 05:22:59 +08:00
										 |  |  |       /* Update model_inlier_ and model_outlier_ to account for uncertainty in robot trajectories
 | 
					
						
							|  |  |  |        * (note these are given in the E step, where indicator probabilities are calculated). | 
					
						
							|  |  |  |        * | 
					
						
							|  |  |  |        * Principle: R += [H1 H2] * joint_cov12 * [H1 H2]', where H1, H2 are Jacobians of the | 
					
						
							|  |  |  |        * unwhitened error w.r.t. states, and R is the measurement covariance (inlier or outlier modes). | 
					
						
							|  |  |  |        * | 
					
						
							|  |  |  |        * TODO: improve efficiency (info form) | 
					
						
							|  |  |  |        */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       const T& p1 = values.at<T>(keyA_); | 
					
						
							|  |  |  |       const T& p2 = values.at<T>(keyB_); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       Matrix H1, H2; | 
					
						
							| 
									
										
										
										
											2014-11-11 00:56:08 +08:00
										 |  |  |       p1.between(p2, H1, H2); // h(x)
 | 
					
						
							| 
									
										
										
										
											2014-09-10 05:22:59 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |       Matrix H; | 
					
						
							|  |  |  |       H.resize(H1.rows(), H1.rows()+H2.rows()); | 
					
						
							|  |  |  |       H << H1, H2; // H = [H1 H2]
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       Matrix joint_cov; | 
					
						
							|  |  |  |       joint_cov.resize(cov1.rows()+cov2.rows(), cov1.cols()+cov2.cols()); | 
					
						
							|  |  |  |       joint_cov << cov1, cov12, | 
					
						
							|  |  |  |           cov12.transpose(), cov2; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       Matrix cov_state = H*joint_cov*H.transpose(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       //       model_inlier_->print("before:");
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       // update inlier and outlier noise models
 | 
					
						
							|  |  |  |       Matrix covRinlier = (model_inlier_->R().transpose()*model_inlier_->R()).inverse(); | 
					
						
							| 
									
										
										
										
											2018-11-08 13:58:50 +08:00
										 |  |  |       model_inlier_ = noiseModel::Gaussian::Covariance(covRinlier + cov_state); | 
					
						
							| 
									
										
										
										
											2014-09-10 05:22:59 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |       Matrix covRoutlier = (model_outlier_->R().transpose()*model_outlier_->R()).inverse(); | 
					
						
							| 
									
										
										
										
											2018-11-08 13:58:50 +08:00
										 |  |  |       model_outlier_ = noiseModel::Gaussian::Covariance(covRoutlier + cov_state); | 
					
						
							| 
									
										
										
										
											2014-09-10 05:22:59 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |       //       model_inlier_->print("after:");
 | 
					
						
							|  |  |  |       //       std::cout<<"covRinlier + cov_state: "<<covRinlier + cov_state<<std::endl;
 | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  |     /* ************************************************************************* */ | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-07-26 15:57:54 +08:00
										 |  |  |     size_t dim() const override { | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  |       return model_inlier_->R().rows() + model_inlier_->R().cols(); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   private: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** Serialization function */ | 
					
						
							|  |  |  |     friend class boost::serialization::access; | 
					
						
							|  |  |  |     template<class ARCHIVE> | 
					
						
							| 
									
										
										
										
											2015-03-06 23:12:09 +08:00
										 |  |  |     void serialize(ARCHIVE & ar, const unsigned int /*version*/) { | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  |       ar & boost::serialization::make_nvp("NonlinearFactor", | 
					
						
							|  |  |  |           boost::serialization::base_object<Base>(*this)); | 
					
						
							|  |  |  |       //ar & BOOST_SERIALIZATION_NVP(measured_);
 | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   }; // \class TransformBtwRobotsUnaryFactorEM
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-12-22 05:02:06 +08:00
										 |  |  |   /// traits
 | 
					
						
							|  |  |  |   template<class VALUE> | 
					
						
							| 
									
										
										
										
											2014-12-26 23:47:51 +08:00
										 |  |  |   struct traits<TransformBtwRobotsUnaryFactorEM<VALUE> > : | 
					
						
							| 
									
										
										
										
											2014-12-22 05:02:06 +08:00
										 |  |  |       public Testable<TransformBtwRobotsUnaryFactorEM<VALUE> > { | 
					
						
							|  |  |  |   }; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-08-23 23:24:16 +08:00
										 |  |  | } /// namespace gtsam
 |