orb_slam3_details/src/Optimizer.cc

8724 lines
314 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/**
* This file is part of ORB-SLAM3
*
* Copyright (C) 2017-2020 Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
* Copyright (C) 2014-2016 Raúl Mur-Artal, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
*
* ORB-SLAM3 is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* ORB-SLAM3 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
* the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with ORB-SLAM3.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "Optimizer.h"
#include <complex>
#include <Eigen/StdVector>
#include <Eigen/Sparse>
#include <Eigen/Dense>
#include <unsupported/Eigen/MatrixFunctions>
#include "Thirdparty/g2o/g2o/core/sparse_block_matrix.h"
#include "Thirdparty/g2o/g2o/core/block_solver.h"
#include "Thirdparty/g2o/g2o/core/optimization_algorithm_levenberg.h"
#include "Thirdparty/g2o/g2o/core/optimization_algorithm_gauss_newton.h"
#include "Thirdparty/g2o/g2o/solvers/linear_solver_eigen.h"
#include "Thirdparty/g2o/g2o/types/types_six_dof_expmap.h"
#include "Thirdparty/g2o/g2o/core/robust_kernel_impl.h"
#include "Thirdparty/g2o/g2o/solvers/linear_solver_dense.h"
#include "G2oTypes.h"
#include "Converter.h"
#include<mutex>
#include "OptimizableTypes.h"
namespace ORB_SLAM3
{
bool sortByVal(const pair<MapPoint*, int> &a, const pair<MapPoint*, int> &b)
{
return (a.second < b.second);
}
/**
* @brief 全局BA pMap中所有的MapPoints和关键帧做bundle adjustment优化
* 这个全局BA优化在本程序中有两个地方使用
* 1、单目初始化CreateInitialMapMonocular函数
* 2、闭环优化RunGlobalBundleAdjustment函数
* @param[in] pMap 地图点
* @param[in] nIterations 迭代次数
* @param[in] pbStopFlag 外部控制BA结束标志
* @param[in] nLoopKF 形成了闭环的当前关键帧的id
* @param[in] bRobust 是否使用鲁棒核函数
*/
void Optimizer::GlobalBundleAdjustemnt(Map* pMap, int nIterations, bool* pbStopFlag, const unsigned long nLoopKF, const bool bRobust)
{
// 获取地图中的所有关键帧
vector<KeyFrame*> vpKFs = pMap->GetAllKeyFrames();
// 获取地图中的所有地图点
vector<MapPoint*> vpMP = pMap->GetAllMapPoints();
// 调用GBA
BundleAdjustment(vpKFs,vpMP,nIterations,pbStopFlag, nLoopKF, bRobust);
}
/**
* @brief bundle adjustment 优化过程
* 1. Vertex: g2o::VertexSE3Expmap()即当前帧的Tcw
* g2o::VertexSBAPointXYZ()MapPoint的mWorldPos
* 2. Edge:
* - g2o::EdgeSE3ProjectXYZ()BaseBinaryEdge
* + Vertex待优化当前帧的Tcw
* + Vertex待优化MapPoint的mWorldPos
* + measurementMapPoint在当前帧中的二维位置(u,v)
* + InfoMatrix: invSigma2(与特征点所在的尺度有关)
*
* @param[in] vpKFs 参与BA的所有关键帧
* @param[in] vpMP 参与BA的所有地图点
* @param[in] nIterations 优化迭代次数
* @param[in] pbStopFlag 外部控制BA结束标志
* @param[in] nLoopKF 形成了闭环的当前关键帧的id
* @param[in] bRobust 是否使用核函数
*/
void Optimizer::BundleAdjustment(const vector<KeyFrame *> &vpKFs, const vector<MapPoint *> &vpMP,
int nIterations, bool* pbStopFlag, const unsigned long nLoopKF, const bool bRobust)
{
// 不参与优化的地图点
vector<bool> vbNotIncludedMP;
vbNotIncludedMP.resize(vpMP.size());
Map* pMap = vpKFs[0]->GetMap();
// Step 1 初始化g2o优化器
g2o::SparseOptimizer optimizer;
g2o::BlockSolver_6_3::LinearSolverType * linearSolver;
linearSolver = new g2o::LinearSolverEigen<g2o::BlockSolver_6_3::PoseMatrixType>();
g2o::BlockSolver_6_3 * solver_ptr = new g2o::BlockSolver_6_3(linearSolver);
// 使用LM算法优化
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
optimizer.setAlgorithm(solver);
optimizer.setVerbose(false);
// 如果这个时候外部请求终止,那就结束
// 注意这句执行之后外部再请求结束BA就结束不了了
if(pbStopFlag)
optimizer.setForceStopFlag(pbStopFlag);
// 记录添加到优化器中的顶点的最大关键帧id
long unsigned int maxKFid = 0;
const int nExpectedSize = (vpKFs.size())*vpMP.size();
vector<ORB_SLAM3::EdgeSE3ProjectXYZ*> vpEdgesMono;
vpEdgesMono.reserve(nExpectedSize);
vector<ORB_SLAM3::EdgeSE3ProjectXYZToBody*> vpEdgesBody;
vpEdgesBody.reserve(nExpectedSize);
vector<KeyFrame*> vpEdgeKFMono;
vpEdgeKFMono.reserve(nExpectedSize);
vector<KeyFrame*> vpEdgeKFBody;
vpEdgeKFBody.reserve(nExpectedSize);
vector<MapPoint*> vpMapPointEdgeMono;
vpMapPointEdgeMono.reserve(nExpectedSize);
vector<MapPoint*> vpMapPointEdgeBody;
vpMapPointEdgeBody.reserve(nExpectedSize);
vector<g2o::EdgeStereoSE3ProjectXYZ*> vpEdgesStereo;
vpEdgesStereo.reserve(nExpectedSize);
vector<KeyFrame*> vpEdgeKFStereo;
vpEdgeKFStereo.reserve(nExpectedSize);
vector<MapPoint*> vpMapPointEdgeStereo;
vpMapPointEdgeStereo.reserve(nExpectedSize);
// Step 2 向优化器添加顶点
// Set KeyFrame vertices
// Step 2.1 :向优化器添加关键帧位姿顶点
// 对于当前地图中的所有关键帧
for(size_t i=0; i<vpKFs.size(); i++)
{
KeyFrame* pKF = vpKFs[i];
// 去除无效的
if(pKF->isBad())
continue;
// 对于每一个能用的关键帧构造SE3顶点,其实就是当前关键帧的位姿
g2o::VertexSE3Expmap * vSE3 = new g2o::VertexSE3Expmap();
vSE3->setEstimate(Converter::toSE3Quat(pKF->GetPose()));
vSE3->setId(pKF->mnId);
// 只有第0帧关键帧不优化参考基准
vSE3->setFixed(pKF->mnId==pMap->GetInitKFid());
// 向优化器中添加顶点并且更新maxKFid
optimizer.addVertex(vSE3);
if(pKF->mnId>maxKFid)
maxKFid=pKF->mnId;
//cout << "KF id: " << pKF->mnId << endl;
}
// 卡方分布 95% 以上可信度的时候的阈值
const float thHuber2D = sqrt(5.99); // 自由度为2
const float thHuber3D = sqrt(7.815); // 自由度为3
// Set MapPoint vertices
// Step 2.2向优化器添加MapPoints顶点
// 遍历地图中的所有地图点
for(size_t i=0; i<vpMP.size(); i++)
{
MapPoint* pMP = vpMP[i];
// 跳过无效地图点
if(pMP->isBad())
continue;
// 创建顶点
g2o::VertexSBAPointXYZ* vPoint = new g2o::VertexSBAPointXYZ();
// 注意由于地图点的位置是使用cv::Mat数据类型表示的,这里需要转换成为Eigen::Vector3d类型
vPoint->setEstimate(Converter::toVector3d(pMP->GetWorldPos()));
// 前面记录maxKFid 是在这里使用的
const int id = pMP->mnId+maxKFid+1;
vPoint->setId(id);
// g2o在做BA的优化时必须将其所有地图点全部schur掉否则会出错。
// 原因是使用了g2o::LinearSolver<BalBlockSolver::PoseMatrixType>这个类型来指定linearsolver,
// 其中模板参数当中的位姿矩阵类型在程序中为相机姿态参数的维度于是BA当中schur消元后解得线性方程组必须是只含有相机姿态变量。
// Ceres库则没有这样的限制
vPoint->setMarginalized(true);
optimizer.addVertex(vPoint);
// 边的关系,其实就是点和关键帧之间观测的关系
const map<KeyFrame*,tuple<int,int>> observations = pMP->GetObservations();
// 边计数
int nEdges = 0;
//SET EDGES
// Step 3向优化器添加投影边是在遍历地图点、添加地图点的顶点的时候顺便添加的
// 遍历观察到当前地图点的所有关键帧
for(map<KeyFrame*,tuple<int,int>>::const_iterator mit=observations.begin(); mit!=observations.end(); mit++)
{
KeyFrame* pKF = mit->first;
// 滤出不合法的关键帧
if(pKF->isBad() || pKF->mnId>maxKFid)
continue;
if(optimizer.vertex(id) == NULL || optimizer.vertex(pKF->mnId) == NULL)
continue;
nEdges++;
const int leftIndex = get<0>(mit->second);
if(leftIndex != -1 && pKF->mvuRight[get<0>(mit->second)]<0)
{
// 如果是单目相机按照下面操作
const cv::KeyPoint &kpUn = pKF->mvKeysUn[leftIndex];
Eigen::Matrix<double,2,1> obs;
obs << kpUn.pt.x, kpUn.pt.y;
// 创建边
ORB_SLAM3::EdgeSE3ProjectXYZ* e = new ORB_SLAM3::EdgeSE3ProjectXYZ();
// 填充数据,构造约束关系
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKF->mnId)));
e->setMeasurement(obs);
// 信息矩阵也是协方差表明了这个约束的观测在各个维度x,y上的可信程度在我们这里对于具体的一个点两个坐标的可信程度都是相同的
// 其可信程度受到特征点在图像金字塔中的图层有关,图层越高,可信度越差
// 为了避免出现信息矩阵中元素为负数的情况这里使用的是sigma^(-2)
const float &invSigma2 = pKF->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
// 如果要使用鲁棒核函数
if(bRobust)
{
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
// 这里的重投影误差自由度为2所以这里设置为卡方分布中自由度为2的阈值如果重投影的误差大约大于1个像素的时候就认为不太靠谱的点了
// 核函数是为了避免其误差的平方项出现数值上过大的增长
rk->setDelta(thHuber2D);
}
// 设置相机内参
e->pCamera = pKF->mpCamera;
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vpEdgeKFMono.push_back(pKF);
vpMapPointEdgeMono.push_back(pMP);
}
else if(leftIndex != -1 && pKF->mvuRight[leftIndex] >= 0) //Stereo observation
{
// 双目或RGBD相机按照下面操作
// 双目相机的观测数据则是由三个部分组成投影点的x坐标投影点的y坐标以及投影点在右目中的x坐标默认y方向上已经对齐了
const cv::KeyPoint &kpUn = pKF->mvKeysUn[leftIndex];
Eigen::Matrix<double,3,1> obs;
const float kp_ur = pKF->mvuRight[get<0>(mit->second)];
obs << kpUn.pt.x, kpUn.pt.y, kp_ur;
// 对于双目输入g2o也有专门的误差边
g2o::EdgeStereoSE3ProjectXYZ* e = new g2o::EdgeStereoSE3ProjectXYZ();
// 填充
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKF->mnId)));
e->setMeasurement(obs);
// 信息矩阵这里是相同的,考虑的是左目特征点的所在图层
const float &invSigma2 = pKF->mvInvLevelSigma2[kpUn.octave];
Eigen::Matrix3d Info = Eigen::Matrix3d::Identity()*invSigma2;
e->setInformation(Info);
// 如果要使用鲁棒核函数
if(bRobust)
{
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
// 由于现在的观测有三个值重投影误差会有三个平方项的和组成因此对应的卡方分布的自由度为3所以这里设置的也是自由度为3的时候的阈值
rk->setDelta(thHuber3D);
}
// 填充相机的基本参数
e->fx = pKF->fx;
e->fy = pKF->fy;
e->cx = pKF->cx;
e->cy = pKF->cy;
e->bf = pKF->mbf;
optimizer.addEdge(e);
vpEdgesStereo.push_back(e);
vpEdgeKFStereo.push_back(pKF);
vpMapPointEdgeStereo.push_back(pMP);
}
if(pKF->mpCamera2){
int rightIndex = get<1>(mit->second);
if(rightIndex != -1 && rightIndex < pKF->mvKeysRight.size()){
rightIndex -= pKF->NLeft;
Eigen::Matrix<double,2,1> obs;
cv::KeyPoint kp = pKF->mvKeysRight[rightIndex];
obs << kp.pt.x, kp.pt.y;
ORB_SLAM3::EdgeSE3ProjectXYZToBody *e = new ORB_SLAM3::EdgeSE3ProjectXYZToBody();
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKF->mnId)));
e->setMeasurement(obs);
const float &invSigma2 = pKF->mvInvLevelSigma2[kp.octave];
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuber2D);
e->mTrl = Converter::toSE3Quat(pKF->mTrl);
e->pCamera = pKF->mpCamera2;
optimizer.addEdge(e);
vpEdgesBody.push_back(e);
vpEdgeKFBody.push_back(pKF);
vpMapPointEdgeBody.push_back(pMP);
}
}
}
// 如果因为一些特殊原因,实际上并没有任何关键帧观测到当前的这个地图点,那么就删除掉这个顶点,并且这个地图点也就不参与优化
if(nEdges==0)
{
optimizer.removeVertex(vPoint);
vbNotIncludedMP[i]=true;
}
else
{
vbNotIncludedMP[i]=false;
}
}
//cout << "end inserting MPs" << endl;
// Optimize!
// Step 4开始优化
optimizer.setVerbose(false);
optimizer.initializeOptimization();
optimizer.optimize(nIterations);
Verbose::PrintMess("BA: End of the optimization", Verbose::VERBOSITY_NORMAL);
// Recover optimized data
// Step 5得到优化的结果
// Step 5.1 Keyframes
// 遍历所有的关键帧
for(size_t i=0; i<vpKFs.size(); i++)
{
KeyFrame* pKF = vpKFs[i];
if(pKF->isBad())
continue;
// 获取到优化结果
g2o::VertexSE3Expmap* vSE3 = static_cast<g2o::VertexSE3Expmap*>(optimizer.vertex(pKF->mnId));
g2o::SE3Quat SE3quat = vSE3->estimate();
if(nLoopKF==pMap->GetOriginKF()->mnId)
{
// 原则上来讲不会出现"当前闭环关键帧是第0帧"的情况,如果这种情况出现,只能够说明是在创建初始地图点的时候调用的这个全局BA函数.
// 这个时候,地图中就只有两个关键帧,其中优化后的位姿数据可以直接写入到帧的成员变量中
pKF->SetPose(Converter::toCvMat(SE3quat));
}
else
{
/*if(!vSE3->fixed())
{
//cout << "KF " << pKF->mnId << ": " << endl;
pKF->mHessianPose = cv::Mat(6, 6, CV_64F);
pKF->mbHasHessian = true;
for(int r=0; r<6; ++r)
{
for(int c=0; c<6; ++c)
{
//cout << vSE3->hessian(r, c) << ", ";
pKF->mHessianPose.at<double>(r, c) = vSE3->hessian(r, c);
}
//cout << endl;
}
}*/
// 正常的操作,先把优化后的位姿写入到帧的一个专门的成员变量mTcwGBA中备用
pKF->mTcwGBA.create(4,4,CV_32F);
Converter::toCvMat(SE3quat).copyTo(pKF->mTcwGBA);
pKF->mnBAGlobalForKF = nLoopKF;
cv::Mat mTwc = pKF->GetPoseInverse();
cv::Mat mTcGBA_c = pKF->mTcwGBA * mTwc;
cv::Vec3d vector_dist = mTcGBA_c.rowRange(0, 3).col(3);
double dist = cv::norm(vector_dist);
if(dist > 1)
{
int numMonoBadPoints = 0, numMonoOptPoints = 0;
int numStereoBadPoints = 0, numStereoOptPoints = 0;
vector<MapPoint*> vpMonoMPsOpt, vpStereoMPsOpt;
for(size_t i=0, iend=vpEdgesMono.size(); i<iend;i++)
{
ORB_SLAM3::EdgeSE3ProjectXYZ* e = vpEdgesMono[i];
MapPoint* pMP = vpMapPointEdgeMono[i];
KeyFrame* pKFedge = vpEdgeKFMono[i];
if(pKF != pKFedge)
{
continue;
}
if(pMP->isBad())
continue;
if(e->chi2()>5.991 || !e->isDepthPositive())
{
numMonoBadPoints++;
}
else
{
numMonoOptPoints++;
vpMonoMPsOpt.push_back(pMP);
}
}
for(size_t i=0, iend=vpEdgesStereo.size(); i<iend;i++)
{
g2o::EdgeStereoSE3ProjectXYZ* e = vpEdgesStereo[i];
MapPoint* pMP = vpMapPointEdgeStereo[i];
KeyFrame* pKFedge = vpEdgeKFMono[i];
if(pKF != pKFedge)
{
continue;
}
if(pMP->isBad())
continue;
if(e->chi2()>7.815 || !e->isDepthPositive())
{
numStereoBadPoints++;
}
else
{
numStereoOptPoints++;
vpStereoMPsOpt.push_back(pMP);
}
}
Verbose::PrintMess("GBA: KF " + to_string(pKF->mnId) + " had been moved " + to_string(dist) + " meters", Verbose::VERBOSITY_DEBUG);
Verbose::PrintMess("--Number of observations: " + to_string(numMonoOptPoints) + " in mono and " + to_string(numStereoOptPoints) + " in stereo", Verbose::VERBOSITY_DEBUG);
Verbose::PrintMess("--Number of discarded observations: " + to_string(numMonoBadPoints) + " in mono and " + to_string(numStereoBadPoints) + " in stereo", Verbose::VERBOSITY_DEBUG);
}
}
}
Verbose::PrintMess("BA: KFs updated", Verbose::VERBOSITY_DEBUG);
// Step 5.2 遍历所有地图点,去除其中没有参与优化过程的地图点
for(size_t i=0; i<vpMP.size(); i++)
{
if(vbNotIncludedMP[i])
continue;
MapPoint* pMP = vpMP[i];
if(pMP->isBad())
continue;
// 获取优化之后的地图点的位置
g2o::VertexSBAPointXYZ* vPoint = static_cast<g2o::VertexSBAPointXYZ*>(optimizer.vertex(pMP->mnId+maxKFid+1));
if(nLoopKF==pMap->GetOriginKF()->mnId)
{
// 如果这个GBA是在创建初始地图的时候调用的话,那么地图点的位姿也可以直接写入
pMP->SetWorldPos(Converter::toCvMat(vPoint->estimate()));
pMP->UpdateNormalAndDepth();
}
else
{
// 反之,如果是正常的闭环过程调用,就先临时保存一下
pMP->mPosGBA.create(3,1,CV_32F);
Converter::toCvMat(vPoint->estimate()).copyTo(pMP->mPosGBA);
pMP->mnBAGlobalForKF = nLoopKF;
}
}
}
void Optimizer::FullInertialBA(Map *pMap, int its, const bool bFixLocal, const long unsigned int nLoopId, bool *pbStopFlag, bool bInit, float priorG, float priorA, Eigen::VectorXd *vSingVal, bool *bHess)
{
long unsigned int maxKFid = pMap->GetMaxKFid();
const vector<KeyFrame*> vpKFs = pMap->GetAllKeyFrames();
const vector<MapPoint*> vpMPs = pMap->GetAllMapPoints();
// Setup optimizer
g2o::SparseOptimizer optimizer;
g2o::BlockSolverX::LinearSolverType * linearSolver;
linearSolver = new g2o::LinearSolverEigen<g2o::BlockSolverX::PoseMatrixType>();
g2o::BlockSolverX * solver_ptr = new g2o::BlockSolverX(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
solver->setUserLambdaInit(1e-5);
optimizer.setAlgorithm(solver);
optimizer.setVerbose(false);
if(pbStopFlag)
optimizer.setForceStopFlag(pbStopFlag);
int nNonFixed = 0;
// Set KeyFrame vertices
KeyFrame* pIncKF;
for(size_t i=0; i<vpKFs.size(); i++)
{
KeyFrame* pKFi = vpKFs[i];
if(pKFi->mnId>maxKFid)
continue;
VertexPose * VP = new VertexPose(pKFi);
VP->setId(pKFi->mnId);
pIncKF=pKFi;
bool bFixed = false;
if(bFixLocal)
{
bFixed = (pKFi->mnBALocalForKF>=(maxKFid-1)) || (pKFi->mnBAFixedForKF>=(maxKFid-1));
if(!bFixed)
nNonFixed++;
VP->setFixed(bFixed);
}
optimizer.addVertex(VP);
if(pKFi->bImu)
{
VertexVelocity* VV = new VertexVelocity(pKFi);
VV->setId(maxKFid+3*(pKFi->mnId)+1);
VV->setFixed(bFixed);
optimizer.addVertex(VV);
if (!bInit)
{
VertexGyroBias* VG = new VertexGyroBias(pKFi);
VG->setId(maxKFid+3*(pKFi->mnId)+2);
VG->setFixed(bFixed);
optimizer.addVertex(VG);
VertexAccBias* VA = new VertexAccBias(pKFi);
VA->setId(maxKFid+3*(pKFi->mnId)+3);
VA->setFixed(bFixed);
optimizer.addVertex(VA);
}
}
}
if (bInit)
{
VertexGyroBias* VG = new VertexGyroBias(pIncKF);
VG->setId(4*maxKFid+2);
VG->setFixed(false);
optimizer.addVertex(VG);
VertexAccBias* VA = new VertexAccBias(pIncKF);
VA->setId(4*maxKFid+3);
VA->setFixed(false);
optimizer.addVertex(VA);
}
if(bFixLocal)
{
if(nNonFixed<3)
return;
}
// IMU links
for(size_t i=0;i<vpKFs.size();i++)
{
KeyFrame* pKFi = vpKFs[i];
if(!pKFi->mPrevKF)
{
Verbose::PrintMess("NOT INERTIAL LINK TO PREVIOUS FRAME!", Verbose::VERBOSITY_NORMAL);
continue;
}
if(pKFi->mPrevKF && pKFi->mnId<=maxKFid)
{
if(pKFi->isBad() || pKFi->mPrevKF->mnId>maxKFid)
continue;
if(pKFi->bImu && pKFi->mPrevKF->bImu)
{
pKFi->mpImuPreintegrated->SetNewBias(pKFi->mPrevKF->GetImuBias());
g2o::HyperGraph::Vertex* VP1 = optimizer.vertex(pKFi->mPrevKF->mnId);
g2o::HyperGraph::Vertex* VV1 = optimizer.vertex(maxKFid+3*(pKFi->mPrevKF->mnId)+1);
g2o::HyperGraph::Vertex* VG1;
g2o::HyperGraph::Vertex* VA1;
g2o::HyperGraph::Vertex* VG2;
g2o::HyperGraph::Vertex* VA2;
if (!bInit)
{
VG1 = optimizer.vertex(maxKFid+3*(pKFi->mPrevKF->mnId)+2);
VA1 = optimizer.vertex(maxKFid+3*(pKFi->mPrevKF->mnId)+3);
VG2 = optimizer.vertex(maxKFid+3*(pKFi->mnId)+2);
VA2 = optimizer.vertex(maxKFid+3*(pKFi->mnId)+3);
}
else
{
VG1 = optimizer.vertex(4*maxKFid+2);
VA1 = optimizer.vertex(4*maxKFid+3);
}
g2o::HyperGraph::Vertex* VP2 = optimizer.vertex(pKFi->mnId);
g2o::HyperGraph::Vertex* VV2 = optimizer.vertex(maxKFid+3*(pKFi->mnId)+1);
if (!bInit)
{
if(!VP1 || !VV1 || !VG1 || !VA1 || !VP2 || !VV2 || !VG2 || !VA2)
{
cout << "Error" << VP1 << ", "<< VV1 << ", "<< VG1 << ", "<< VA1 << ", " << VP2 << ", " << VV2 << ", "<< VG2 << ", "<< VA2 <<endl;
continue;
}
}
else
{
if(!VP1 || !VV1 || !VG1 || !VA1 || !VP2 || !VV2)
{
cout << "Error" << VP1 << ", "<< VV1 << ", "<< VG1 << ", "<< VA1 << ", " << VP2 << ", " << VV2 <<endl;
continue;
}
}
EdgeInertial* ei = new EdgeInertial(pKFi->mpImuPreintegrated);
ei->setVertex(0,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VP1));
ei->setVertex(1,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VV1));
ei->setVertex(2,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VG1));
ei->setVertex(3,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VA1));
ei->setVertex(4,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VP2));
ei->setVertex(5,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VV2));
g2o::RobustKernelHuber* rki = new g2o::RobustKernelHuber;
ei->setRobustKernel(rki);
rki->setDelta(sqrt(16.92));
optimizer.addEdge(ei);
if (!bInit)
{
EdgeGyroRW* egr= new EdgeGyroRW();
egr->setVertex(0,VG1);
egr->setVertex(1,VG2);
cv::Mat cvInfoG = pKFi->mpImuPreintegrated->C.rowRange(9,12).colRange(9,12).inv(cv::DECOMP_SVD);
Eigen::Matrix3d InfoG;
for(int r=0;r<3;r++)
for(int c=0;c<3;c++)
InfoG(r,c)=cvInfoG.at<float>(r,c);
egr->setInformation(InfoG);
egr->computeError();
optimizer.addEdge(egr);
EdgeAccRW* ear = new EdgeAccRW();
ear->setVertex(0,VA1);
ear->setVertex(1,VA2);
cv::Mat cvInfoA = pKFi->mpImuPreintegrated->C.rowRange(12,15).colRange(12,15).inv(cv::DECOMP_SVD);
Eigen::Matrix3d InfoA;
for(int r=0;r<3;r++)
for(int c=0;c<3;c++)
InfoA(r,c)=cvInfoA.at<float>(r,c);
ear->setInformation(InfoA);
ear->computeError();
optimizer.addEdge(ear);
}
}
else
{
cout << pKFi->mnId << " or " << pKFi->mPrevKF->mnId << " no imu" << endl;
}
}
}
if (bInit)
{
g2o::HyperGraph::Vertex* VG = optimizer.vertex(4*maxKFid+2);
g2o::HyperGraph::Vertex* VA = optimizer.vertex(4*maxKFid+3);
// Add prior to comon biases
EdgePriorAcc* epa = new EdgePriorAcc(cv::Mat::zeros(3,1,CV_32F));
epa->setVertex(0,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VA));
double infoPriorA = priorA; //
epa->setInformation(infoPriorA*Eigen::Matrix3d::Identity());
optimizer.addEdge(epa);
EdgePriorGyro* epg = new EdgePriorGyro(cv::Mat::zeros(3,1,CV_32F));
epg->setVertex(0,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VG));
double infoPriorG = priorG; //
epg->setInformation(infoPriorG*Eigen::Matrix3d::Identity());
optimizer.addEdge(epg);
}
const float thHuberMono = sqrt(5.991);
const float thHuberStereo = sqrt(7.815);
const unsigned long iniMPid = maxKFid*5;
vector<bool> vbNotIncludedMP(vpMPs.size(),false);
for(size_t i=0; i<vpMPs.size(); i++)
{
MapPoint* pMP = vpMPs[i];
g2o::VertexSBAPointXYZ* vPoint = new g2o::VertexSBAPointXYZ();
vPoint->setEstimate(Converter::toVector3d(pMP->GetWorldPos()));
unsigned long id = pMP->mnId+iniMPid+1;
vPoint->setId(id);
vPoint->setMarginalized(true);
optimizer.addVertex(vPoint);
const map<KeyFrame*,tuple<int,int>> observations = pMP->GetObservations();
bool bAllFixed = true;
//Set edges
for(map<KeyFrame*,tuple<int,int>>::const_iterator mit=observations.begin(), mend=observations.end(); mit!=mend; mit++)
{
KeyFrame* pKFi = mit->first;
if(pKFi->mnId>maxKFid)
continue;
if(!pKFi->isBad())
{
const int leftIndex = get<0>(mit->second);
cv::KeyPoint kpUn;
if(leftIndex != -1 && pKFi->mvuRight[get<0>(mit->second)]<0) // Monocular observation
{
kpUn = pKFi->mvKeysUn[leftIndex];
Eigen::Matrix<double,2,1> obs;
obs << kpUn.pt.x, kpUn.pt.y;
EdgeMono* e = new EdgeMono(0);
g2o::OptimizableGraph::Vertex* VP = dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFi->mnId));
if(bAllFixed)
if(!VP->fixed())
bAllFixed=false;
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, VP);
e->setMeasurement(obs);
const float invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberMono);
optimizer.addEdge(e);
}
else if(leftIndex != -1 && pKFi->mvuRight[leftIndex] >= 0) // stereo observation
{
kpUn = pKFi->mvKeysUn[leftIndex];
const float kp_ur = pKFi->mvuRight[leftIndex];
Eigen::Matrix<double,3,1> obs;
obs << kpUn.pt.x, kpUn.pt.y, kp_ur;
EdgeStereo* e = new EdgeStereo(0);
g2o::OptimizableGraph::Vertex* VP = dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFi->mnId));
if(bAllFixed)
if(!VP->fixed())
bAllFixed=false;
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, VP);
e->setMeasurement(obs);
const float invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix3d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberStereo);
optimizer.addEdge(e);
}
if(pKFi->mpCamera2){ // Monocular right observation
int rightIndex = get<1>(mit->second);
if(rightIndex != -1 && rightIndex < pKFi->mvKeysRight.size()){
rightIndex -= pKFi->NLeft;
Eigen::Matrix<double,2,1> obs;
kpUn = pKFi->mvKeysRight[rightIndex];
obs << kpUn.pt.x, kpUn.pt.y;
EdgeMono *e = new EdgeMono(1);
g2o::OptimizableGraph::Vertex* VP = dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFi->mnId));
if(bAllFixed)
if(!VP->fixed())
bAllFixed=false;
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, VP);
e->setMeasurement(obs);
const float invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberMono);
optimizer.addEdge(e);
}
}
}
}
if(bAllFixed)
{
optimizer.removeVertex(vPoint);
vbNotIncludedMP[i]=true;
}
}
if(pbStopFlag)
if(*pbStopFlag)
return;
optimizer.initializeOptimization();
optimizer.optimize(its);
// Recover optimized data
//Keyframes
for(size_t i=0; i<vpKFs.size(); i++)
{
KeyFrame* pKFi = vpKFs[i];
if(pKFi->mnId>maxKFid)
continue;
VertexPose* VP = static_cast<VertexPose*>(optimizer.vertex(pKFi->mnId));
if(nLoopId==0)
{
cv::Mat Tcw = Converter::toCvSE3(VP->estimate().Rcw[0], VP->estimate().tcw[0]);
pKFi->SetPose(Tcw);
}
else
{
pKFi->mTcwGBA = cv::Mat::eye(4,4,CV_32F);
Converter::toCvMat(VP->estimate().Rcw[0]).copyTo(pKFi->mTcwGBA.rowRange(0,3).colRange(0,3));
Converter::toCvMat(VP->estimate().tcw[0]).copyTo(pKFi->mTcwGBA.rowRange(0,3).col(3));
pKFi->mnBAGlobalForKF = nLoopId;
}
if(pKFi->bImu)
{
VertexVelocity* VV = static_cast<VertexVelocity*>(optimizer.vertex(maxKFid+3*(pKFi->mnId)+1));
if(nLoopId==0)
{
pKFi->SetVelocity(Converter::toCvMat(VV->estimate()));
}
else
{
pKFi->mVwbGBA = Converter::toCvMat(VV->estimate());
}
VertexGyroBias* VG;
VertexAccBias* VA;
if (!bInit)
{
VG = static_cast<VertexGyroBias*>(optimizer.vertex(maxKFid+3*(pKFi->mnId)+2));
VA = static_cast<VertexAccBias*>(optimizer.vertex(maxKFid+3*(pKFi->mnId)+3));
}
else
{
VG = static_cast<VertexGyroBias*>(optimizer.vertex(4*maxKFid+2));
VA = static_cast<VertexAccBias*>(optimizer.vertex(4*maxKFid+3));
}
Vector6d vb;
vb << VG->estimate(), VA->estimate();
IMU::Bias b (vb[3],vb[4],vb[5],vb[0],vb[1],vb[2]);
if(nLoopId==0)
{
pKFi->SetNewBias(b);
}
else
{
pKFi->mBiasGBA = b;
}
}
}
//Points
for(size_t i=0; i<vpMPs.size(); i++)
{
if(vbNotIncludedMP[i])
continue;
MapPoint* pMP = vpMPs[i];
g2o::VertexSBAPointXYZ* vPoint = static_cast<g2o::VertexSBAPointXYZ*>(optimizer.vertex(pMP->mnId+iniMPid+1));
if(nLoopId==0)
{
pMP->SetWorldPos(Converter::toCvMat(vPoint->estimate()));
pMP->UpdateNormalAndDepth();
}
else
{
pMP->mPosGBA.create(3,1,CV_32F);
Converter::toCvMat(vPoint->estimate()).copyTo(pMP->mPosGBA);
pMP->mnBAGlobalForKF = nLoopId;
}
}
pMap->IncreaseChangeIndex();
}
int Optimizer::PoseOptimization(Frame *pFrame)
{
// 该优化函数主要用于Tracking线程中运动跟踪、参考帧跟踪、地图跟踪、重定位
// Step 1构造g2o优化器, BlockSolver_6_3表示位姿 _PoseDim 为6维路标点 _LandmarkDim 是3维
g2o::SparseOptimizer optimizer;
g2o::BlockSolver_6_3::LinearSolverType * linearSolver;
linearSolver = new g2o::LinearSolverDense<g2o::BlockSolver_6_3::PoseMatrixType>();
g2o::BlockSolver_6_3 * solver_ptr = new g2o::BlockSolver_6_3(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
optimizer.setAlgorithm(solver);
// 输入的帧中,有效的,参与优化过程的2D-3D点对
int nInitialCorrespondences=0;
// Set Frame vertex
// Step 2添加顶点待优化当前帧的Tcw
g2o::VertexSE3Expmap * vSE3 = new g2o::VertexSE3Expmap();
vSE3->setEstimate(Converter::toSE3Quat(pFrame->mTcw));
// 设置id
vSE3->setId(0);
// 要优化的变量,所以不能固定
vSE3->setFixed(false);
optimizer.addVertex(vSE3);
// Set MapPoint vertices
const int N = pFrame->N;
vector<ORB_SLAM3::EdgeSE3ProjectXYZOnlyPose*> vpEdgesMono;
vector<ORB_SLAM3::EdgeSE3ProjectXYZOnlyPoseToBody *> vpEdgesMono_FHR;
vector<size_t> vnIndexEdgeMono, vnIndexEdgeRight;
vpEdgesMono.reserve(N);
vpEdgesMono_FHR.reserve(N);
vnIndexEdgeMono.reserve(N);
vnIndexEdgeRight.reserve(N);
vector<g2o::EdgeStereoSE3ProjectXYZOnlyPose*> vpEdgesStereo;
vector<size_t> vnIndexEdgeStereo;
vpEdgesStereo.reserve(N);
vnIndexEdgeStereo.reserve(N);
// 自由度为2的卡方分布显著性水平为0.05对应的临界阈值5.991
const float deltaMono = sqrt(5.991);
// 自由度为3的卡方分布显著性水平为0.05对应的临界阈值7.815
const float deltaStereo = sqrt(7.815);
// Step 3添加一元边
{
// 锁定地图点。由于需要使用地图点来构造顶点和边,因此不希望在构造的过程中部分地图点被改写造成不一致甚至是段错误
unique_lock<mutex> lock(MapPoint::mGlobalMutex);
// 遍历当前地图中的所有地图点
for(int i=0; i<N; i++)
{
MapPoint* pMP = pFrame->mvpMapPoints[i];
// 如果这个地图点还存在没有被剔除掉
if(pMP)
{
//Conventional SLAM
if(!pFrame->mpCamera2){
// Monocular observation
// 单目情况
if(pFrame->mvuRight[i]<0)
{
nInitialCorrespondences++;
pFrame->mvbOutlier[i] = false;
// 对这个地图点的观测
Eigen::Matrix<double,2,1> obs;
const cv::KeyPoint &kpUn = pFrame->mvKeysUn[i];
obs << kpUn.pt.x, kpUn.pt.y;
// 新建节点,注意这个节点的只是优化位姿Pose
ORB_SLAM3::EdgeSE3ProjectXYZOnlyPose* e = new ORB_SLAM3::EdgeSE3ProjectXYZOnlyPose();
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(0)));
e->setMeasurement(obs);
// 这个点的可信程度和特征点所在的图层有关
const float invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
// 在这里使用了鲁棒核函数
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(deltaMono);
// 设置相机内参
e->pCamera = pFrame->mpCamera;
// 地图点的空间位置,作为迭代的初始值
cv::Mat Xw = pMP->GetWorldPos();
e->Xw[0] = Xw.at<float>(0);
e->Xw[1] = Xw.at<float>(1);
e->Xw[2] = Xw.at<float>(2);
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vnIndexEdgeMono.push_back(i);
}
else // Stereo observation
{
nInitialCorrespondences++;
pFrame->mvbOutlier[i] = false;
//SET EDGE
// 观测多了一项右目的坐标
Eigen::Matrix<double,3,1> obs;
const cv::KeyPoint &kpUn = pFrame->mvKeysUn[i];
const float &kp_ur = pFrame->mvuRight[i];
obs << kpUn.pt.x, kpUn.pt.y, kp_ur;
// 新建节点,注意这里也是只优化位姿
g2o::EdgeStereoSE3ProjectXYZOnlyPose* e = new g2o::EdgeStereoSE3ProjectXYZOnlyPose();
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(0)));
e->setMeasurement(obs);
// 置信程度主要是看左目特征点所在的图层
const float invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave];
Eigen::Matrix3d Info = Eigen::Matrix3d::Identity()*invSigma2;
e->setInformation(Info);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(deltaStereo);
e->fx = pFrame->fx;
e->fy = pFrame->fy;
e->cx = pFrame->cx;
e->cy = pFrame->cy;
e->bf = pFrame->mbf;
cv::Mat Xw = pMP->GetWorldPos();
e->Xw[0] = Xw.at<float>(0);
e->Xw[1] = Xw.at<float>(1);
e->Xw[2] = Xw.at<float>(2);
optimizer.addEdge(e);
vpEdgesStereo.push_back(e);
vnIndexEdgeStereo.push_back(i);
}
}
//SLAM with respect a rigid body
else{
nInitialCorrespondences++;
cv::KeyPoint kpUn;
if (i < pFrame->Nleft) { //Left camera observation
kpUn = pFrame->mvKeys[i];
pFrame->mvbOutlier[i] = false;
Eigen::Matrix<double, 2, 1> obs;
obs << kpUn.pt.x, kpUn.pt.y;
ORB_SLAM3::EdgeSE3ProjectXYZOnlyPose *e = new ORB_SLAM3::EdgeSE3ProjectXYZOnlyPose();
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex *>(optimizer.vertex(0)));
e->setMeasurement(obs);
const float invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix2d::Identity() * invSigma2);
g2o::RobustKernelHuber *rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(deltaMono);
e->pCamera = pFrame->mpCamera;
cv::Mat Xw = pMP->GetWorldPos();
e->Xw[0] = Xw.at<float>(0);
e->Xw[1] = Xw.at<float>(1);
e->Xw[2] = Xw.at<float>(2);
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vnIndexEdgeMono.push_back(i);
}
else { //Right camera observation
//continue;
kpUn = pFrame->mvKeysRight[i - pFrame->Nleft];
Eigen::Matrix<double, 2, 1> obs;
obs << kpUn.pt.x, kpUn.pt.y;
pFrame->mvbOutlier[i] = false;
ORB_SLAM3::EdgeSE3ProjectXYZOnlyPoseToBody *e = new ORB_SLAM3::EdgeSE3ProjectXYZOnlyPoseToBody();
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex *>(optimizer.vertex(0)));
e->setMeasurement(obs);
const float invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix2d::Identity() * invSigma2);
g2o::RobustKernelHuber *rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(deltaMono);
e->pCamera = pFrame->mpCamera2;
cv::Mat Xw = pMP->GetWorldPos();
e->Xw[0] = Xw.at<float>(0);
e->Xw[1] = Xw.at<float>(1);
e->Xw[2] = Xw.at<float>(2);
e->mTrl = Converter::toSE3Quat(pFrame->mTrl);
optimizer.addEdge(e);
vpEdgesMono_FHR.push_back(e);
vnIndexEdgeRight.push_back(i);
}
}
}
}
}
// 如果没有足够的匹配点,那么就只好放弃了
//cout << "PO: vnIndexEdgeMono.size() = " << vnIndexEdgeMono.size() << " vnIndexEdgeRight.size() = " << vnIndexEdgeRight.size() << endl;
if(nInitialCorrespondences<3)
return 0;
// We perform 4 optimizations, after each optimization we classify observation as inlier/outlier
// At the next optimization, outliers are not included, but at the end they can be classified as inliers again.
// Step 4开始优化总共优化四次每次优化迭代10次,每次优化后将观测分为outlier和inlieroutlier不参与下次优化
// 由于每次优化后是对所有的观测进行outlier和inlier判别因此之前被判别为outlier有可能变成inlier反之亦然
// 基于卡方检验计算出的阈值(假设测量有一个像素的偏差)
const float chi2Mono[4]={5.991,5.991,5.991,5.991}; // 单目
const float chi2Stereo[4]={7.815,7.815,7.815, 7.815}; // 双目
const int its[4]={10,10,10,10};// 四次迭代,每次迭代的次数
// bad 的地图点个数
int nBad=0;
// 一共进行四次优化
for(size_t it=0; it<4; it++)
{
vSE3->setEstimate(Converter::toSE3Quat(pFrame->mTcw));
// 其实就是初始化优化器,这里的参数0就算是不填写,默认也是0,也就是只对level为0的边进行优化
optimizer.initializeOptimization(0);
// 开始优化优化10次
optimizer.optimize(its[it]);
nBad=0;
// 优化结束,开始遍历参与优化的每一条误差边(单目)
for(size_t i=0, iend=vpEdgesMono.size(); i<iend; i++)
{
ORB_SLAM3::EdgeSE3ProjectXYZOnlyPose* e = vpEdgesMono[i];
const size_t idx = vnIndexEdgeMono[i];
// 如果这条误差边是来自于outlier
if(pFrame->mvbOutlier[idx])
{
e->computeError();
}
// 就是error*\Omega*error,表征了这个点的误差大小(考虑置信度以后)
const float chi2 = e->chi2();
if(chi2>chi2Mono[it])
{
pFrame->mvbOutlier[idx]=true;
e->setLevel(1); // 设置为outlier , level 1 对应为外点,上面的过程中我们设置其为不优化
nBad++;
}
else
{
pFrame->mvbOutlier[idx]=false;
e->setLevel(0); // 设置为inlier, level 0 对应为内点,上面的过程中我们就是要优化这些关系
}
if(it==2)
e->setRobustKernel(0); // 除了前两次优化需要RobustKernel以外, 其余的优化都不需要 -- 因为重投影的误差已经有明显的下降了
}
for(size_t i=0, iend=vpEdgesMono_FHR.size(); i<iend; i++)
{
ORB_SLAM3::EdgeSE3ProjectXYZOnlyPoseToBody* e = vpEdgesMono_FHR[i];
const size_t idx = vnIndexEdgeRight[i];
if(pFrame->mvbOutlier[idx])
{
e->computeError();
}
const float chi2 = e->chi2();
if(chi2>chi2Mono[it])
{
pFrame->mvbOutlier[idx]=true;
e->setLevel(1);
nBad++;
}
else
{
pFrame->mvbOutlier[idx]=false;
e->setLevel(0);
}
if(it==2)
e->setRobustKernel(0);
}
for(size_t i=0, iend=vpEdgesStereo.size(); i<iend; i++)
{
g2o::EdgeStereoSE3ProjectXYZOnlyPose* e = vpEdgesStereo[i];
const size_t idx = vnIndexEdgeStereo[i];
if(pFrame->mvbOutlier[idx])
{
e->computeError();
}
const float chi2 = e->chi2();
if(chi2>chi2Stereo[it])
{
pFrame->mvbOutlier[idx]=true;
e->setLevel(1);
nBad++;
}
else
{
e->setLevel(0);
pFrame->mvbOutlier[idx]=false;
}
if(it==2)
e->setRobustKernel(0);
}
if(optimizer.edges().size()<10)
break;
}
// Recover optimized pose and return number of inliers
// Step 5 得到优化后的当前帧的位姿
g2o::VertexSE3Expmap* vSE3_recov = static_cast<g2o::VertexSE3Expmap*>(optimizer.vertex(0));
g2o::SE3Quat SE3quat_recov = vSE3_recov->estimate();
cv::Mat pose = Converter::toCvMat(SE3quat_recov);
pFrame->SetPose(pose);
//cout << "[PoseOptimization]: initial correspondences-> " << nInitialCorrespondences << " --- outliers-> " << nBad << endl;
// 并且返回内点数目
return nInitialCorrespondences-nBad;
}
void Optimizer::LocalBundleAdjustment(KeyFrame *pKF, bool* pbStopFlag, vector<KeyFrame*> &vpNonEnoughOptKFs)
{
// 该优化函数用于LocalMapping线程的局部BA优化
// Local KeyFrames: First Breath Search from Current Keyframe
list<KeyFrame*> lLocalKeyFrames;
// Step 1 将当前关键帧及其共视关键帧加入lLocalKeyFrames
lLocalKeyFrames.push_back(pKF);
pKF->mnBALocalForKF = pKF->mnId;
Map* pCurrentMap = pKF->GetMap();
// 找到关键帧连接的共视关键帧一级相连加入lLocalKeyFrames中
const vector<KeyFrame*> vNeighKFs = pKF->GetVectorCovisibleKeyFrames();
for(int i=0, iend=vNeighKFs.size(); i<iend; i++)
{
KeyFrame* pKFi = vNeighKFs[i];
// 把参与局部BA的每一个关键帧的 mnBALocalForKF设置为当前关键帧的mnId防止重复添加
pKFi->mnBALocalForKF = pKF->mnId;
if(!pKFi->isBad() && pKFi->GetMap() == pCurrentMap)
lLocalKeyFrames.push_back(pKFi);
}
for(KeyFrame* pKFi : vpNonEnoughOptKFs)
{
if(!pKFi->isBad() && pKFi->GetMap() == pCurrentMap && pKFi->mnBALocalForKF != pKF->mnId)
{
pKFi->mnBALocalForKF = pKF->mnId;
lLocalKeyFrames.push_back(pKFi);
}
}
// Local MapPoints seen in Local KeyFrames
// Step 2 遍历 lLocalKeyFrames 中(一级)关键帧将它们观测的MapPoints加入到lLocalMapPoints
list<MapPoint*> lLocalMapPoints;
set<MapPoint*> sNumObsMP;
int num_fixedKF;
// 遍历 lLocalKeyFrames 中的每一个关键帧
for(list<KeyFrame*>::iterator lit=lLocalKeyFrames.begin() , lend=lLocalKeyFrames.end(); lit!=lend; lit++)
{
KeyFrame* pKFi = *lit;
if(pKFi->mnId==pCurrentMap->GetInitKFid())
{
num_fixedKF = 1;
}
vector<MapPoint*> vpMPs = pKFi->GetMapPointMatches();
// 遍历这个关键帧观测到的每一个地图点加入到lLocalMapPoints
for(vector<MapPoint*>::iterator vit=vpMPs.begin(), vend=vpMPs.end(); vit!=vend; vit++)
{
MapPoint* pMP = *vit;
if(pMP)
if(!pMP->isBad() && pMP->GetMap() == pCurrentMap)
{
// 把参与局部BA的每一个地图点的 mnBALocalForKF设置为当前关键帧的mnId
// mnBALocalForKF 是为了防止重复添加
if(pMP->mnBALocalForKF!=pKF->mnId)
{
lLocalMapPoints.push_back(pMP);
pMP->mnBALocalForKF=pKF->mnId;
}
}
}
}
// Fixed Keyframes. Keyframes that see Local MapPoints but that are not Local Keyframes
// Step 3 得到能被局部MapPoints观测到但不属于局部关键帧的(二级)关键帧这些关键帧在局部BA优化时不优化
list<KeyFrame*> lFixedCameras;
// 遍历局部地图中的每个地图点
for(list<MapPoint*>::iterator lit=lLocalMapPoints.begin(), lend=lLocalMapPoints.end(); lit!=lend; lit++)
{
// 观测到该MapPoint的KF和该MapPoint在KF中的索引
map<KeyFrame*,tuple<int,int>> observations = (*lit)->GetObservations();
// 遍历所有观测到该地图点的关键帧
for(map<KeyFrame*,tuple<int,int>>::iterator mit=observations.begin(), mend=observations.end(); mit!=mend; mit++)
{
KeyFrame* pKFi = mit->first;
// pKFi->mnBALocalForKF!=pKF->mnId 表示不属于局部关键帧,
// pKFi->mnBAFixedForKF!=pKF->mnId 表示还未标记为fixed固定的关键帧
if(pKFi->mnBALocalForKF!=pKF->mnId && pKFi->mnBAFixedForKF!=pKF->mnId )
{
// 将局部地图点能观测到的、但是不属于局部BA范围的关键帧的mnBAFixedForKF标记为pKF触发局部BA的当前关键帧的mnId
pKFi->mnBAFixedForKF=pKF->mnId;
if(!pKFi->isBad() && pKFi->GetMap() == pCurrentMap)
lFixedCameras.push_back(pKFi);
}
}
}
num_fixedKF = lFixedCameras.size() + num_fixedKF;
if(num_fixedKF < 2)
{
//Verbose::PrintMess("LM-LBA: New Fixed KFs had been set", Verbose::VERBOSITY_NORMAL);
//TODO We set 2 KFs to fixed to avoid a degree of freedom in scale
list<KeyFrame*>::iterator lit=lLocalKeyFrames.begin();
int lowerId = pKF->mnId;
KeyFrame* pLowerKf;
int secondLowerId = pKF->mnId;
KeyFrame* pSecondLowerKF;
for(; lit != lLocalKeyFrames.end(); lit++)
{
KeyFrame* pKFi = *lit;
if(pKFi == pKF || pKFi->mnId == pCurrentMap->GetInitKFid())
{
continue;
}
if(pKFi->mnId < lowerId)
{
lowerId = pKFi->mnId;
pLowerKf = pKFi;
}
else if(pKFi->mnId < secondLowerId)
{
secondLowerId = pKFi->mnId;
pSecondLowerKF = pKFi;
}
}
lFixedCameras.push_back(pLowerKf);
lLocalKeyFrames.remove(pLowerKf);
num_fixedKF++;
if(num_fixedKF < 2)
{
lFixedCameras.push_back(pSecondLowerKF);
lLocalKeyFrames.remove(pSecondLowerKF);
num_fixedKF++;
}
}
if(num_fixedKF == 0)
{
Verbose::PrintMess("LM-LBA: There are 0 fixed KF in the optimizations, LBA aborted", Verbose::VERBOSITY_NORMAL);
//return;
}
//Verbose::PrintMess("LM-LBA: There are " + to_string(lLocalKeyFrames.size()) + " KFs and " + to_string(lLocalMapPoints.size()) + " MPs to optimize. " + to_string(num_fixedKF) + " KFs are fixed", Verbose::VERBOSITY_DEBUG);
// Setup optimizer
// Step 4 构造g2o优化器按照步骤来就行了
g2o::SparseOptimizer optimizer;
g2o::BlockSolver_6_3::LinearSolverType * linearSolver;
linearSolver = new g2o::LinearSolverEigen<g2o::BlockSolver_6_3::PoseMatrixType>();
g2o::BlockSolver_6_3 * solver_ptr = new g2o::BlockSolver_6_3(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
if (pCurrentMap->IsInertial())
solver->setUserLambdaInit(100.0); // TODO uncomment
//cout << "LM-LBA: lambda init: " << solver->userLambdaInit() << endl;
optimizer.setAlgorithm(solver);
optimizer.setVerbose(false);
// 外界设置的停止优化标志
// 可能在 Tracking::NeedNewKeyFrame() 里置位
if(pbStopFlag)
optimizer.setForceStopFlag(pbStopFlag);
// 记录参与局部BA的最大关键帧mnId
unsigned long maxKFid = 0;
// Set Local KeyFrame vertices
// Step 5 添加待优化的位姿顶点Pose of Local KeyFrame
for(list<KeyFrame*>::iterator lit=lLocalKeyFrames.begin(), lend=lLocalKeyFrames.end(); lit!=lend; lit++)
{
KeyFrame* pKFi = *lit;
g2o::VertexSE3Expmap * vSE3 = new g2o::VertexSE3Expmap();
// 设置初始优化位姿
vSE3->setEstimate(Converter::toSE3Quat(pKFi->GetPose()));
vSE3->setId(pKFi->mnId);
// 如果是初始关键帧,要锁住位姿不优化
vSE3->setFixed(pKFi->mnId==pCurrentMap->GetInitKFid());
optimizer.addVertex(vSE3);
if(pKFi->mnId>maxKFid)
maxKFid=pKFi->mnId;
}
// Set Fixed KeyFrame vertices
// Step 6 添加不优化的位姿顶点Pose of Fixed KeyFrame注意这里调用了vSE3->setFixed(true)
// 不优化为啥也要添加?回答:为了增加约束信息
for(list<KeyFrame*>::iterator lit=lFixedCameras.begin(), lend=lFixedCameras.end(); lit!=lend; lit++)
{
KeyFrame* pKFi = *lit;
g2o::VertexSE3Expmap * vSE3 = new g2o::VertexSE3Expmap();
vSE3->setEstimate(Converter::toSE3Quat(pKFi->GetPose()));
vSE3->setId(pKFi->mnId);
// 所有的这些顶点的位姿都不优化,只是为了增加约束项
vSE3->setFixed(true);
optimizer.addVertex(vSE3);
if(pKFi->mnId>maxKFid)
maxKFid=pKFi->mnId;
}
Verbose::PrintMess("LM-LBA: opt/fixed KFs: " + to_string(lLocalKeyFrames.size()) + "/" + to_string(lFixedCameras.size()), Verbose::VERBOSITY_DEBUG);
Verbose::PrintMess("LM-LBA: local MPs: " + to_string(lLocalMapPoints.size()), Verbose::VERBOSITY_DEBUG);
// Set MapPoint vertices
// Step 7 添加待优化的3D地图点顶点
// 边的数目 = pose数目 * 地图点数目
const int nExpectedSize = (lLocalKeyFrames.size()+lFixedCameras.size())*lLocalMapPoints.size();
vector<ORB_SLAM3::EdgeSE3ProjectXYZ*> vpEdgesMono;
vpEdgesMono.reserve(nExpectedSize);
vector<ORB_SLAM3::EdgeSE3ProjectXYZToBody*> vpEdgesBody;
vpEdgesBody.reserve(nExpectedSize);
vector<KeyFrame*> vpEdgeKFMono;
vpEdgeKFMono.reserve(nExpectedSize);
vector<KeyFrame*> vpEdgeKFBody;
vpEdgeKFBody.reserve(nExpectedSize);
vector<MapPoint*> vpMapPointEdgeMono;
vpMapPointEdgeMono.reserve(nExpectedSize);
vector<MapPoint*> vpMapPointEdgeBody;
vpMapPointEdgeBody.reserve(nExpectedSize);
vector<g2o::EdgeStereoSE3ProjectXYZ*> vpEdgesStereo;
vpEdgesStereo.reserve(nExpectedSize);
vector<KeyFrame*> vpEdgeKFStereo;
vpEdgeKFStereo.reserve(nExpectedSize);
vector<MapPoint*> vpMapPointEdgeStereo;
vpMapPointEdgeStereo.reserve(nExpectedSize);
// 自由度为2的卡方分布显著性水平为0.05对应的临界阈值5.991
const float thHuberMono = sqrt(5.991);
// 自由度为3的卡方分布显著性水平为0.05对应的临界阈值7.815
const float thHuberStereo = sqrt(7.815);
int nPoints = 0;
int nKFs = lLocalKeyFrames.size()+lFixedCameras.size(), nEdges = 0;
// 遍历所有的局部地图中的地图点
for(list<MapPoint*>::iterator lit=lLocalMapPoints.begin(), lend=lLocalMapPoints.end(); lit!=lend; lit++)
{
// 添加顶点MapPoint
MapPoint* pMP = *lit;
g2o::VertexSBAPointXYZ* vPoint = new g2o::VertexSBAPointXYZ();
vPoint->setEstimate(Converter::toVector3d(pMP->GetWorldPos()));
// 前面记录maxKFid的作用在这里体现
int id = pMP->mnId+maxKFid+1;
vPoint->setId(id);
// 因为使用了LinearSolverType所以需要将所有的三维点边缘化掉
vPoint->setMarginalized(true);
optimizer.addVertex(vPoint);
nPoints++;
// 观测到该地图点的KF和该地图点在KF中的索引
const map<KeyFrame*,tuple<int,int>> observations = pMP->GetObservations();
//Set edges
// Step 8 在添加完了一个地图点之后, 对每一对关联的MapPoint和KeyFrame构建边
// 遍历所有观测到当前地图点的关键帧
for(map<KeyFrame*,tuple<int,int>>::const_iterator mit=observations.begin(), mend=observations.end(); mit!=mend; mit++)
{
KeyFrame* pKFi = mit->first;
if(!pKFi->isBad() && pKFi->GetMap() == pCurrentMap)
{
const int cam0Index = get<0>(mit->second);
// 根据单目/双目两种不同的输入构造不同的误差边
// Monocular observation of Camera 0
// 单目模式下
if(cam0Index != -1 && pKFi->mvuRight[cam0Index]<0)
{
const cv::KeyPoint &kpUn = pKFi->mvKeysUn[cam0Index];
Eigen::Matrix<double,2,1> obs;
obs << kpUn.pt.x, kpUn.pt.y;
ORB_SLAM3::EdgeSE3ProjectXYZ* e = new ORB_SLAM3::EdgeSE3ProjectXYZ();
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFi->mnId)));
e->setMeasurement(obs);
// 权重为特征点所在图像金字塔的层数的倒数
const float &invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
// 使用鲁棒核函数抑制外点
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberMono);
e->pCamera = pKFi->mpCamera;
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vpEdgeKFMono.push_back(pKFi);
vpMapPointEdgeMono.push_back(pMP);
nEdges++;
}
else if(cam0Index != -1 && pKFi->mvuRight[cam0Index]>=0)// Stereo observation (with rectified images)
{
const cv::KeyPoint &kpUn = pKFi->mvKeysUn[cam0Index];
Eigen::Matrix<double,3,1> obs;
const float kp_ur = pKFi->mvuRight[cam0Index];
obs << kpUn.pt.x, kpUn.pt.y, kp_ur;
g2o::EdgeStereoSE3ProjectXYZ* e = new g2o::EdgeStereoSE3ProjectXYZ();
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFi->mnId)));
e->setMeasurement(obs);
const float &invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave];
Eigen::Matrix3d Info = Eigen::Matrix3d::Identity()*invSigma2;
e->setInformation(Info);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberStereo);
e->fx = pKFi->fx;
e->fy = pKFi->fy;
e->cx = pKFi->cx;
e->cy = pKFi->cy;
e->bf = pKFi->mbf;
optimizer.addEdge(e);
vpEdgesStereo.push_back(e);
vpEdgeKFStereo.push_back(pKFi);
vpMapPointEdgeStereo.push_back(pMP);
nEdges++;
}
// Monocular observation of Camera 0
if(pKFi->mpCamera2){
int rightIndex = get<1>(mit->second);
if(rightIndex != -1 ){
rightIndex -= pKFi->NLeft;
Eigen::Matrix<double,2,1> obs;
cv::KeyPoint kp = pKFi->mvKeysRight[rightIndex];
obs << kp.pt.x, kp.pt.y;
ORB_SLAM3::EdgeSE3ProjectXYZToBody *e = new ORB_SLAM3::EdgeSE3ProjectXYZToBody();
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFi->mnId)));
e->setMeasurement(obs);
const float &invSigma2 = pKFi->mvInvLevelSigma2[kp.octave];
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberMono);
e->mTrl = Converter::toSE3Quat(pKFi->mTrl);
e->pCamera = pKFi->mpCamera2;
optimizer.addEdge(e);
vpEdgesBody.push_back(e);
vpEdgeKFBody.push_back(pKFi);
vpMapPointEdgeBody.push_back(pMP);
nEdges++;
}
}
}
}
}
// 开始BA前再次确认是否有外部请求停止优化因为这个变量是引用传递会随外部变化
// 可能在 Tracking::NeedNewKeyFrame(), mpLocalMapper->InsertKeyFrame 里置位
if(pbStopFlag)
if(*pbStopFlag)
{
return;
}
// Step 9 开始优化。分成两个阶段
// 第一阶段优化
optimizer.initializeOptimization();
// 迭代5次
//std::chrono::steady_clock::time_point begin = std::chrono::steady_clock::now();
int numPerform_it = optimizer.optimize(5);
//std::chrono::steady_clock::time_point end = std::chrono::steady_clock::now();
//std::cout << "LBA time = " << std::chrono::duration_cast<std::chrono::milliseconds>(end - begin).count() << "[ms]" << std::endl;
//std::cout << "Keyframes: " << nKFs << " --- MapPoints: " << nPoints << " --- Edges: " << nEdges << endl;
bool bDoMore= true;
// 检查是否外部请求停止
if(pbStopFlag)
if(*pbStopFlag)
bDoMore = false;
// 如果有外部请求停止,那么就不在进行第二阶段的优化
if(bDoMore)
{
// Check inlier observations
int nMonoBadObs = 0;
// Step 10 检测outlier并设置下次不优化
// 遍历所有的单目误差边
for(size_t i=0, iend=vpEdgesMono.size(); i<iend;i++)
{
ORB_SLAM3::EdgeSE3ProjectXYZ* e = vpEdgesMono[i];
MapPoint* pMP = vpMapPointEdgeMono[i];
if(pMP->isBad())
continue;
if(e->chi2()>5.991 || !e->isDepthPositive())
{
//e->setLevel(1);
nMonoBadObs++;
}
//e->setRobustKernel(0);
}
int nBodyBadObs = 0;
for(size_t i=0, iend=vpEdgesBody.size(); i<iend;i++)
{
ORB_SLAM3::EdgeSE3ProjectXYZToBody* e = vpEdgesBody[i];
MapPoint* pMP = vpMapPointEdgeBody[i];
if(pMP->isBad())
continue;
if(e->chi2()>5.991 || !e->isDepthPositive())
{
//e->setLevel(1);
nBodyBadObs++;
}
//e->setRobustKernel(0);
}
// 对于所有的双目的误差边也都进行类似的操作
int nStereoBadObs = 0;
for(size_t i=0, iend=vpEdgesStereo.size(); i<iend;i++)
{
g2o::EdgeStereoSE3ProjectXYZ* e = vpEdgesStereo[i];
MapPoint* pMP = vpMapPointEdgeStereo[i];
if(pMP->isBad())
continue;
// 自由度为3的卡方分布显著性水平为0.05对应的临界阈值7.815
if(e->chi2()>7.815 || !e->isDepthPositive())
{
//e->setLevel(1);
nStereoBadObs++;
}
//e->setRobustKernel(0);
}
Verbose::PrintMess("LM-LBA: First optimization has " + to_string(nMonoBadObs) + " monocular and " + to_string(nStereoBadObs) + " stereo bad observations", Verbose::VERBOSITY_DEBUG);
// Optimize again without the outliers
// Step 11排除误差较大的outlier后再次优化 -- 第二阶段优化
//Verbose::PrintMess("LM-LBA: second optimization", Verbose::VERBOSITY_DEBUG);
//optimizer.initializeOptimization(0);
//numPerform_it = optimizer.optimize(10);
numPerform_it += optimizer.optimize(5);
}
vector<pair<KeyFrame*,MapPoint*> > vToErase;
vToErase.reserve(vpEdgesMono.size()+vpEdgesBody.size()+vpEdgesStereo.size());
// Check inlier observations
// Step 12在优化后重新计算误差剔除连接误差比较大的关键帧和MapPoint
// 对于单目误差边
for(size_t i=0, iend=vpEdgesMono.size(); i<iend;i++)
{
ORB_SLAM3::EdgeSE3ProjectXYZ* e = vpEdgesMono[i];
MapPoint* pMP = vpMapPointEdgeMono[i];
if(pMP->isBad())
continue;
// 基于卡方检验计算出的阈值(假设测量有一个像素的偏差)
// 自由度为2的卡方分布显著性水平为0.05对应的临界阈值5.991
// 如果 当前边误差超出阈值,或者边链接的地图点深度值为负,说明这个边有问题,要删掉了
if(e->chi2()>5.991 || !e->isDepthPositive())
{
// outlier
KeyFrame* pKFi = vpEdgeKFMono[i];
vToErase.push_back(make_pair(pKFi,pMP));
}
}
for(size_t i=0, iend=vpEdgesBody.size(); i<iend;i++)
{
ORB_SLAM3::EdgeSE3ProjectXYZToBody* e = vpEdgesBody[i];
MapPoint* pMP = vpMapPointEdgeBody[i];
if(pMP->isBad())
continue;
if(e->chi2()>5.991 || !e->isDepthPositive())
{
KeyFrame* pKFi = vpEdgeKFBody[i];
vToErase.push_back(make_pair(pKFi,pMP));
}
}
// 双目误差边
for(size_t i=0, iend=vpEdgesStereo.size(); i<iend;i++)
{
g2o::EdgeStereoSE3ProjectXYZ* e = vpEdgesStereo[i];
MapPoint* pMP = vpMapPointEdgeStereo[i];
if(pMP->isBad())
continue;
if(e->chi2()>7.815 || !e->isDepthPositive())
{
KeyFrame* pKFi = vpEdgeKFStereo[i];
vToErase.push_back(make_pair(pKFi,pMP));
}
}
Verbose::PrintMess("LM-LBA: outlier observations: " + to_string(vToErase.size()), Verbose::VERBOSITY_DEBUG);
Verbose::PrintMess("LM-LBA: total of observations: " + to_string(vpMapPointEdgeMono.size()+vpMapPointEdgeStereo.size()), Verbose::VERBOSITY_DEBUG);
bool bRedrawError = false;
bool bWriteStats = false;
// Get Map Mutex
unique_lock<mutex> lock(pCurrentMap->mMutexMapUpdate);
// 删除点
// 连接偏差比较大,在关键帧中剔除对该地图点的观测
// 连接偏差比较大,在地图点中剔除对该关键帧的观测
if(!vToErase.empty())
{
//cout << "LM-LBA: There are " << vToErase.size() << " observations whose will be deleted from the map" << endl;
for(size_t i=0;i<vToErase.size();i++)
{
KeyFrame* pKFi = vToErase[i].first;
MapPoint* pMPi = vToErase[i].second;
pKFi->EraseMapPointMatch(pMPi);
pMPi->EraseObservation(pKFi);
}
}
// Recover optimized data
// Step 13优化后更新关键帧位姿以及地图点的位置、平均观测方向等属性
//Keyframes
vpNonEnoughOptKFs.clear();
for(list<KeyFrame*>::iterator lit=lLocalKeyFrames.begin(), lend=lLocalKeyFrames.end(); lit!=lend; lit++)
{
KeyFrame* pKFi = *lit;
g2o::VertexSE3Expmap* vSE3 = static_cast<g2o::VertexSE3Expmap*>(optimizer.vertex(pKFi->mnId));
g2o::SE3Quat SE3quat = vSE3->estimate();
cv::Mat Tiw = Converter::toCvMat(SE3quat);
cv::Mat Tco_cn = pKFi->GetPose() * Tiw.inv();
cv::Vec3d trasl = Tco_cn.rowRange(0,3).col(3);
double dist = cv::norm(trasl);
pKFi->SetPose(Converter::toCvMat(SE3quat));
pKFi->mnNumberOfOpt += numPerform_it;
//cout << "LM-LBA: KF " << pKFi->mnId << " had performed " << pKFi->mnNumberOfOpt << " iterations" << endl;
if(pKFi->mnNumberOfOpt < 10)
{
vpNonEnoughOptKFs.push_back(pKFi);
}
}
//Points
for(list<MapPoint*>::iterator lit=lLocalMapPoints.begin(), lend=lLocalMapPoints.end(); lit!=lend; lit++)
{
MapPoint* pMP = *lit;
g2o::VertexSBAPointXYZ* vPoint = static_cast<g2o::VertexSBAPointXYZ*>(optimizer.vertex(pMP->mnId+maxKFid+1));
pMP->SetWorldPos(Converter::toCvMat(vPoint->estimate()));
pMP->UpdateNormalAndDepth();
}
pCurrentMap->IncreaseChangeIndex();
}
void Optimizer::LocalBundleAdjustment(KeyFrame *pKF, bool* pbStopFlag, Map* pMap, int& num_fixedKF)
{
//cout << "LBA" << endl;
// Local KeyFrames: First Breath Search from Current Keyframe
list<KeyFrame*> lLocalKeyFrames;
lLocalKeyFrames.push_back(pKF);
pKF->mnBALocalForKF = pKF->mnId;
Map* pCurrentMap = pKF->GetMap();
const vector<KeyFrame*> vNeighKFs = pKF->GetVectorCovisibleKeyFrames();
for(int i=0, iend=vNeighKFs.size(); i<iend; i++)
{
KeyFrame* pKFi = vNeighKFs[i];
pKFi->mnBALocalForKF = pKF->mnId;
if(!pKFi->isBad() && pKFi->GetMap() == pCurrentMap)
lLocalKeyFrames.push_back(pKFi);
}
// Local MapPoints seen in Local KeyFrames
num_fixedKF = 0;
list<MapPoint*> lLocalMapPoints;
set<MapPoint*> sNumObsMP;
for(list<KeyFrame*>::iterator lit=lLocalKeyFrames.begin() , lend=lLocalKeyFrames.end(); lit!=lend; lit++)
{
KeyFrame* pKFi = *lit;
if(pKFi->mnId==pMap->GetInitKFid())
{
num_fixedKF = 1;
}
vector<MapPoint*> vpMPs = pKFi->GetMapPointMatches();
for(vector<MapPoint*>::iterator vit=vpMPs.begin(), vend=vpMPs.end(); vit!=vend; vit++)
{
MapPoint* pMP = *vit;
if(pMP)
if(!pMP->isBad() && pMP->GetMap() == pCurrentMap)
{
if(pMP->mnBALocalForKF!=pKF->mnId)
{
lLocalMapPoints.push_back(pMP);
pMP->mnBALocalForKF=pKF->mnId;
}
}
}
}
// Fixed Keyframes. Keyframes that see Local MapPoints but that are not Local Keyframes
list<KeyFrame*> lFixedCameras;
for(list<MapPoint*>::iterator lit=lLocalMapPoints.begin(), lend=lLocalMapPoints.end(); lit!=lend; lit++)
{
map<KeyFrame*,tuple<int,int>> observations = (*lit)->GetObservations();
for(map<KeyFrame*,tuple<int,int>>::iterator mit=observations.begin(), mend=observations.end(); mit!=mend; mit++)
{
KeyFrame* pKFi = mit->first;
if(pKFi->mnBALocalForKF!=pKF->mnId && pKFi->mnBAFixedForKF!=pKF->mnId )
{
pKFi->mnBAFixedForKF=pKF->mnId;
if(!pKFi->isBad() && pKFi->GetMap() == pCurrentMap)
lFixedCameras.push_back(pKFi);
}
}
}
num_fixedKF = lFixedCameras.size() + num_fixedKF;
if(num_fixedKF < 2)
{
//Verbose::PrintMess("LM-LBA: New Fixed KFs had been set", Verbose::VERBOSITY_NORMAL);
//TODO We set 2 KFs to fixed to avoid a degree of freedom in scale
list<KeyFrame*>::iterator lit=lLocalKeyFrames.begin();
int lowerId = pKF->mnId;
KeyFrame* pLowerKf;
int secondLowerId = pKF->mnId;
KeyFrame* pSecondLowerKF;
for(; lit != lLocalKeyFrames.end(); lit++)
{
KeyFrame* pKFi = *lit;
if(pKFi == pKF || pKFi->mnId == pMap->GetInitKFid())
{
continue;
}
if(pKFi->mnId < lowerId)
{
lowerId = pKFi->mnId;
pLowerKf = pKFi;
}
else if(pKFi->mnId < secondLowerId)
{
secondLowerId = pKFi->mnId;
pSecondLowerKF = pKFi;
}
}
lFixedCameras.push_back(pLowerKf);
lLocalKeyFrames.remove(pLowerKf);
num_fixedKF++;
if(num_fixedKF < 2)
{
lFixedCameras.push_back(pSecondLowerKF);
lLocalKeyFrames.remove(pSecondLowerKF);
num_fixedKF++;
}
}
if(num_fixedKF == 0)
{
Verbose::PrintMess("LM-LBA: There are 0 fixed KF in the optimizations, LBA aborted", Verbose::VERBOSITY_NORMAL);
//return;
}
//Verbose::PrintMess("LM-LBA: There are " + to_string(lLocalKeyFrames.size()) + " KFs and " + to_string(lLocalMapPoints.size()) + " MPs to optimize. " + to_string(num_fixedKF) + " KFs are fixed", Verbose::VERBOSITY_DEBUG);
// Setup optimizer
g2o::SparseOptimizer optimizer;
g2o::BlockSolver_6_3::LinearSolverType * linearSolver;
linearSolver = new g2o::LinearSolverEigen<g2o::BlockSolver_6_3::PoseMatrixType>();
g2o::BlockSolver_6_3 * solver_ptr = new g2o::BlockSolver_6_3(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
if (pMap->IsInertial())
solver->setUserLambdaInit(100.0); // TODO uncomment
//cout << "LM-LBA: lambda init: " << solver->userLambdaInit() << endl;
optimizer.setAlgorithm(solver);
optimizer.setVerbose(false);
if(pbStopFlag)
optimizer.setForceStopFlag(pbStopFlag);
unsigned long maxKFid = 0;
// Set Local KeyFrame vertices
for(list<KeyFrame*>::iterator lit=lLocalKeyFrames.begin(), lend=lLocalKeyFrames.end(); lit!=lend; lit++)
{
KeyFrame* pKFi = *lit;
g2o::VertexSE3Expmap * vSE3 = new g2o::VertexSE3Expmap();
vSE3->setEstimate(Converter::toSE3Quat(pKFi->GetPose()));
vSE3->setId(pKFi->mnId);
vSE3->setFixed(pKFi->mnId==pMap->GetInitKFid());
optimizer.addVertex(vSE3);
if(pKFi->mnId>maxKFid)
maxKFid=pKFi->mnId;
}
//Verbose::PrintMess("LM-LBA: KFs to optimize added", Verbose::VERBOSITY_DEBUG);
// Set Fixed KeyFrame vertices
for(list<KeyFrame*>::iterator lit=lFixedCameras.begin(), lend=lFixedCameras.end(); lit!=lend; lit++)
{
KeyFrame* pKFi = *lit;
g2o::VertexSE3Expmap * vSE3 = new g2o::VertexSE3Expmap();
vSE3->setEstimate(Converter::toSE3Quat(pKFi->GetPose()));
vSE3->setId(pKFi->mnId);
vSE3->setFixed(true);
optimizer.addVertex(vSE3);
if(pKFi->mnId>maxKFid)
maxKFid=pKFi->mnId;
}
// Set MapPoint vertices
const int nExpectedSize = (lLocalKeyFrames.size()+lFixedCameras.size())*lLocalMapPoints.size();
vector<ORB_SLAM3::EdgeSE3ProjectXYZ*> vpEdgesMono;
vpEdgesMono.reserve(nExpectedSize);
vector<ORB_SLAM3::EdgeSE3ProjectXYZToBody*> vpEdgesBody;
vpEdgesBody.reserve(nExpectedSize);
vector<KeyFrame*> vpEdgeKFMono;
vpEdgeKFMono.reserve(nExpectedSize);
vector<KeyFrame*> vpEdgeKFBody;
vpEdgeKFBody.reserve(nExpectedSize);
vector<MapPoint*> vpMapPointEdgeMono;
vpMapPointEdgeMono.reserve(nExpectedSize);
vector<MapPoint*> vpMapPointEdgeBody;
vpMapPointEdgeBody.reserve(nExpectedSize);
vector<g2o::EdgeStereoSE3ProjectXYZ*> vpEdgesStereo;
vpEdgesStereo.reserve(nExpectedSize);
vector<KeyFrame*> vpEdgeKFStereo;
vpEdgeKFStereo.reserve(nExpectedSize);
vector<MapPoint*> vpMapPointEdgeStereo;
vpMapPointEdgeStereo.reserve(nExpectedSize);
const float thHuberMono = sqrt(5.991);
const float thHuberStereo = sqrt(7.815);
int nPoints = 0;
int nKFs = lLocalKeyFrames.size()+lFixedCameras.size(), nEdges = 0;
for(list<MapPoint*>::iterator lit=lLocalMapPoints.begin(), lend=lLocalMapPoints.end(); lit!=lend; lit++)
{
MapPoint* pMP = *lit;
g2o::VertexSBAPointXYZ* vPoint = new g2o::VertexSBAPointXYZ();
vPoint->setEstimate(Converter::toVector3d(pMP->GetWorldPos()));
int id = pMP->mnId+maxKFid+1;
vPoint->setId(id);
vPoint->setMarginalized(true);
optimizer.addVertex(vPoint);
nPoints++;
const map<KeyFrame*,tuple<int,int>> observations = pMP->GetObservations();
//Set edges
for(map<KeyFrame*,tuple<int,int>>::const_iterator mit=observations.begin(), mend=observations.end(); mit!=mend; mit++)
{
KeyFrame* pKFi = mit->first;
if(!pKFi->isBad() && pKFi->GetMap() == pCurrentMap)
{
const int leftIndex = get<0>(mit->second);
// Monocular observation
if(leftIndex != -1 && pKFi->mvuRight[get<0>(mit->second)]<0)
{
const cv::KeyPoint &kpUn = pKFi->mvKeysUn[leftIndex];
Eigen::Matrix<double,2,1> obs;
obs << kpUn.pt.x, kpUn.pt.y;
ORB_SLAM3::EdgeSE3ProjectXYZ* e = new ORB_SLAM3::EdgeSE3ProjectXYZ();
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFi->mnId)));
e->setMeasurement(obs);
const float &invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberMono);
e->pCamera = pKFi->mpCamera;
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vpEdgeKFMono.push_back(pKFi);
vpMapPointEdgeMono.push_back(pMP);
nEdges++;
}
else if(leftIndex != -1 && pKFi->mvuRight[get<0>(mit->second)]>=0)// Stereo observation
{
const cv::KeyPoint &kpUn = pKFi->mvKeysUn[leftIndex];
Eigen::Matrix<double,3,1> obs;
const float kp_ur = pKFi->mvuRight[get<0>(mit->second)];
obs << kpUn.pt.x, kpUn.pt.y, kp_ur;
g2o::EdgeStereoSE3ProjectXYZ* e = new g2o::EdgeStereoSE3ProjectXYZ();
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFi->mnId)));
e->setMeasurement(obs);
const float &invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave];
Eigen::Matrix3d Info = Eigen::Matrix3d::Identity()*invSigma2;
e->setInformation(Info);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberStereo);
e->fx = pKFi->fx;
e->fy = pKFi->fy;
e->cx = pKFi->cx;
e->cy = pKFi->cy;
e->bf = pKFi->mbf;
optimizer.addEdge(e);
vpEdgesStereo.push_back(e);
vpEdgeKFStereo.push_back(pKFi);
vpMapPointEdgeStereo.push_back(pMP);
nEdges++;
}
if(pKFi->mpCamera2){
int rightIndex = get<1>(mit->second);
if(rightIndex != -1 ){
rightIndex -= pKFi->NLeft;
Eigen::Matrix<double,2,1> obs;
cv::KeyPoint kp = pKFi->mvKeysRight[rightIndex];
obs << kp.pt.x, kp.pt.y;
ORB_SLAM3::EdgeSE3ProjectXYZToBody *e = new ORB_SLAM3::EdgeSE3ProjectXYZToBody();
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFi->mnId)));
e->setMeasurement(obs);
const float &invSigma2 = pKFi->mvInvLevelSigma2[kp.octave];
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberMono);
e->mTrl = Converter::toSE3Quat(pKFi->mTrl);
e->pCamera = pKFi->mpCamera2;
optimizer.addEdge(e);
vpEdgesBody.push_back(e);
vpEdgeKFBody.push_back(pKFi);
vpMapPointEdgeBody.push_back(pMP);
nEdges++;
}
}
}
}
}
//Verbose::PrintMess("LM-LBA: total observations: " + to_string(vpMapPointEdgeMono.size()+vpMapPointEdgeStereo.size()), Verbose::VERBOSITY_DEBUG);
if(pbStopFlag)
if(*pbStopFlag)
return;
optimizer.initializeOptimization();
std::chrono::steady_clock::time_point begin = std::chrono::steady_clock::now();
optimizer.optimize(5);
std::chrono::steady_clock::time_point end = std::chrono::steady_clock::now();
//std::cout << "LBA time = " << std::chrono::duration_cast<std::chrono::milliseconds>(end - begin).count() << "[ms]" << std::endl;
//std::cout << "Keyframes: " << nKFs << " --- MapPoints: " << nPoints << " --- Edges: " << nEdges << endl;
bool bDoMore= true;
if(pbStopFlag)
if(*pbStopFlag)
bDoMore = false;
if(bDoMore)
{
// Check inlier observations
int nMonoBadObs = 0;
for(size_t i=0, iend=vpEdgesMono.size(); i<iend;i++)
{
ORB_SLAM3::EdgeSE3ProjectXYZ* e = vpEdgesMono[i];
MapPoint* pMP = vpMapPointEdgeMono[i];
if(pMP->isBad())
continue;
if(e->chi2()>5.991 || !e->isDepthPositive())
{
// e->setLevel(1); // MODIFICATION
nMonoBadObs++;
}
//e->setRobustKernel(0);
}
int nBodyBadObs = 0;
for(size_t i=0, iend=vpEdgesBody.size(); i<iend;i++)
{
ORB_SLAM3::EdgeSE3ProjectXYZToBody* e = vpEdgesBody[i];
MapPoint* pMP = vpMapPointEdgeBody[i];
if(pMP->isBad())
continue;
if(e->chi2()>5.991 || !e->isDepthPositive())
{
//e->setLevel(1);
nBodyBadObs++;
}
//e->setRobustKernel(0);
}
int nStereoBadObs = 0;
for(size_t i=0, iend=vpEdgesStereo.size(); i<iend;i++)
{
g2o::EdgeStereoSE3ProjectXYZ* e = vpEdgesStereo[i];
MapPoint* pMP = vpMapPointEdgeStereo[i];
if(pMP->isBad())
continue;
if(e->chi2()>7.815 || !e->isDepthPositive())
{
//TODO e->setLevel(1);
nStereoBadObs++;
}
//TODO e->setRobustKernel(0);
}
//Verbose::PrintMess("LM-LBA: First optimization has " + to_string(nMonoBadObs) + " monocular and " + to_string(nStereoBadObs) + " stereo bad observations", Verbose::VERBOSITY_DEBUG);
// Optimize again without the outliers
//Verbose::PrintMess("LM-LBA: second optimization", Verbose::VERBOSITY_DEBUG);
optimizer.initializeOptimization(0);
optimizer.optimize(10);
}
vector<pair<KeyFrame*,MapPoint*> > vToErase;
vToErase.reserve(vpEdgesMono.size()+vpEdgesBody.size()+vpEdgesStereo.size());
// Check inlier observations
for(size_t i=0, iend=vpEdgesMono.size(); i<iend;i++)
{
ORB_SLAM3::EdgeSE3ProjectXYZ* e = vpEdgesMono[i];
MapPoint* pMP = vpMapPointEdgeMono[i];
if(pMP->isBad())
continue;
if(e->chi2()>5.991 || !e->isDepthPositive())
{
KeyFrame* pKFi = vpEdgeKFMono[i];
vToErase.push_back(make_pair(pKFi,pMP));
}
}
for(size_t i=0, iend=vpEdgesBody.size(); i<iend;i++)
{
ORB_SLAM3::EdgeSE3ProjectXYZToBody* e = vpEdgesBody[i];
MapPoint* pMP = vpMapPointEdgeBody[i];
if(pMP->isBad())
continue;
if(e->chi2()>5.991 || !e->isDepthPositive())
{
KeyFrame* pKFi = vpEdgeKFBody[i];
vToErase.push_back(make_pair(pKFi,pMP));
}
}
for(size_t i=0, iend=vpEdgesStereo.size(); i<iend;i++)
{
g2o::EdgeStereoSE3ProjectXYZ* e = vpEdgesStereo[i];
MapPoint* pMP = vpMapPointEdgeStereo[i];
if(pMP->isBad())
continue;
if(e->chi2()>7.815 || !e->isDepthPositive())
{
KeyFrame* pKFi = vpEdgeKFStereo[i];
vToErase.push_back(make_pair(pKFi,pMP));
}
}
//Verbose::PrintMess("LM-LBA: outlier observations: " + to_string(vToErase.size()), Verbose::VERBOSITY_DEBUG);
bool bRedrawError = false;
if(vToErase.size() >= (vpMapPointEdgeMono.size()+vpMapPointEdgeStereo.size()) * 0.5)
{
Verbose::PrintMess("LM-LBA: ERROR IN THE OPTIMIZATION, MOST OF THE POINTS HAS BECOME OUTLIERS", Verbose::VERBOSITY_NORMAL);
return;
bRedrawError = true;
string folder_name = "test_LBA";
string name = "_PreLM_LBA";
name = "_PreLM_LBA_Fixed";
}
// Get Map Mutex
unique_lock<mutex> lock(pMap->mMutexMapUpdate);
if(!vToErase.empty())
{
map<KeyFrame*, int> mspInitialConnectedKFs;
map<KeyFrame*, int> mspInitialObservationKFs;
if(bRedrawError)
{
for(KeyFrame* pKFi : lLocalKeyFrames)
{
mspInitialConnectedKFs[pKFi] = pKFi->GetConnectedKeyFrames().size();
mspInitialObservationKFs[pKFi] = pKFi->GetNumberMPs();
}
}
//cout << "LM-LBA: There are " << vToErase.size() << " observations whose will be deleted from the map" << endl;
for(size_t i=0;i<vToErase.size();i++)
{
KeyFrame* pKFi = vToErase[i].first;
MapPoint* pMPi = vToErase[i].second;
pKFi->EraseMapPointMatch(pMPi);
pMPi->EraseObservation(pKFi);
}
map<KeyFrame*, int> mspFinalConnectedKFs;
map<KeyFrame*, int> mspFinalObservationKFs;
if(bRedrawError)
{
ofstream f_lba;
f_lba.open("test_LBA/LBA_failure_KF" + to_string(pKF->mnId) +".txt");
f_lba << "# KF id, Initial Num CovKFs, Final Num CovKFs, Initial Num MPs, Fimal Num MPs" << endl;
f_lba << fixed;
for(KeyFrame* pKFi : lLocalKeyFrames)
{
pKFi->UpdateConnections();
int finalNumberCovKFs = pKFi->GetConnectedKeyFrames().size();
int finalNumberMPs = pKFi->GetNumberMPs();
f_lba << pKFi->mnId << ", " << mspInitialConnectedKFs[pKFi] << ", " << finalNumberCovKFs << ", " << mspInitialObservationKFs[pKFi] << ", " << finalNumberMPs << endl;
mspFinalConnectedKFs[pKFi] = finalNumberCovKFs;
mspFinalObservationKFs[pKFi] = finalNumberMPs;
}
f_lba.close();
}
}
// Recover optimized data
//Keyframes
bool bShowStats = false;
for(list<KeyFrame*>::iterator lit=lLocalKeyFrames.begin(), lend=lLocalKeyFrames.end(); lit!=lend; lit++)
{
KeyFrame* pKFi = *lit;
g2o::VertexSE3Expmap* vSE3 = static_cast<g2o::VertexSE3Expmap*>(optimizer.vertex(pKFi->mnId));
g2o::SE3Quat SE3quat = vSE3->estimate();
cv::Mat Tiw = Converter::toCvMat(SE3quat);
cv::Mat Tco_cn = pKFi->GetPose() * Tiw.inv();
cv::Vec3d trasl = Tco_cn.rowRange(0,3).col(3);
double dist = cv::norm(trasl);
pKFi->SetPose(Converter::toCvMat(SE3quat));
if(dist > 1.0)
{
bShowStats = true;
Verbose::PrintMess("LM-LBA: Too much distance in KF " + to_string(pKFi->mnId) + ", " + to_string(dist) + " meters. Current KF " + to_string(pKF->mnId), Verbose::VERBOSITY_DEBUG);
Verbose::PrintMess("LM-LBA: Number of connections between the KFs " + to_string(pKF->GetWeight((pKFi))), Verbose::VERBOSITY_DEBUG);
int numMonoMP = 0, numBadMonoMP = 0;
int numStereoMP = 0, numBadStereoMP = 0;
for(size_t i=0, iend=vpEdgesMono.size(); i<iend;i++)
{
if(vpEdgeKFMono[i] != pKFi)
continue;
ORB_SLAM3::EdgeSE3ProjectXYZ* e = vpEdgesMono[i];
MapPoint* pMP = vpMapPointEdgeMono[i];
if(pMP->isBad())
continue;
if(e->chi2()>5.991 || !e->isDepthPositive())
{
numBadMonoMP++;
}
else
{
numMonoMP++;
}
}
for(size_t i=0, iend=vpEdgesStereo.size(); i<iend;i++)
{
if(vpEdgeKFStereo[i] != pKFi)
continue;
g2o::EdgeStereoSE3ProjectXYZ* e = vpEdgesStereo[i];
MapPoint* pMP = vpMapPointEdgeStereo[i];
if(pMP->isBad())
continue;
if(e->chi2()>7.815 || !e->isDepthPositive())
{
numBadStereoMP++;
}
else
{
numStereoMP++;
}
}
Verbose::PrintMess("LM-LBA: Good observations in mono " + to_string(numMonoMP) + " and stereo " + to_string(numStereoMP), Verbose::VERBOSITY_DEBUG);
Verbose::PrintMess("LM-LBA: Bad observations in mono " + to_string(numBadMonoMP) + " and stereo " + to_string(numBadStereoMP), Verbose::VERBOSITY_DEBUG);
}
}
//Points
for(list<MapPoint*>::iterator lit=lLocalMapPoints.begin(), lend=lLocalMapPoints.end(); lit!=lend; lit++)
{
MapPoint* pMP = *lit;
g2o::VertexSBAPointXYZ* vPoint = static_cast<g2o::VertexSBAPointXYZ*>(optimizer.vertex(pMP->mnId+maxKFid+1));
pMP->SetWorldPos(Converter::toCvMat(vPoint->estimate()));
pMP->UpdateNormalAndDepth();
}
if(bRedrawError)
{
string folder_name = "test_LBA";
string name = "_PostLM_LBA";
//pMap->printReprojectionError(lLocalKeyFrames, pKF, name, folder_name);
name = "_PostLM_LBA_Fixed";
//pMap->printReprojectionError(lFixedCameras, pKF, name, folder_name);
}
// TODO Check this changeindex
pMap->IncreaseChangeIndex();
}
void Optimizer::OptimizeEssentialGraph(Map* pMap, KeyFrame* pLoopKF, KeyFrame* pCurKF,
const LoopClosing::KeyFrameAndPose &NonCorrectedSim3,
const LoopClosing::KeyFrameAndPose &CorrectedSim3,
const map<KeyFrame *, set<KeyFrame *> > &LoopConnections, const bool &bFixScale)
{
// Setup optimizer
// Step 1构造优化器
g2o::SparseOptimizer optimizer;
optimizer.setVerbose(false);
// 指定线性方程求解器使用Eigen的块求解器
g2o::BlockSolver_7_3::LinearSolverType * linearSolver =
new g2o::LinearSolverEigen<g2o::BlockSolver_7_3::PoseMatrixType>();
// 构造线性求解器
g2o::BlockSolver_7_3 * solver_ptr= new g2o::BlockSolver_7_3(linearSolver);
// 使用LM算法进行非线性迭代
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
// 第一次迭代的初始lambda值如未指定会自动计算一个合适的值
solver->setUserLambdaInit(1e-16);
optimizer.setAlgorithm(solver);
// 获取当前地图中的所有关键帧 和地图点
const vector<KeyFrame*> vpKFs = pMap->GetAllKeyFrames();
const vector<MapPoint*> vpMPs = pMap->GetAllMapPoints();
// 最大关键帧id用于添加顶点时使用
const unsigned int nMaxKFid = pMap->GetMaxKFid();
// 记录所有优化前关键帧的位姿优先使用在闭环时通过Sim3传播调整过的Sim3位姿
vector<g2o::Sim3,Eigen::aligned_allocator<g2o::Sim3> > vScw(nMaxKFid+1);
// 记录所有关键帧经过本次本质图优化过的位姿
vector<g2o::Sim3,Eigen::aligned_allocator<g2o::Sim3> > vCorrectedSwc(nMaxKFid+1);
// 这个变量没有用
vector<g2o::VertexSim3Expmap*> vpVertices(nMaxKFid+1);
vector<Eigen::Vector3d> vZvectors(nMaxKFid+1); // For debugging
Eigen::Vector3d z_vec;
z_vec << 0.0, 0.0, 1.0;
// 两个关键帧之间共视关系的权重也就是共视点的数目单目x1双目/rgbd x2的最小值
const int minFeat = 100; // MODIFICATION originally was set to 100
// Set KeyFrame vertices
// Step 2将地图中所有关键帧的pose作为顶点添加到优化器
// 尽可能使用经过Sim3调整的位姿
// 遍历全局地图中的所有的关键帧
for(size_t i=0, iend=vpKFs.size(); i<iend;i++)
{
KeyFrame* pKF = vpKFs[i];
if(pKF->isBad())
continue;
g2o::VertexSim3Expmap* VSim3 = new g2o::VertexSim3Expmap();
// 关键帧在所有关键帧中的id用来设置为顶点的id
const int nIDi = pKF->mnId;
LoopClosing::KeyFrameAndPose::const_iterator it = CorrectedSim3.find(pKF);
if(it!=CorrectedSim3.end())
{
// 如果该关键帧在闭环时通过Sim3传播调整过优先用调整后的Sim3位姿
vScw[nIDi] = it->second;
VSim3->setEstimate(it->second);
}
else
{
// 如果该关键帧在闭环时没有通过Sim3传播调整过用跟踪时的位姿
Eigen::Matrix<double,3,3> Rcw = Converter::toMatrix3d(pKF->GetRotation());
Eigen::Matrix<double,3,1> tcw = Converter::toVector3d(pKF->GetTranslation());
g2o::Sim3 Siw(Rcw,tcw,1.0); //尺度为1
vScw[nIDi] = Siw;
VSim3->setEstimate(Siw);
}
// 闭环匹配上的帧不进行位姿优化(认为是准确的,作为基准)
if(pKF->mnId==pMap->GetInitKFid())
VSim3->setFixed(true);
VSim3->setId(nIDi);
VSim3->setMarginalized(false);
// 和当前系统的传感器有关如果是RGBD或者是双目那么就不需要优化sim3的缩放系数保持为1即可
VSim3->_fix_scale = bFixScale;
optimizer.addVertex(VSim3);
vZvectors[nIDi]=vScw[nIDi].rotation().toRotationMatrix()*z_vec; // For debugging
// 优化前的pose顶点后面代码中没有使用
vpVertices[nIDi]=VSim3;
}
// 保存由于闭环后优化sim3而出现的新的关键帧和关键帧之间的连接关系,其中id比较小的关键帧在前,id比较大的关键帧在后
set<pair<long unsigned int,long unsigned int> > sInsertedEdges;
const Eigen::Matrix<double,7,7> matLambda = Eigen::Matrix<double,7,7>::Identity();
// Set Loop edges
// Step 3添加第1种边LoopConnections是闭环时因为地图点调整而出现的新关键帧连接关系
int count_loop = 0;
for(map<KeyFrame *, set<KeyFrame *> >::const_iterator mit = LoopConnections.begin(), mend=LoopConnections.end(); mit!=mend; mit++)
{
KeyFrame* pKF = mit->first;
const long unsigned int nIDi = pKF->mnId;
// 和pKF 有连接关系的关键帧
const set<KeyFrame*> &spConnections = mit->second;
const g2o::Sim3 Siw = vScw[nIDi];
const g2o::Sim3 Swi = Siw.inverse();
// 对于当前关键帧nIDi而言遍历每一个新添加的关键帧nIDj链接关系
for(set<KeyFrame*>::const_iterator sit=spConnections.begin(), send=spConnections.end(); sit!=send; sit++)
{
const long unsigned int nIDj = (*sit)->mnId;
// 条件1至少有一个不是pCurKF或pLoopKF
// 条件2共视程度太少(<100),不足以构成约束的边
if((nIDi!=pCurKF->mnId || nIDj!=pLoopKF->mnId) && pKF->GetWeight(*sit)<minFeat)
continue;
// 通过上面考验的帧有两种情况:
// 1、恰好是当前帧及其闭环帧 nIDi=pCurKF 并且nIDj=pLoopKF此时忽略共视程度2、 任意两对共视程度大于100
const g2o::Sim3 Sjw = vScw[nIDj];
// 得到两个pose间的Sim3变换
const g2o::Sim3 Sji = Sjw * Swi;
g2o::EdgeSim3* e = new g2o::EdgeSim3();
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDj)));
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
// Sji内部是经过了Sim调整的观测
e->setMeasurement(Sji);
// 信息矩阵是单位阵,说明这类新增加的边对总误差的贡献也都是一样大的
e->information() = matLambda;
optimizer.addEdge(e);
count_loop++;
// 保证id小的在前,大的在后
sInsertedEdges.insert(make_pair(min(nIDi,nIDj),max(nIDi,nIDj)));
}
}
int count_spa_tree = 0;
int count_cov = 0;
int count_imu = 0;
int count_kf = 0;
// Set normal edges
for(size_t i=0, iend=vpKFs.size(); i<iend; i++)
{
count_kf = 0;
KeyFrame* pKF = vpKFs[i];
const int nIDi = pKF->mnId;
g2o::Sim3 Swi;
LoopClosing::KeyFrameAndPose::const_iterator iti = NonCorrectedSim3.find(pKF);
if(iti!=NonCorrectedSim3.end())
Swi = (iti->second).inverse();
else
Swi = vScw[nIDi].inverse();
KeyFrame* pParentKF = pKF->GetParent();
// Spanning tree edge
if(pParentKF)
{
int nIDj = pParentKF->mnId;
g2o::Sim3 Sjw;
LoopClosing::KeyFrameAndPose::const_iterator itj = NonCorrectedSim3.find(pParentKF);
if(itj!=NonCorrectedSim3.end())
Sjw = itj->second;
else
Sjw = vScw[nIDj];
g2o::Sim3 Sji = Sjw * Swi;
g2o::EdgeSim3* e = new g2o::EdgeSim3();
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDj)));
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
e->setMeasurement(Sji);
count_kf++;
count_spa_tree++;
e->information() = matLambda;
optimizer.addEdge(e);
}
// Loop edges
const set<KeyFrame*> sLoopEdges = pKF->GetLoopEdges();
for(set<KeyFrame*>::const_iterator sit=sLoopEdges.begin(), send=sLoopEdges.end(); sit!=send; sit++)
{
KeyFrame* pLKF = *sit;
if(pLKF->mnId<pKF->mnId)
{
g2o::Sim3 Slw;
LoopClosing::KeyFrameAndPose::const_iterator itl = NonCorrectedSim3.find(pLKF);
if(itl!=NonCorrectedSim3.end())
Slw = itl->second;
else
Slw = vScw[pLKF->mnId];
g2o::Sim3 Sli = Slw * Swi;
g2o::EdgeSim3* el = new g2o::EdgeSim3();
el->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pLKF->mnId)));
el->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
el->setMeasurement(Sli);
el->information() = matLambda;
optimizer.addEdge(el);
count_kf++;
count_loop++;
}
}
// Covisibility graph edges
const vector<KeyFrame*> vpConnectedKFs = pKF->GetCovisiblesByWeight(minFeat);
for(vector<KeyFrame*>::const_iterator vit=vpConnectedKFs.begin(); vit!=vpConnectedKFs.end(); vit++)
{
KeyFrame* pKFn = *vit;
if(pKFn && pKFn!=pParentKF && !pKF->hasChild(pKFn) && !sLoopEdges.count(pKFn))
{
if(!pKFn->isBad() && pKFn->mnId<pKF->mnId)
{
if(sInsertedEdges.count(make_pair(min(pKF->mnId,pKFn->mnId),max(pKF->mnId,pKFn->mnId))))
continue;
g2o::Sim3 Snw;
LoopClosing::KeyFrameAndPose::const_iterator itn = NonCorrectedSim3.find(pKFn);
if(itn!=NonCorrectedSim3.end())
Snw = itn->second;
else
Snw = vScw[pKFn->mnId];
g2o::Sim3 Sni = Snw * Swi;
g2o::EdgeSim3* en = new g2o::EdgeSim3();
en->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFn->mnId)));
en->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
en->setMeasurement(Sni);
en->information() = matLambda;
optimizer.addEdge(en);
count_kf++;
count_cov++;
}
}
}
// Inertial edges if inertial
if(pKF->bImu && pKF->mPrevKF)
{
g2o::Sim3 Spw;
LoopClosing::KeyFrameAndPose::const_iterator itp = NonCorrectedSim3.find(pKF->mPrevKF);
if(itp!=NonCorrectedSim3.end())
Spw = itp->second;
else
Spw = vScw[pKF->mPrevKF->mnId];
g2o::Sim3 Spi = Spw * Swi;
g2o::EdgeSim3* ep = new g2o::EdgeSim3();
ep->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKF->mPrevKF->mnId)));
ep->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
ep->setMeasurement(Spi);
ep->information() = matLambda;
optimizer.addEdge(ep);
count_kf++;
count_imu++;
}
/*if(count_kf<3)
cout << "EG: kf with " << count_kf << " edges!! ID: " << pKF->mnId << endl;*/
}
//cout << "EG: Number of KFs: " << vpKFs.size() << endl;
//cout << "EG: spaning tree edges: " << count_spa_tree << endl;
//cout << "EG: Loop edges: " << count_loop << endl;
//cout << "EG: covisible edges: " << count_cov << endl;
//cout << "EG: imu edges: " << count_imu << endl;
// Optimize!
optimizer.initializeOptimization();
optimizer.computeActiveErrors();
float err0 = optimizer.activeRobustChi2();
optimizer.optimize(20);
optimizer.computeActiveErrors();
float errEnd = optimizer.activeRobustChi2();
//cout << "err_0/err_end: " << err0 << "/" << errEnd << endl;
unique_lock<mutex> lock(pMap->mMutexMapUpdate);
// SE3 Pose Recovering. Sim3:[sR t;0 1] -> SE3:[R t/s;0 1]
for(size_t i=0;i<vpKFs.size();i++)
{
KeyFrame* pKFi = vpKFs[i];
const int nIDi = pKFi->mnId;
g2o::VertexSim3Expmap* VSim3 = static_cast<g2o::VertexSim3Expmap*>(optimizer.vertex(nIDi));
g2o::Sim3 CorrectedSiw = VSim3->estimate();
vCorrectedSwc[nIDi]=CorrectedSiw.inverse();
Eigen::Matrix3d eigR = CorrectedSiw.rotation().toRotationMatrix();
Eigen::Vector3d eigt = CorrectedSiw.translation();
double s = CorrectedSiw.scale();
eigt *=(1./s); //[R t/s;0 1]
cv::Mat Tiw = Converter::toCvSE3(eigR,eigt);
pKFi->SetPose(Tiw);
// cout << "angle KF " << nIDi << ": " << (180.0/3.1415)*acos(vZvectors[nIDi].dot(eigR*z_vec)) << endl;
}
// Correct points. Transform to "non-optimized" reference keyframe pose and transform back with optimized pose
for(size_t i=0, iend=vpMPs.size(); i<iend; i++)
{
MapPoint* pMP = vpMPs[i];
if(pMP->isBad())
continue;
int nIDr;
if(pMP->mnCorrectedByKF==pCurKF->mnId)
{
nIDr = pMP->mnCorrectedReference;
}
else
{
KeyFrame* pRefKF = pMP->GetReferenceKeyFrame();
nIDr = pRefKF->mnId;
}
g2o::Sim3 Srw = vScw[nIDr];
g2o::Sim3 correctedSwr = vCorrectedSwc[nIDr];
cv::Mat P3Dw = pMP->GetWorldPos();
Eigen::Matrix<double,3,1> eigP3Dw = Converter::toVector3d(P3Dw);
Eigen::Matrix<double,3,1> eigCorrectedP3Dw = correctedSwr.map(Srw.map(eigP3Dw));
cv::Mat cvCorrectedP3Dw = Converter::toCvMat(eigCorrectedP3Dw);
pMP->SetWorldPos(cvCorrectedP3Dw);
pMP->UpdateNormalAndDepth();
}
// TODO Check this changeindex
pMap->IncreaseChangeIndex();
}
void Optimizer::OptimizeEssentialGraph6DoF(KeyFrame* pCurKF, vector<KeyFrame*> &vpFixedKFs, vector<KeyFrame*> &vpFixedCorrectedKFs,
vector<KeyFrame*> &vpNonFixedKFs, vector<MapPoint*> &vpNonCorrectedMPs, double scale)
{
Verbose::PrintMess("Opt_Essential: There are " + to_string(vpFixedKFs.size()) + " KFs fixed in the merged map", Verbose::VERBOSITY_DEBUG);
Verbose::PrintMess("Opt_Essential: There are " + to_string(vpFixedCorrectedKFs.size()) + " KFs fixed in the old map", Verbose::VERBOSITY_DEBUG);
Verbose::PrintMess("Opt_Essential: There are " + to_string(vpNonFixedKFs.size()) + " KFs non-fixed in the merged map", Verbose::VERBOSITY_DEBUG);
Verbose::PrintMess("Opt_Essential: There are " + to_string(vpNonCorrectedMPs.size()) + " MPs non-corrected in the merged map", Verbose::VERBOSITY_DEBUG);
g2o::SparseOptimizer optimizer;
optimizer.setVerbose(false);
g2o::BlockSolver_6_3::LinearSolverType * linearSolver =
new g2o::LinearSolverEigen<g2o::BlockSolver_6_3::PoseMatrixType>();
g2o::BlockSolver_6_3 * solver_ptr= new g2o::BlockSolver_6_3(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
solver->setUserLambdaInit(1e-16);
optimizer.setAlgorithm(solver);
Map* pMap = pCurKF->GetMap();
const unsigned int nMaxKFid = pMap->GetMaxKFid();
vector<g2o::SE3Quat,Eigen::aligned_allocator<g2o::SE3Quat> > vScw(nMaxKFid+1);
vector<g2o::SE3Quat,Eigen::aligned_allocator<g2o::SE3Quat> > vScw_bef(nMaxKFid+1);
vector<g2o::SE3Quat,Eigen::aligned_allocator<g2o::SE3Quat> > vCorrectedSwc(nMaxKFid+1);
vector<g2o::VertexSE3Expmap*> vpVertices(nMaxKFid+1);
vector<bool> vbFromOtherMap(nMaxKFid+1);
const int minFeat = 100;
for(KeyFrame* pKFi : vpFixedKFs)
{
if(pKFi->isBad())
continue;
g2o::VertexSE3Expmap* VSE3 = new g2o::VertexSE3Expmap();
const int nIDi = pKFi->mnId;
Eigen::Matrix<double,3,3> Rcw = Converter::toMatrix3d(pKFi->GetRotation());
Eigen::Matrix<double,3,1> tcw = Converter::toVector3d(pKFi->GetTranslation());
g2o::SE3Quat Siw(Rcw,tcw);
vScw[nIDi] = Siw;
vCorrectedSwc[nIDi]=Siw.inverse(); // This KFs mustn't be corrected
VSE3->setEstimate(Siw);
VSE3->setFixed(true);
VSE3->setId(nIDi);
VSE3->setMarginalized(false);
//VSim3->_fix_scale = true; //TODO
vbFromOtherMap[nIDi] = false;
optimizer.addVertex(VSE3);
vpVertices[nIDi]=VSE3;
}
cout << "Opt_Essential: vpFixedKFs loaded" << endl;
set<unsigned long> sIdKF;
for(KeyFrame* pKFi : vpFixedCorrectedKFs)
{
if(pKFi->isBad())
continue;
g2o::VertexSE3Expmap* VSE3 = new g2o::VertexSE3Expmap();
const int nIDi = pKFi->mnId;
Eigen::Matrix<double,3,3> Rcw = Converter::toMatrix3d(pKFi->GetRotation());
Eigen::Matrix<double,3,1> tcw = Converter::toVector3d(pKFi->GetTranslation());
g2o::SE3Quat Siw(Rcw,tcw);
vScw[nIDi] = Siw;
vCorrectedSwc[nIDi]=Siw.inverse(); // This KFs mustn't be corrected
VSE3->setEstimate(Siw);
cv::Mat Tcw_bef = pKFi->mTcwBefMerge;
Eigen::Matrix<double,3,3> Rcw_bef = Converter::toMatrix3d(Tcw_bef.rowRange(0,3).colRange(0,3));
Eigen::Matrix<double,3,1> tcw_bef = Converter::toVector3d(Tcw_bef.rowRange(0,3).col(3)) / scale;
vScw_bef[nIDi] = g2o::SE3Quat(Rcw_bef,tcw_bef);
VSE3->setFixed(true);
VSE3->setId(nIDi);
VSE3->setMarginalized(false);
//VSim3->_fix_scale = true;
vbFromOtherMap[nIDi] = true;
optimizer.addVertex(VSE3);
vpVertices[nIDi]=VSE3;
sIdKF.insert(nIDi);
}
Verbose::PrintMess("Opt_Essential: vpFixedCorrectedKFs loaded", Verbose::VERBOSITY_DEBUG);
for(KeyFrame* pKFi : vpNonFixedKFs)
{
if(pKFi->isBad())
continue;
const int nIDi = pKFi->mnId;
if(sIdKF.count(nIDi)) // It has already added in the corrected merge KFs
continue;
g2o::VertexSE3Expmap* VSE3 = new g2o::VertexSE3Expmap();
//cv::Mat Tcw = pKFi->mTcwBefMerge;
//Eigen::Matrix<double,3,3> Rcw = Converter::toMatrix3d(Tcw.rowRange(0,3).colRange(0,3));
//Eigen::Matrix<double,3,1> tcw = Converter::toVector3d(Tcw.rowRange(0,3).col(3));
Eigen::Matrix<double,3,3> Rcw = Converter::toMatrix3d(pKFi->GetRotation());
Eigen::Matrix<double,3,1> tcw = Converter::toVector3d(pKFi->GetTranslation()) / scale;
g2o::SE3Quat Siw(Rcw,tcw);
vScw_bef[nIDi] = Siw;
VSE3->setEstimate(Siw);
VSE3->setFixed(false);
VSE3->setId(nIDi);
VSE3->setMarginalized(false);
//VSim3->_fix_scale = true;
vbFromOtherMap[nIDi] = true;
optimizer.addVertex(VSE3);
vpVertices[nIDi]=VSE3;
sIdKF.insert(nIDi);
}
Verbose::PrintMess("Opt_Essential: vpNonFixedKFs loaded", Verbose::VERBOSITY_DEBUG);
vector<KeyFrame*> vpKFs;
vpKFs.reserve(vpFixedKFs.size() + vpFixedCorrectedKFs.size() + vpNonFixedKFs.size());
vpKFs.insert(vpKFs.end(),vpFixedKFs.begin(),vpFixedKFs.end());
vpKFs.insert(vpKFs.end(),vpFixedCorrectedKFs.begin(),vpFixedCorrectedKFs.end());
vpKFs.insert(vpKFs.end(),vpNonFixedKFs.begin(),vpNonFixedKFs.end());
set<KeyFrame*> spKFs(vpKFs.begin(), vpKFs.end());
Verbose::PrintMess("Opt_Essential: List of KF loaded", Verbose::VERBOSITY_DEBUG);
const Eigen::Matrix<double,6,6> matLambda = Eigen::Matrix<double,6,6>::Identity();
for(KeyFrame* pKFi : vpKFs)
{
int num_connections = 0;
const int nIDi = pKFi->mnId;
g2o::SE3Quat Swi = vScw[nIDi].inverse();
g2o::SE3Quat Swi_bef;
if(vbFromOtherMap[nIDi])
{
Swi_bef = vScw_bef[nIDi].inverse();
}
/*if(pKFi->mnMergeCorrectedForKF == pCurKF->mnId)
{
Swi = vScw[nIDi].inverse();
}
else
{
cv::Mat Twi = pKFi->mTwcBefMerge;
Swi = g2o::Sim3(Converter::toMatrix3d(Twi.rowRange(0, 3).colRange(0, 3)),
Converter::toVector3d(Twi.rowRange(0, 3).col(3)),1.0);
}*/
KeyFrame* pParentKFi = pKFi->GetParent();
// Spanning tree edge
if(pParentKFi && spKFs.find(pParentKFi) != spKFs.end())
{
int nIDj = pParentKFi->mnId;
g2o::SE3Quat Sjw = vScw[nIDj];
g2o::SE3Quat Sjw_bef;
if(vbFromOtherMap[nIDj])
{
Sjw_bef = vScw_bef[nIDj];
}
/*if(pParentKFi->mnMergeCorrectedForKF == pCurKF->mnId)
{
Sjw = vScw[nIDj];
}
else
{
cv::Mat Tjw = pParentKFi->mTcwBefMerge;
Sjw = g2o::Sim3(Converter::toMatrix3d(Tjw.rowRange(0, 3).colRange(0, 3)),
Converter::toVector3d(Tjw.rowRange(0, 3).col(3)),1.0);
}*/
g2o::SE3Quat Sji;
if(vbFromOtherMap[nIDi] && vbFromOtherMap[nIDj])
{
Sji = Sjw_bef * Swi_bef;
}
else
{
Sji = Sjw * Swi;
}
g2o::EdgeSE3* e = new g2o::EdgeSE3();
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDj)));
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
e->setMeasurement(Sji);
e->information() = matLambda;
optimizer.addEdge(e);
num_connections++;
}
// Loop edges
const set<KeyFrame*> sLoopEdges = pKFi->GetLoopEdges();
for(set<KeyFrame*>::const_iterator sit=sLoopEdges.begin(), send=sLoopEdges.end(); sit!=send; sit++)
{
KeyFrame* pLKF = *sit;
if(spKFs.find(pLKF) != spKFs.end() && pLKF->mnId<pKFi->mnId)
{
g2o::SE3Quat Slw = vScw[pLKF->mnId];
g2o::SE3Quat Slw_bef;
if(vbFromOtherMap[pLKF->mnId])
{
Slw_bef = vScw_bef[pLKF->mnId];
}
/*if(pLKF->mnMergeCorrectedForKF == pCurKF->mnId)
{
Slw = vScw[pLKF->mnId];
}
else
{
cv::Mat Tlw = pLKF->mTcwBefMerge;
Slw = g2o::Sim3(Converter::toMatrix3d(Tlw.rowRange(0, 3).colRange(0, 3)),
Converter::toVector3d(Tlw.rowRange(0, 3).col(3)),1.0);
}*/
g2o::SE3Quat Sli;
if(vbFromOtherMap[nIDi] && vbFromOtherMap[pLKF->mnId])
{
Sli = Slw_bef * Swi_bef;
}
else
{
Sli = Slw * Swi;
}
g2o::EdgeSE3* el = new g2o::EdgeSE3();
el->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pLKF->mnId)));
el->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
el->setMeasurement(Sli);
el->information() = matLambda;
optimizer.addEdge(el);
num_connections++;
}
}
// Covisibility graph edges
const vector<KeyFrame*> vpConnectedKFs = pKFi->GetCovisiblesByWeight(minFeat);
for(vector<KeyFrame*>::const_iterator vit=vpConnectedKFs.begin(); vit!=vpConnectedKFs.end(); vit++)
{
KeyFrame* pKFn = *vit;
if(pKFn && pKFn!=pParentKFi && !pKFi->hasChild(pKFn) && !sLoopEdges.count(pKFn) && spKFs.find(pKFn) != spKFs.end())
{
if(!pKFn->isBad() && pKFn->mnId<pKFi->mnId)
{
g2o::SE3Quat Snw = vScw[pKFn->mnId];
g2o::SE3Quat Snw_bef;
if(vbFromOtherMap[pKFn->mnId])
{
Snw_bef = vScw_bef[pKFn->mnId];
}
/*if(pKFn->mnMergeCorrectedForKF == pCurKF->mnId)
{
Snw = vScw[pKFn->mnId];
}
else
{
cv::Mat Tnw = pKFn->mTcwBefMerge;
Snw = g2o::Sim3(Converter::toMatrix3d(Tnw.rowRange(0, 3).colRange(0, 3)),
Converter::toVector3d(Tnw.rowRange(0, 3).col(3)),1.0);
}*/
g2o::SE3Quat Sni;
if(vbFromOtherMap[nIDi] && vbFromOtherMap[pKFn->mnId])
{
Sni = Snw_bef * Swi_bef;
}
else
{
Sni = Snw * Swi;
}
g2o::EdgeSE3* en = new g2o::EdgeSE3();
en->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFn->mnId)));
en->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
en->setMeasurement(Sni);
en->information() = matLambda;
optimizer.addEdge(en);
num_connections++;
}
}
}
if(num_connections == 0 )
{
Verbose::PrintMess("Opt_Essential: KF " + to_string(pKFi->mnId) + " has 0 connections", Verbose::VERBOSITY_DEBUG);
}
}
// Optimize!
optimizer.initializeOptimization();
optimizer.optimize(20);
Verbose::PrintMess("Opt_Essential: Finish the optimization", Verbose::VERBOSITY_DEBUG);
unique_lock<mutex> lock(pMap->mMutexMapUpdate);
Verbose::PrintMess("Opt_Essential: Apply the new pose to the KFs", Verbose::VERBOSITY_DEBUG);
// SE3 Pose Recovering. Sim3:[sR t;0 1] -> SE3:[R t/s;0 1]
for(KeyFrame* pKFi : vpNonFixedKFs)
{
if(pKFi->isBad())
continue;
const int nIDi = pKFi->mnId;
g2o::VertexSE3Expmap* VSE3 = static_cast<g2o::VertexSE3Expmap*>(optimizer.vertex(nIDi));
g2o::SE3Quat CorrectedSiw = VSE3->estimate();
vCorrectedSwc[nIDi]=CorrectedSiw.inverse();
Eigen::Matrix3d eigR = CorrectedSiw.rotation().toRotationMatrix();
Eigen::Vector3d eigt = CorrectedSiw.translation();
//double s = CorrectedSiw.scale();
//eigt *=(1./s); //[R t/s;0 1]
cv::Mat Tiw = Converter::toCvSE3(eigR,eigt);
/*{
cv::Mat Tco_cn = pKFi->GetPose() * Tiw.inv();
cv::Vec3d trasl = Tco_cn.rowRange(0,3).col(3);
double dist = cv::norm(trasl);
if(dist > 1.0)
{
cout << "--Distance: " << dist << " meters" << endl;
cout << "--To much distance correction in EssentGraph: It has connected " << pKFi->GetVectorCovisibleKeyFrames().size() << " KFs" << endl;
}
string strNameFile = pKFi->mNameFile;
cv::Mat imLeft = cv::imread(strNameFile, CV_LOAD_IMAGE_UNCHANGED);
cv::cvtColor(imLeft, imLeft, CV_GRAY2BGR);
vector<MapPoint*> vpMapPointsKFi = pKFi->GetMapPointMatches();
for(int j=0; j<vpMapPointsKFi.size(); ++j)
{
if(!vpMapPointsKFi[j] || vpMapPointsKFi[j]->isBad())
{
continue;
}
string strNumOBs = to_string(vpMapPointsKFi[j]->Observations());
cv::circle(imLeft, pKFi->mvKeys[j].pt, 2, cv::Scalar(0, 255, 0));
cv::putText(imLeft, strNumOBs, pKFi->mvKeys[j].pt, CV_FONT_HERSHEY_DUPLEX, 1, cv::Scalar(255, 0, 0));
}
string namefile = "./test_OptEssent/Essent_" + to_string(pCurKF->mnId) + "_KF" + to_string(pKFi->mnId) +"_D" + to_string(dist) +".png";
cv::imwrite(namefile, imLeft);
}*/
pKFi->mTcwBefMerge = pKFi->GetPose();
pKFi->mTwcBefMerge = pKFi->GetPoseInverse();
pKFi->SetPose(Tiw);
}
Verbose::PrintMess("Opt_Essential: Apply the new pose to the MPs", Verbose::VERBOSITY_DEBUG);
cout << "Opt_Essential: number of points -> " << vpNonCorrectedMPs.size() << endl;
// Correct points. Transform to "non-optimized" reference keyframe pose and transform back with optimized pose
for(MapPoint* pMPi : vpNonCorrectedMPs)
{
if(pMPi->isBad())
continue;
//Verbose::PrintMess("Opt_Essential: MP id " + to_string(pMPi->mnId), Verbose::VERBOSITY_DEBUG);
/*int nIDr;
if(pMPi->mnCorrectedByKF==pCurKF->mnId)
{
nIDr = pMPi->mnCorrectedReference;
}
else
{
}*/
KeyFrame* pRefKF = pMPi->GetReferenceKeyFrame();
g2o::SE3Quat Srw;
g2o::SE3Quat correctedSwr;
while(pRefKF->isBad())
{
if(!pRefKF)
{
Verbose::PrintMess("MP " + to_string(pMPi->mnId) + " without a valid reference KF", Verbose::VERBOSITY_DEBUG);
break;
}
pMPi->EraseObservation(pRefKF);
pRefKF = pMPi->GetReferenceKeyFrame();
}
/*if(pRefKF->mnMergeCorrectedForKF == pCurKF->mnId)
{
int nIDr = pRefKF->mnId;
Srw = vScw[nIDr];
correctedSwr = vCorrectedSwc[nIDr];
}
else
{*/
//cv::Mat TNonCorrectedwr = pRefKF->mTwcBefMerge;
//Eigen::Matrix<double,3,3> RNonCorrectedwr = Converter::toMatrix3d(TNonCorrectedwr.rowRange(0,3).colRange(0,3));
//Eigen::Matrix<double,3,1> tNonCorrectedwr = Converter::toVector3d(TNonCorrectedwr.rowRange(0,3).col(3));
Srw = vScw_bef[pRefKF->mnId]; //g2o::SE3Quat(RNonCorrectedwr,tNonCorrectedwr).inverse();
cv::Mat Twr = pRefKF->GetPoseInverse();
Eigen::Matrix<double,3,3> Rwr = Converter::toMatrix3d(Twr.rowRange(0,3).colRange(0,3));
Eigen::Matrix<double,3,1> twr = Converter::toVector3d(Twr.rowRange(0,3).col(3));
correctedSwr = g2o::SE3Quat(Rwr,twr);
//}
//cout << "Opt_Essential: Loaded the KF reference position" << endl;
cv::Mat P3Dw = pMPi->GetWorldPos() / scale;
Eigen::Matrix<double,3,1> eigP3Dw = Converter::toVector3d(P3Dw);
Eigen::Matrix<double,3,1> eigCorrectedP3Dw = correctedSwr.map(Srw.map(eigP3Dw));
//cout << "Opt_Essential: Calculated the new MP position" << endl;
cv::Mat cvCorrectedP3Dw = Converter::toCvMat(eigCorrectedP3Dw);
//cout << "Opt_Essential: Converted the position to the OpenCV format" << endl;
pMPi->SetWorldPos(cvCorrectedP3Dw);
//cout << "Opt_Essential: Loaded the corrected position in the MP object" << endl;
pMPi->UpdateNormalAndDepth();
}
Verbose::PrintMess("Opt_Essential: End of the optimization", Verbose::VERBOSITY_DEBUG);
}
void Optimizer::OptimizeEssentialGraph(KeyFrame* pCurKF, vector<KeyFrame*> &vpFixedKFs, vector<KeyFrame*> &vpFixedCorrectedKFs,
vector<KeyFrame*> &vpNonFixedKFs, vector<MapPoint*> &vpNonCorrectedMPs)
{
Verbose::PrintMess("Opt_Essential: There are " + to_string(vpFixedKFs.size()) + " KFs fixed in the merged map", Verbose::VERBOSITY_DEBUG);
Verbose::PrintMess("Opt_Essential: There are " + to_string(vpFixedCorrectedKFs.size()) + " KFs fixed in the old map", Verbose::VERBOSITY_DEBUG);
Verbose::PrintMess("Opt_Essential: There are " + to_string(vpNonFixedKFs.size()) + " KFs non-fixed in the merged map", Verbose::VERBOSITY_DEBUG);
Verbose::PrintMess("Opt_Essential: There are " + to_string(vpNonCorrectedMPs.size()) + " MPs non-corrected in the merged map", Verbose::VERBOSITY_DEBUG);
g2o::SparseOptimizer optimizer;
optimizer.setVerbose(false);
g2o::BlockSolver_7_3::LinearSolverType * linearSolver =
new g2o::LinearSolverEigen<g2o::BlockSolver_7_3::PoseMatrixType>();
g2o::BlockSolver_7_3 * solver_ptr= new g2o::BlockSolver_7_3(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
solver->setUserLambdaInit(1e-16);
optimizer.setAlgorithm(solver);
Map* pMap = pCurKF->GetMap();
const unsigned int nMaxKFid = pMap->GetMaxKFid();
vector<g2o::Sim3,Eigen::aligned_allocator<g2o::Sim3> > vScw(nMaxKFid+1);
vector<g2o::Sim3,Eigen::aligned_allocator<g2o::Sim3> > vCorrectedSwc(nMaxKFid+1);
vector<g2o::VertexSim3Expmap*> vpVertices(nMaxKFid+1);
const int minFeat = 100;
for(KeyFrame* pKFi : vpFixedKFs)
{
if(pKFi->isBad())
continue;
g2o::VertexSim3Expmap* VSim3 = new g2o::VertexSim3Expmap();
const int nIDi = pKFi->mnId;
Eigen::Matrix<double,3,3> Rcw = Converter::toMatrix3d(pKFi->GetRotation());
Eigen::Matrix<double,3,1> tcw = Converter::toVector3d(pKFi->GetTranslation());
g2o::Sim3 Siw(Rcw,tcw,1.0);
vScw[nIDi] = Siw;
vCorrectedSwc[nIDi]=Siw.inverse(); // This KFs mustn't be corrected
VSim3->setEstimate(Siw);
VSim3->setFixed(true);
VSim3->setId(nIDi);
VSim3->setMarginalized(false);
VSim3->_fix_scale = true; //TODO
optimizer.addVertex(VSim3);
vpVertices[nIDi]=VSim3;
}
Verbose::PrintMess("Opt_Essential: vpFixedKFs loaded", Verbose::VERBOSITY_DEBUG);
set<unsigned long> sIdKF;
for(KeyFrame* pKFi : vpFixedCorrectedKFs)
{
if(pKFi->isBad())
continue;
g2o::VertexSim3Expmap* VSim3 = new g2o::VertexSim3Expmap();
const int nIDi = pKFi->mnId;
Eigen::Matrix<double,3,3> Rcw = Converter::toMatrix3d(pKFi->GetRotation());
Eigen::Matrix<double,3,1> tcw = Converter::toVector3d(pKFi->GetTranslation());
g2o::Sim3 Siw(Rcw,tcw,1.0);
//vScw[nIDi] = Siw;
vCorrectedSwc[nIDi]=Siw.inverse(); // This KFs mustn't be corrected
VSim3->setEstimate(Siw);
cv::Mat Tcw_bef = pKFi->mTcwBefMerge;
Eigen::Matrix<double,3,3> Rcw_bef = Converter::toMatrix3d(Tcw_bef.rowRange(0,3).colRange(0,3));
Eigen::Matrix<double,3,1> tcw_bef = Converter::toVector3d(Tcw_bef.rowRange(0,3).col(3));
vScw[nIDi] = g2o::Sim3(Rcw_bef,tcw_bef,1.0);
VSim3->setFixed(true);
VSim3->setId(nIDi);
VSim3->setMarginalized(false);
optimizer.addVertex(VSim3);
vpVertices[nIDi]=VSim3;
sIdKF.insert(nIDi);
}
Verbose::PrintMess("Opt_Essential: vpFixedCorrectedKFs loaded", Verbose::VERBOSITY_DEBUG);
for(KeyFrame* pKFi : vpNonFixedKFs)
{
if(pKFi->isBad())
continue;
const int nIDi = pKFi->mnId;
if(sIdKF.count(nIDi)) // It has already added in the corrected merge KFs
continue;
g2o::VertexSim3Expmap* VSim3 = new g2o::VertexSim3Expmap();
//cv::Mat Tcw = pKFi->mTcwBefMerge;
//Eigen::Matrix<double,3,3> Rcw = Converter::toMatrix3d(Tcw.rowRange(0,3).colRange(0,3));
//Eigen::Matrix<double,3,1> tcw = Converter::toVector3d(Tcw.rowRange(0,3).col(3));
Eigen::Matrix<double,3,3> Rcw = Converter::toMatrix3d(pKFi->GetRotation());
Eigen::Matrix<double,3,1> tcw = Converter::toVector3d(pKFi->GetTranslation());
g2o::Sim3 Siw(Rcw,tcw,1.0);
vScw[nIDi] = Siw;
VSim3->setEstimate(Siw);
VSim3->setFixed(false);
VSim3->setId(nIDi);
VSim3->setMarginalized(false);
optimizer.addVertex(VSim3);
vpVertices[nIDi]=VSim3;
sIdKF.insert(nIDi);
}
Verbose::PrintMess("Opt_Essential: vpNonFixedKFs loaded", Verbose::VERBOSITY_DEBUG);
vector<KeyFrame*> vpKFs;
vpKFs.reserve(vpFixedKFs.size() + vpFixedCorrectedKFs.size() + vpNonFixedKFs.size());
vpKFs.insert(vpKFs.end(),vpFixedKFs.begin(),vpFixedKFs.end());
vpKFs.insert(vpKFs.end(),vpFixedCorrectedKFs.begin(),vpFixedCorrectedKFs.end());
vpKFs.insert(vpKFs.end(),vpNonFixedKFs.begin(),vpNonFixedKFs.end());
set<KeyFrame*> spKFs(vpKFs.begin(), vpKFs.end());
Verbose::PrintMess("Opt_Essential: List of KF loaded", Verbose::VERBOSITY_DEBUG);
const Eigen::Matrix<double,7,7> matLambda = Eigen::Matrix<double,7,7>::Identity();
for(KeyFrame* pKFi : vpKFs)
{
int num_connections = 0;
const int nIDi = pKFi->mnId;
g2o::Sim3 Swi = vScw[nIDi].inverse();
/*if(pKFi->mnMergeCorrectedForKF == pCurKF->mnId)
{
Swi = vScw[nIDi].inverse();
}
else
{
cv::Mat Twi = pKFi->mTwcBefMerge;
Swi = g2o::Sim3(Converter::toMatrix3d(Twi.rowRange(0, 3).colRange(0, 3)),
Converter::toVector3d(Twi.rowRange(0, 3).col(3)),1.0);
}*/
KeyFrame* pParentKFi = pKFi->GetParent();
// Spanning tree edge
if(pParentKFi && spKFs.find(pParentKFi) != spKFs.end())
{
int nIDj = pParentKFi->mnId;
g2o::Sim3 Sjw = vScw[nIDj];
/*if(pParentKFi->mnMergeCorrectedForKF == pCurKF->mnId)
{
Sjw = vScw[nIDj];
}
else
{
cv::Mat Tjw = pParentKFi->mTcwBefMerge;
Sjw = g2o::Sim3(Converter::toMatrix3d(Tjw.rowRange(0, 3).colRange(0, 3)),
Converter::toVector3d(Tjw.rowRange(0, 3).col(3)),1.0);
}*/
g2o::Sim3 Sji = Sjw * Swi;
g2o::EdgeSim3* e = new g2o::EdgeSim3();
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDj)));
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
e->setMeasurement(Sji);
e->information() = matLambda;
optimizer.addEdge(e);
num_connections++;
}
// Loop edges
const set<KeyFrame*> sLoopEdges = pKFi->GetLoopEdges();
for(set<KeyFrame*>::const_iterator sit=sLoopEdges.begin(), send=sLoopEdges.end(); sit!=send; sit++)
{
KeyFrame* pLKF = *sit;
if(spKFs.find(pLKF) != spKFs.end() && pLKF->mnId<pKFi->mnId)
{
g2o::Sim3 Slw = vScw[pLKF->mnId];
/*if(pLKF->mnMergeCorrectedForKF == pCurKF->mnId)
{
Slw = vScw[pLKF->mnId];
}
else
{
cv::Mat Tlw = pLKF->mTcwBefMerge;
Slw = g2o::Sim3(Converter::toMatrix3d(Tlw.rowRange(0, 3).colRange(0, 3)),
Converter::toVector3d(Tlw.rowRange(0, 3).col(3)),1.0);
}*/
g2o::Sim3 Sli = Slw * Swi;
g2o::EdgeSim3* el = new g2o::EdgeSim3();
el->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pLKF->mnId)));
el->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
el->setMeasurement(Sli);
el->information() = matLambda;
optimizer.addEdge(el);
num_connections++;
}
}
// Covisibility graph edges
const vector<KeyFrame*> vpConnectedKFs = pKFi->GetCovisiblesByWeight(minFeat);
for(vector<KeyFrame*>::const_iterator vit=vpConnectedKFs.begin(); vit!=vpConnectedKFs.end(); vit++)
{
KeyFrame* pKFn = *vit;
if(pKFn && pKFn!=pParentKFi && !pKFi->hasChild(pKFn) && !sLoopEdges.count(pKFn) && spKFs.find(pKFn) != spKFs.end())
{
if(!pKFn->isBad() && pKFn->mnId<pKFi->mnId)
{
g2o::Sim3 Snw = vScw[pKFn->mnId];
/*if(pKFn->mnMergeCorrectedForKF == pCurKF->mnId)
{
Snw = vScw[pKFn->mnId];
}
else
{
cv::Mat Tnw = pKFn->mTcwBefMerge;
Snw = g2o::Sim3(Converter::toMatrix3d(Tnw.rowRange(0, 3).colRange(0, 3)),
Converter::toVector3d(Tnw.rowRange(0, 3).col(3)),1.0);
}*/
g2o::Sim3 Sni = Snw * Swi;
g2o::EdgeSim3* en = new g2o::EdgeSim3();
en->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFn->mnId)));
en->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
en->setMeasurement(Sni);
en->information() = matLambda;
optimizer.addEdge(en);
num_connections++;
}
}
}
if(num_connections == 0 )
{
Verbose::PrintMess("Opt_Essential: KF " + to_string(pKFi->mnId) + " has 0 connections", Verbose::VERBOSITY_DEBUG);
}
}
// Optimize!
optimizer.initializeOptimization();
optimizer.optimize(20);
Verbose::PrintMess("Opt_Essential: Finish the optimization", Verbose::VERBOSITY_DEBUG);
unique_lock<mutex> lock(pMap->mMutexMapUpdate);
Verbose::PrintMess("Opt_Essential: Apply the new pose to the KFs", Verbose::VERBOSITY_DEBUG);
// SE3 Pose Recovering. Sim3:[sR t;0 1] -> SE3:[R t/s;0 1]
for(KeyFrame* pKFi : vpNonFixedKFs)
{
if(pKFi->isBad())
continue;
const int nIDi = pKFi->mnId;
g2o::VertexSim3Expmap* VSim3 = static_cast<g2o::VertexSim3Expmap*>(optimizer.vertex(nIDi));
g2o::Sim3 CorrectedSiw = VSim3->estimate();
vCorrectedSwc[nIDi]=CorrectedSiw.inverse();
Eigen::Matrix3d eigR = CorrectedSiw.rotation().toRotationMatrix();
Eigen::Vector3d eigt = CorrectedSiw.translation();
double s = CorrectedSiw.scale();
eigt *=(1./s); //[R t/s;0 1]
cv::Mat Tiw = Converter::toCvSE3(eigR,eigt);
/*{
cv::Mat Tco_cn = pKFi->GetPose() * Tiw.inv();
cv::Vec3d trasl = Tco_cn.rowRange(0,3).col(3);
double dist = cv::norm(trasl);
if(dist > 1.0)
{
cout << "--Distance: " << dist << " meters" << endl;
cout << "--To much distance correction in EssentGraph: It has connected " << pKFi->GetVectorCovisibleKeyFrames().size() << " KFs" << endl;
}
string strNameFile = pKFi->mNameFile;
cv::Mat imLeft = cv::imread(strNameFile, CV_LOAD_IMAGE_UNCHANGED);
cv::cvtColor(imLeft, imLeft, CV_GRAY2BGR);
vector<MapPoint*> vpMapPointsKFi = pKFi->GetMapPointMatches();
for(int j=0; j<vpMapPointsKFi.size(); ++j)
{
if(!vpMapPointsKFi[j] || vpMapPointsKFi[j]->isBad())
{
continue;
}
string strNumOBs = to_string(vpMapPointsKFi[j]->Observations());
cv::circle(imLeft, pKFi->mvKeys[j].pt, 2, cv::Scalar(0, 255, 0));
cv::putText(imLeft, strNumOBs, pKFi->mvKeys[j].pt, CV_FONT_HERSHEY_DUPLEX, 1, cv::Scalar(255, 0, 0));
}
string namefile = "./test_OptEssent/Essent_" + to_string(pCurKF->mnId) + "_KF" + to_string(pKFi->mnId) +"_D" + to_string(dist) +".png";
cv::imwrite(namefile, imLeft);
}*/
pKFi->mTcwBefMerge = pKFi->GetPose();
pKFi->mTwcBefMerge = pKFi->GetPoseInverse();
pKFi->SetPose(Tiw);
}
Verbose::PrintMess("Opt_Essential: Apply the new pose to the MPs", Verbose::VERBOSITY_DEBUG);
// Correct points. Transform to "non-optimized" reference keyframe pose and transform back with optimized pose
for(MapPoint* pMPi : vpNonCorrectedMPs)
{
if(pMPi->isBad())
continue;
Verbose::PrintMess("Opt_Essential: MP id " + to_string(pMPi->mnId), Verbose::VERBOSITY_DEBUG);
/*int nIDr;
if(pMPi->mnCorrectedByKF==pCurKF->mnId)
{
nIDr = pMPi->mnCorrectedReference;
}
else
{
}*/
KeyFrame* pRefKF = pMPi->GetReferenceKeyFrame();
g2o::Sim3 Srw;
g2o::Sim3 correctedSwr;
while(pRefKF->isBad())
{
if(!pRefKF)
{
Verbose::PrintMess("MP " + to_string(pMPi->mnId) + " without a valid reference KF", Verbose::VERBOSITY_DEBUG);
break;
}
pMPi->EraseObservation(pRefKF);
pRefKF = pMPi->GetReferenceKeyFrame();
}
/*if(pRefKF->mnMergeCorrectedForKF == pCurKF->mnId)
{
int nIDr = pRefKF->mnId;
Srw = vScw[nIDr];
correctedSwr = vCorrectedSwc[nIDr];
}
else
{*/
cv::Mat TNonCorrectedwr = pRefKF->mTwcBefMerge;
Eigen::Matrix<double,3,3> RNonCorrectedwr = Converter::toMatrix3d(TNonCorrectedwr.rowRange(0,3).colRange(0,3));
Eigen::Matrix<double,3,1> tNonCorrectedwr = Converter::toVector3d(TNonCorrectedwr.rowRange(0,3).col(3));
Srw = g2o::Sim3(RNonCorrectedwr,tNonCorrectedwr,1.0).inverse();
cv::Mat Twr = pRefKF->GetPoseInverse();
Eigen::Matrix<double,3,3> Rwr = Converter::toMatrix3d(Twr.rowRange(0,3).colRange(0,3));
Eigen::Matrix<double,3,1> twr = Converter::toVector3d(Twr.rowRange(0,3).col(3));
correctedSwr = g2o::Sim3(Rwr,twr,1.0);
//}
//cout << "Opt_Essential: Loaded the KF reference position" << endl;
cv::Mat P3Dw = pMPi->GetWorldPos();
Eigen::Matrix<double,3,1> eigP3Dw = Converter::toVector3d(P3Dw);
Eigen::Matrix<double,3,1> eigCorrectedP3Dw = correctedSwr.map(Srw.map(eigP3Dw));
//cout << "Opt_Essential: Calculated the new MP position" << endl;
cv::Mat cvCorrectedP3Dw = Converter::toCvMat(eigCorrectedP3Dw);
//cout << "Opt_Essential: Converted the position to the OpenCV format" << endl;
pMPi->SetWorldPos(cvCorrectedP3Dw);
//cout << "Opt_Essential: Loaded the corrected position in the MP object" << endl;
pMPi->UpdateNormalAndDepth();
}
Verbose::PrintMess("Opt_Essential: End of the optimization", Verbose::VERBOSITY_DEBUG);
}
void Optimizer::OptimizeEssentialGraph(KeyFrame* pCurKF,
const LoopClosing::KeyFrameAndPose &NonCorrectedSim3,
const LoopClosing::KeyFrameAndPose &CorrectedSim3)
{
// Setup optimizer
Map* pMap = pCurKF->GetMap();
g2o::SparseOptimizer optimizer;
optimizer.setVerbose(false);
g2o::BlockSolver_7_3::LinearSolverType * linearSolver =
new g2o::LinearSolverEigen<g2o::BlockSolver_7_3::PoseMatrixType>();
g2o::BlockSolver_7_3 * solver_ptr= new g2o::BlockSolver_7_3(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
solver->setUserLambdaInit(1e-16);
optimizer.setAlgorithm(solver);
const vector<KeyFrame*> vpKFs = pMap->GetAllKeyFrames();
const vector<MapPoint*> vpMPs = pMap->GetAllMapPoints();
const unsigned int nMaxKFid = pMap->GetMaxKFid();
vector<g2o::Sim3,Eigen::aligned_allocator<g2o::Sim3> > vScw(nMaxKFid+1);
vector<g2o::Sim3,Eigen::aligned_allocator<g2o::Sim3> > vCorrectedSwc(nMaxKFid+1);
vector<g2o::VertexSim3Expmap*> vpVertices(nMaxKFid+1);
const int minFeat = 100; // TODO Check. originally 100
// Set KeyFrame vertices
for(size_t i=0, iend=vpKFs.size(); i<iend;i++)
{
KeyFrame* pKF = vpKFs[i];
if(pKF->isBad())
continue;
g2o::VertexSim3Expmap* VSim3 = new g2o::VertexSim3Expmap();
const int nIDi = pKF->mnId;
Eigen::Matrix<double,3,3> Rcw = Converter::toMatrix3d(pKF->GetRotation());
Eigen::Matrix<double,3,1> tcw = Converter::toVector3d(pKF->GetTranslation());
g2o::Sim3 Siw(Rcw,tcw,1.0);
vScw[nIDi] = Siw;
VSim3->setEstimate(Siw);
if(pKF->mnBALocalForKF==pCurKF->mnId || pKF->mnBAFixedForKF==pCurKF->mnId){
cout << "fixed fk: " << pKF->mnId << endl;
VSim3->setFixed(true);
}
else
VSim3->setFixed(false);
VSim3->setId(nIDi);
VSim3->setMarginalized(false);
// TODO Check
// VSim3->_fix_scale = bFixScale;
optimizer.addVertex(VSim3);
vpVertices[nIDi]=VSim3;
}
set<pair<long unsigned int,long unsigned int> > sInsertedEdges;
const Eigen::Matrix<double,7,7> matLambda = Eigen::Matrix<double,7,7>::Identity();
int count_edges[3] = {0,0,0};
// Set normal edges
for(size_t i=0, iend=vpKFs.size(); i<iend; i++)
{
KeyFrame* pKF = vpKFs[i];
const int nIDi = pKF->mnId;
g2o::Sim3 Swi;
LoopClosing::KeyFrameAndPose::const_iterator iti = NonCorrectedSim3.find(pKF);
if(iti!=NonCorrectedSim3.end())
Swi = (iti->second).inverse(); //优先使用未经过Sim3传播调整的位姿
else
Swi = vScw[nIDi].inverse(); //没找到才考虑已经经过Sim3传播调整的位姿
KeyFrame* pParentKF = pKF->GetParent();
// Spanning tree edge
// Step 4.1添加第2种边扩展树的边有父关键帧
// 父关键帧就是和当前帧共视程度最高的关键帧
if(pParentKF)
{
int nIDj = pParentKF->mnId;
g2o::Sim3 Sjw;
LoopClosing::KeyFrameAndPose::const_iterator itj = NonCorrectedSim3.find(pParentKF);
//优先使用未经过Sim3传播调整的位姿
if(itj!=NonCorrectedSim3.end())
Sjw = itj->second;
else
Sjw = vScw[nIDj];
// 计算父子关键帧之间的相对位姿
g2o::Sim3 Sji = Sjw * Swi;
g2o::EdgeSim3* e = new g2o::EdgeSim3();
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDj)));
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
// 希望父子关键帧之间的位姿差最小
e->setMeasurement(Sji);
// 所有元素的贡献都一样;每个误差边对总误差的贡献也都相同
e->information() = matLambda;
optimizer.addEdge(e);
count_edges[0]++;
}
// Loop edges
// Step 4.2添加第3种边当前帧与闭环匹配帧之间的连接关系(这里面也包括了当前遍历到的这个关键帧之前曾经存在过的回环边)
// 获取和当前关键帧形成闭环关系的关键帧
const set<KeyFrame*> sLoopEdges = pKF->GetLoopEdges();
for(set<KeyFrame*>::const_iterator sit=sLoopEdges.begin(), send=sLoopEdges.end(); sit!=send; sit++)
{
KeyFrame* pLKF = *sit;
// 注意这里控制了要比当前遍历到的这个关键帧的id要小,这个也是为了避免重复添加
if(pLKF->mnId<pKF->mnId)
{
g2o::Sim3 Slw;
LoopClosing::KeyFrameAndPose::const_iterator itl = NonCorrectedSim3.find(pLKF);
//优先使用未经过Sim3传播调整的位姿
if(itl!=NonCorrectedSim3.end())
Slw = itl->second;
else
Slw = vScw[pLKF->mnId];
g2o::Sim3 Sli = Slw * Swi;
g2o::EdgeSim3* el = new g2o::EdgeSim3();
el->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pLKF->mnId)));
el->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
// 根据两个Pose顶点的位姿算出相对位姿作为边
el->setMeasurement(Sli);
el->information() = matLambda;
optimizer.addEdge(el);
count_edges[1]++;
}
}
// Covisibility graph edges
// Step 4.3添加第4种边有很高(>=100)共视关系的关键帧也作为边进行优化
// 优先使用经过Sim3调整前关键帧之间的相对关系作为边
const vector<KeyFrame*> vpConnectedKFs = pKF->GetCovisiblesByWeight(minFeat);
for(vector<KeyFrame*>::const_iterator vit=vpConnectedKFs.begin(); vit!=vpConnectedKFs.end(); vit++)
{
KeyFrame* pKFn = *vit;
// 避免重复添加的情况:最小生成树中的父子关键帧关系,以及和当前遍历到的关键帧构成了回环关系
if(pKFn && pKFn!=pParentKF && !pKF->hasChild(pKFn) && !sLoopEdges.count(pKFn))
{
// 注意这里控制了要比当前遍历到的这个关键帧的id要小,这个也是为了避免重复添加
if(!pKFn->isBad() && pKFn->mnId<pKF->mnId)
{
// just one edge between frames
if(sInsertedEdges.count(make_pair(min(pKF->mnId,pKFn->mnId),max(pKF->mnId,pKFn->mnId))))
continue;
g2o::Sim3 Snw;
LoopClosing::KeyFrameAndPose::const_iterator itn = NonCorrectedSim3.find(pKFn);
// 优先未经过Sim3传播调整的位姿
if(itn!=NonCorrectedSim3.end())
Snw = itn->second;
else
Snw = vScw[pKFn->mnId];
// 也是同样计算相对位姿
g2o::Sim3 Sni = Snw * Swi;
g2o::EdgeSim3* en = new g2o::EdgeSim3();
en->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFn->mnId)));
en->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
en->setMeasurement(Sni);
en->information() = matLambda;
optimizer.addEdge(en);
count_edges[2]++;
}
}
}
}
Verbose::PrintMess("edges pose graph: " + to_string(count_edges[0]) + ", " + to_string(count_edges[1]) + ", " + to_string(count_edges[2]), Verbose::VERBOSITY_DEBUG);
// Optimize!
// Step 5开始g2o优化
optimizer.initializeOptimization();
optimizer.setVerbose(false);
optimizer.optimize(20);
// 更新地图前,先上锁,防止冲突
unique_lock<mutex> lock(pMap->mMutexMapUpdate);
// SE3 Pose Recovering. Sim3:[sR t;0 1] -> SE3:[R t/s;0 1]
// Step 6设定优化后的位姿
// 遍历地图中的所有关键帧
for(size_t i=0;i<vpKFs.size();i++)
{
KeyFrame* pKFi = vpKFs[i];
const int nIDi = pKFi->mnId;
g2o::VertexSim3Expmap* VSim3 = static_cast<g2o::VertexSim3Expmap*>(optimizer.vertex(nIDi));
g2o::Sim3 CorrectedSiw = VSim3->estimate();
vCorrectedSwc[nIDi]=CorrectedSiw.inverse();
Eigen::Matrix3d eigR = CorrectedSiw.rotation().toRotationMatrix();
Eigen::Vector3d eigt = CorrectedSiw.translation();
double s = CorrectedSiw.scale();
// 转换成尺度为1的变换矩阵的形式
eigt *=(1./s); //[R t/s;0 1]
cv::Mat Tiw = Converter::toCvSE3(eigR,eigt);
// 注意这里的位姿是直接写入到关键帧中的
pKFi->SetPose(Tiw);
}
// Correct points. Transform to "non-optimized" reference keyframe pose and transform back with optimized pose
// Step 7步骤5和步骤6优化得到关键帧的位姿后地图点根据参考帧优化前后的相对关系调整自己的位置
// 遍历所有地图点
for(size_t i=0, iend=vpMPs.size(); i<iend; i++)
{
MapPoint* pMP = vpMPs[i];
if(pMP->isBad())
continue;
int nIDr;
// 该地图点在闭环检测中被当前KF调整过那么使用调整它的KF id
if(pMP->mnCorrectedByKF==pCurKF->mnId)
{
nIDr = pMP->mnCorrectedReference;
}
else
{
// 通常情况下地图点的参考关键帧就是创建该地图点的那个关键帧
KeyFrame* pRefKF = pMP->GetReferenceKeyFrame();
nIDr = pRefKF->mnId;
}
// 得到地图点参考关键帧优化前的位姿
g2o::Sim3 Srw = vScw[nIDr];
// 得到地图点参考关键帧优化后的位姿
g2o::Sim3 correctedSwr = vCorrectedSwc[nIDr];
cv::Mat P3Dw = pMP->GetWorldPos();
Eigen::Matrix<double,3,1> eigP3Dw = Converter::toVector3d(P3Dw);
Eigen::Matrix<double,3,1> eigCorrectedP3Dw = correctedSwr.map(Srw.map(eigP3Dw));
cv::Mat cvCorrectedP3Dw = Converter::toCvMat(eigCorrectedP3Dw);
// 这里优化后的位置也是直接写入到地图点之中的
pMP->SetWorldPos(cvCorrectedP3Dw);
// 记得更新一下
pMP->UpdateNormalAndDepth();
} // 使用相对位姿变换的方法来更新地图点的位姿
// TODO Check this changeindex
pMap->IncreaseChangeIndex();
}
int Optimizer::OptimizeSim3(KeyFrame *pKF1, KeyFrame *pKF2, vector<MapPoint *> &vpMatches1, g2o::Sim3 &g2oS12, const float th2, const bool bFixScale)
{
// Step 1初始化g2o优化器
// 先构造求解器
g2o::SparseOptimizer optimizer;
// 构造线性方程求解器Hx = -b的求解器
g2o::BlockSolverX::LinearSolverType * linearSolver;
// 使用dense的求解器常见非dense求解器有cholmod线性求解器和shur补线性求解器
linearSolver = new g2o::LinearSolverDense<g2o::BlockSolverX::PoseMatrixType>();
g2o::BlockSolverX * solver_ptr = new g2o::BlockSolverX(linearSolver);
// 使用L-M迭代
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
optimizer.setAlgorithm(solver);
// Calibration
// 内参矩阵
const cv::Mat &K1 = pKF1->mK;
const cv::Mat &K2 = pKF2->mK;
// Camera poses
const cv::Mat R1w = pKF1->GetRotation();
const cv::Mat t1w = pKF1->GetTranslation();
const cv::Mat R2w = pKF2->GetRotation();
const cv::Mat t2w = pKF2->GetTranslation();
// Set Sim3 vertex
// Step 2: 设置Sim3 作为顶点
g2o::VertexSim3Expmap * vSim3 = new g2o::VertexSim3Expmap();
// 根据传感器类型决定是否固定尺度
vSim3->_fix_scale=bFixScale;
vSim3->setEstimate(g2oS12);
vSim3->setId(0);
// Sim3 需要优化
vSim3->setFixed(false); // 因为要优化Sim3顶点所以设置为false
vSim3->_principle_point1[0] = K1.at<float>(0,2); // 光心横坐标cx
vSim3->_principle_point1[1] = K1.at<float>(1,2); // 光心纵坐标cy
vSim3->_focal_length1[0] = K1.at<float>(0,0); // 焦距 fx
vSim3->_focal_length1[1] = K1.at<float>(1,1); // 焦距 fy
vSim3->_principle_point2[0] = K2.at<float>(0,2);
vSim3->_principle_point2[1] = K2.at<float>(1,2);
vSim3->_focal_length2[0] = K2.at<float>(0,0);
vSim3->_focal_length2[1] = K2.at<float>(1,1);
optimizer.addVertex(vSim3);
// Set MapPoint vertices
// Step 3: 设置地图点作为顶点
const int N = vpMatches1.size();
// 获取pKF1的地图点
const vector<MapPoint*> vpMapPoints1 = pKF1->GetMapPointMatches();
vector<g2o::EdgeSim3ProjectXYZ*> vpEdges12; //pKF2对应的地图点到pKF1的投影边
vector<g2o::EdgeInverseSim3ProjectXYZ*> vpEdges21; //pKF1对应的地图点到pKF2的投影边
vector<size_t> vnIndexEdge; //边的索引
vnIndexEdge.reserve(2*N);
vpEdges12.reserve(2*N);
vpEdges21.reserve(2*N);
// 核函数的阈值
const float deltaHuber = sqrt(th2);
int nCorrespondences = 0;
// 遍历每对匹配点
for(int i=0; i<N; i++)
{
if(!vpMatches1[i])
continue;
// pMP1和pMP2是匹配的地图点
MapPoint* pMP1 = vpMapPoints1[i];
MapPoint* pMP2 = vpMatches1[i];
// 保证顶点的id能够错开
const int id1 = 2*i+1;
const int id2 = 2*(i+1);
// i2 是 pMP2 在pKF2中对应的索引
const int i2 = get<0>(pMP2->GetIndexInKeyFrame(pKF2));
if(pMP1 && pMP2)
{
if(!pMP1->isBad() && !pMP2->isBad() && i2>=0)
{
// 如果这对匹配点都靠谱并且对应的2D特征点也都存在的话添加PointXYZ顶点
g2o::VertexSBAPointXYZ* vPoint1 = new g2o::VertexSBAPointXYZ();
// 地图点转换到各自相机坐标系下的三维点
cv::Mat P3D1w = pMP1->GetWorldPos();
cv::Mat P3D1c = R1w*P3D1w + t1w;
vPoint1->setEstimate(Converter::toVector3d(P3D1c));
vPoint1->setId(id1);
// 地图点不优化
vPoint1->setFixed(true);
optimizer.addVertex(vPoint1);
g2o::VertexSBAPointXYZ* vPoint2 = new g2o::VertexSBAPointXYZ();
cv::Mat P3D2w = pMP2->GetWorldPos();
cv::Mat P3D2c = R2w*P3D2w + t2w;
vPoint2->setEstimate(Converter::toVector3d(P3D2c));
vPoint2->setId(id2);
vPoint2->setFixed(true);
optimizer.addVertex(vPoint2);
}
else
continue;
}
else
continue;
// 对匹配关系进行计数
nCorrespondences++;
// Step 4: 添加边(地图点投影到特征点)
// Set edge x1 = S12*X2
// 地图点pMP1对应的观测特征点
Eigen::Matrix<double,2,1> obs1;
const cv::KeyPoint &kpUn1 = pKF1->mvKeysUn[i];
obs1 << kpUn1.pt.x, kpUn1.pt.y;
// Step 4.1 闭环候选帧地图点投影到当前帧的边 -- 正向投影
g2o::EdgeSim3ProjectXYZ* e12 = new g2o::EdgeSim3ProjectXYZ();
// vertex(id2)对应的是pKF2 VertexSBAPointXYZ 类型的三维点
e12->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id2)));
// ? 为什么这里添加的节点的id为0
// 回答因为vertex(0)对应的是 VertexSim3Expmap 类型的待优化Sim3其id 为 0
e12->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(0)));
e12->setMeasurement(obs1);
// 信息矩阵和这个特征点的可靠程度(在图像金字塔中的图层)有关
const float &invSigmaSquare1 = pKF1->mvInvLevelSigma2[kpUn1.octave];
e12->setInformation(Eigen::Matrix2d::Identity()*invSigmaSquare1);
// 使用鲁棒核函数
g2o::RobustKernelHuber* rk1 = new g2o::RobustKernelHuber;
e12->setRobustKernel(rk1);
rk1->setDelta(deltaHuber);
optimizer.addEdge(e12);
// Set edge x2 = S21*X1
// Step 4.2 当前帧地图点投影到闭环候选帧的边 -- 反向投影
// 地图点pMP2对应的观测特征点
Eigen::Matrix<double,2,1> obs2;
const cv::KeyPoint &kpUn2 = pKF2->mvKeysUn[i2];
obs2 << kpUn2.pt.x, kpUn2.pt.y;
g2o::EdgeInverseSim3ProjectXYZ* e21 = new g2o::EdgeInverseSim3ProjectXYZ();
// vertex(id1)对应的是pKF1 VertexSBAPointXYZ 类型的三维点,内部误差公式也不同
e21->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id1)));
e21->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(0)));
e21->setMeasurement(obs2);
float invSigmaSquare2 = pKF2->mvInvLevelSigma2[kpUn2.octave];
e21->setInformation(Eigen::Matrix2d::Identity()*invSigmaSquare2);
g2o::RobustKernelHuber* rk2 = new g2o::RobustKernelHuber;
e21->setRobustKernel(rk2);
rk2->setDelta(deltaHuber);
optimizer.addEdge(e21);
vpEdges12.push_back(e12);
vpEdges21.push_back(e21);
vnIndexEdge.push_back(i);
}
// Optimize!
// Step 5g2o开始优化先迭代5次
optimizer.initializeOptimization();
optimizer.optimize(5);
// Step 6用卡方检验剔除误差大的边
// Check inliers
int nBad=0;
for(size_t i=0; i<vpEdges12.size();i++)
{
g2o::EdgeSim3ProjectXYZ* e12 = vpEdges12[i];
g2o::EdgeInverseSim3ProjectXYZ* e21 = vpEdges21[i];
if(!e12 || !e21)
continue;
if(e12->chi2()>th2 || e21->chi2()>th2)
{
// 正向或反向投影任意一个超过误差阈值就删掉该边
size_t idx = vnIndexEdge[i];
vpMatches1[idx]=static_cast<MapPoint*>(NULL);
optimizer.removeEdge(e12);
optimizer.removeEdge(e21);
vpEdges12[i]=static_cast<g2o::EdgeSim3ProjectXYZ*>(NULL);
vpEdges21[i]=static_cast<g2o::EdgeInverseSim3ProjectXYZ*>(NULL);
// 累计删掉的边 数目
nBad++;
}
}
// 如果有误差较大的边被剔除那么说明回环质量并不是非常好,还要多迭代几次;反之就少迭代几次
int nMoreIterations;
if(nBad>0)
nMoreIterations=10;
else
nMoreIterations=5;
// 如果经过上面的剔除后剩下的匹配关系已经非常少了,那么就放弃优化。内点数直接设置为0
if(nCorrespondences-nBad<10)
return 0;
// Optimize again only with inliers
// Step 7再次g2o优化 剔除后剩下的边
optimizer.initializeOptimization();
optimizer.optimize(nMoreIterations);
// 统计第二次优化之后,这些匹配点中是内点的个数
int nIn = 0;
for(size_t i=0; i<vpEdges12.size();i++)
{
g2o::EdgeSim3ProjectXYZ* e12 = vpEdges12[i];
g2o::EdgeInverseSim3ProjectXYZ* e21 = vpEdges21[i];
if(!e12 || !e21)
continue;
if(e12->chi2()>th2 || e21->chi2()>th2)
{
size_t idx = vnIndexEdge[i];
vpMatches1[idx]=static_cast<MapPoint*>(NULL);
}
else
nIn++;
}
// Recover optimized Sim3
// Step 8得到优化后的结果
g2o::VertexSim3Expmap* vSim3_recov = static_cast<g2o::VertexSim3Expmap*>(optimizer.vertex(0));
g2oS12= vSim3_recov->estimate();
return nIn;
}
int Optimizer::OptimizeSim3(KeyFrame *pKF1, KeyFrame *pKF2, vector<MapPoint *> &vpMatches1, g2o::Sim3 &g2oS12, const float th2,
const bool bFixScale, Eigen::Matrix<double,7,7> &mAcumHessian, const bool bAllPoints)
{
g2o::SparseOptimizer optimizer;
g2o::BlockSolverX::LinearSolverType * linearSolver;
linearSolver = new g2o::LinearSolverDense<g2o::BlockSolverX::PoseMatrixType>();
g2o::BlockSolverX * solver_ptr = new g2o::BlockSolverX(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
optimizer.setAlgorithm(solver);
// Camera poses
const cv::Mat R1w = pKF1->GetRotation();
const cv::Mat t1w = pKF1->GetTranslation();
const cv::Mat R2w = pKF2->GetRotation();
const cv::Mat t2w = pKF2->GetTranslation();
// Set Sim3 vertex
ORB_SLAM3::VertexSim3Expmap * vSim3 = new ORB_SLAM3::VertexSim3Expmap();
vSim3->_fix_scale=bFixScale;
vSim3->setEstimate(g2oS12);
vSim3->setId(0);
vSim3->setFixed(false);
vSim3->pCamera1 = pKF1->mpCamera;
vSim3->pCamera2 = pKF2->mpCamera;
optimizer.addVertex(vSim3);
// Set MapPoint vertices
const int N = vpMatches1.size();
const vector<MapPoint*> vpMapPoints1 = pKF1->GetMapPointMatches();
vector<ORB_SLAM3::EdgeSim3ProjectXYZ*> vpEdges12;
vector<ORB_SLAM3::EdgeInverseSim3ProjectXYZ*> vpEdges21;
vector<size_t> vnIndexEdge;
vector<bool> vbIsInKF2;
vnIndexEdge.reserve(2*N);
vpEdges12.reserve(2*N);
vpEdges21.reserve(2*N);
vbIsInKF2.reserve(2*N);
const float deltaHuber = sqrt(th2);
int nCorrespondences = 0;
int nBadMPs = 0;
int nInKF2 = 0;
int nOutKF2 = 0;
int nMatchWithoutMP = 0;
vector<int> vIdsOnlyInKF2;
for(int i=0; i<N; i++)
{
if(!vpMatches1[i])
continue;
MapPoint* pMP1 = vpMapPoints1[i];
MapPoint* pMP2 = vpMatches1[i];
const int id1 = 2*i+1;
const int id2 = 2*(i+1);
const int i2 = get<0>(pMP2->GetIndexInKeyFrame(pKF2));
/*if(i2 < 0)
cout << "Sim3-OPT: Error, there is a matched which is not find it" << endl;*/
cv::Mat P3D1c;
cv::Mat P3D2c;
if(pMP1 && pMP2)
{
//if(!pMP1->isBad() && !pMP2->isBad() && i2>=0)
if(!pMP1->isBad() && !pMP2->isBad())
{
g2o::VertexSBAPointXYZ* vPoint1 = new g2o::VertexSBAPointXYZ();
cv::Mat P3D1w = pMP1->GetWorldPos();
P3D1c = R1w*P3D1w + t1w;
vPoint1->setEstimate(Converter::toVector3d(P3D1c));
vPoint1->setId(id1);
vPoint1->setFixed(true);
optimizer.addVertex(vPoint1);
g2o::VertexSBAPointXYZ* vPoint2 = new g2o::VertexSBAPointXYZ();
cv::Mat P3D2w = pMP2->GetWorldPos();
P3D2c = R2w*P3D2w + t2w;
vPoint2->setEstimate(Converter::toVector3d(P3D2c));
vPoint2->setId(id2);
vPoint2->setFixed(true);
optimizer.addVertex(vPoint2);
}
else
{
nBadMPs++;
continue;
}
}
else
{
nMatchWithoutMP++;
//TODO The 3D position in KF1 doesn't exist
if(!pMP2->isBad())
{
g2o::VertexSBAPointXYZ* vPoint2 = new g2o::VertexSBAPointXYZ();
cv::Mat P3D2w = pMP2->GetWorldPos();
P3D2c = R2w*P3D2w + t2w;
vPoint2->setEstimate(Converter::toVector3d(P3D2c));
vPoint2->setId(id2);
vPoint2->setFixed(true);
optimizer.addVertex(vPoint2);
vIdsOnlyInKF2.push_back(id2);
}
continue;
}
if(i2<0 && !bAllPoints)
{
Verbose::PrintMess(" Remove point -> i2: " + to_string(i2) + "; bAllPoints: " + to_string(bAllPoints), Verbose::VERBOSITY_DEBUG);
continue;
}
if(P3D2c.at<float>(2) < 0)
{
Verbose::PrintMess("Sim3: Z coordinate is negative", Verbose::VERBOSITY_DEBUG);
continue;
}
nCorrespondences++;
// Set edge x1 = S12*X2
Eigen::Matrix<double,2,1> obs1;
const cv::KeyPoint &kpUn1 = pKF1->mvKeysUn[i];
obs1 << kpUn1.pt.x, kpUn1.pt.y;
ORB_SLAM3::EdgeSim3ProjectXYZ* e12 = new ORB_SLAM3::EdgeSim3ProjectXYZ();
e12->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id2)));
e12->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(0)));
e12->setMeasurement(obs1);
const float &invSigmaSquare1 = pKF1->mvInvLevelSigma2[kpUn1.octave];
e12->setInformation(Eigen::Matrix2d::Identity()*invSigmaSquare1);
g2o::RobustKernelHuber* rk1 = new g2o::RobustKernelHuber;
e12->setRobustKernel(rk1);
rk1->setDelta(deltaHuber);
optimizer.addEdge(e12);
// Set edge x2 = S21*X1
Eigen::Matrix<double,2,1> obs2;
cv::KeyPoint kpUn2;
bool inKF2;
if(i2 >= 0)
{
kpUn2 = pKF2->mvKeysUn[i2];
obs2 << kpUn2.pt.x, kpUn2.pt.y;
inKF2 = true;
nInKF2++;
}
else
{
float invz = 1/P3D2c.at<float>(2);
float x = P3D2c.at<float>(0)*invz;
float y = P3D2c.at<float>(1)*invz;
obs2 << x, y;
kpUn2 = cv::KeyPoint(cv::Point2f(x, y), pMP2->mnTrackScaleLevel);
inKF2 = false;
nOutKF2++;
}
ORB_SLAM3::EdgeInverseSim3ProjectXYZ* e21 = new ORB_SLAM3::EdgeInverseSim3ProjectXYZ();
e21->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id1)));
e21->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(0)));
e21->setMeasurement(obs2);
float invSigmaSquare2 = pKF2->mvInvLevelSigma2[kpUn2.octave];
e21->setInformation(Eigen::Matrix2d::Identity()*invSigmaSquare2);
g2o::RobustKernelHuber* rk2 = new g2o::RobustKernelHuber;
e21->setRobustKernel(rk2);
rk2->setDelta(deltaHuber);
optimizer.addEdge(e21);
vpEdges12.push_back(e12);
vpEdges21.push_back(e21);
vnIndexEdge.push_back(i);
vbIsInKF2.push_back(inKF2);
}
Verbose::PrintMess("Sim3: There are " + to_string(nCorrespondences) + " matches, " + to_string(nInKF2) + " are in the KF and " + to_string(nOutKF2) + " are in the connected KFs. There are " + to_string(nMatchWithoutMP) + " matches which have not an associate MP", Verbose::VERBOSITY_DEBUG);
// Optimize!
optimizer.initializeOptimization();
optimizer.optimize(5);
// Check inliers
int nBad=0;
int nBadOutKF2 = 0;
for(size_t i=0; i<vpEdges12.size();i++)
{
ORB_SLAM3::EdgeSim3ProjectXYZ* e12 = vpEdges12[i];
ORB_SLAM3::EdgeInverseSim3ProjectXYZ* e21 = vpEdges21[i];
if(!e12 || !e21)
continue;
if(e12->chi2()>th2 || e21->chi2()>th2)
{
size_t idx = vnIndexEdge[i];
vpMatches1[idx]=static_cast<MapPoint*>(NULL);
optimizer.removeEdge(e12);
optimizer.removeEdge(e21);
vpEdges12[i]=static_cast<ORB_SLAM3::EdgeSim3ProjectXYZ*>(NULL);
vpEdges21[i]=static_cast<ORB_SLAM3::EdgeInverseSim3ProjectXYZ*>(NULL);
nBad++;
if(!vbIsInKF2[i])
{
nBadOutKF2++;
}
continue;
}
//Check if remove the robust adjustment improve the result
e12->setRobustKernel(0);
e21->setRobustKernel(0);
}
Verbose::PrintMess("Sim3: First Opt -> Correspondences: " + to_string(nCorrespondences) + "; nBad: " + to_string(nBad) + "; nBadOutKF2: " + to_string(nBadOutKF2), Verbose::VERBOSITY_DEBUG);
int nMoreIterations;
if(nBad>0)
nMoreIterations=10;
else
nMoreIterations=5;
if(nCorrespondences-nBad<10)
return 0;
// Optimize again only with inliers
optimizer.initializeOptimization();
optimizer.optimize(nMoreIterations);
int nIn = 0;
mAcumHessian = Eigen::MatrixXd::Zero(7, 7);
for(size_t i=0; i<vpEdges12.size();i++)
{
ORB_SLAM3::EdgeSim3ProjectXYZ* e12 = vpEdges12[i];
ORB_SLAM3::EdgeInverseSim3ProjectXYZ* e21 = vpEdges21[i];
if(!e12 || !e21)
continue;
e12->computeError();
e21->computeError();
if(e12->chi2()>th2 || e21->chi2()>th2)
{
size_t idx = vnIndexEdge[i];
vpMatches1[idx]=static_cast<MapPoint*>(NULL);
}
else
{
nIn++;
//mAcumHessian += e12->GetHessian();
}
}
// Recover optimized Sim3
//Verbose::PrintMess("Sim3: Initial seed " + g2oS12, Verbose::VERBOSITY_DEBUG);
g2o::VertexSim3Expmap* vSim3_recov = static_cast<g2o::VertexSim3Expmap*>(optimizer.vertex(0));
g2oS12= vSim3_recov->estimate();
//Verbose::PrintMess("Sim3: Optimized solution " + g2oS12, Verbose::VERBOSITY_DEBUG);
return nIn;
}
int Optimizer::OptimizeSim3(KeyFrame *pKF1, KeyFrame *pKF2, vector<MapPoint *> &vpMatches1, vector<KeyFrame*> &vpMatches1KF, g2o::Sim3 &g2oS12, const float th2,
const bool bFixScale, Eigen::Matrix<double,7,7> &mAcumHessian, const bool bAllPoints)
{
g2o::SparseOptimizer optimizer;
g2o::BlockSolverX::LinearSolverType * linearSolver;
linearSolver = new g2o::LinearSolverDense<g2o::BlockSolverX::PoseMatrixType>();
g2o::BlockSolverX * solver_ptr = new g2o::BlockSolverX(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
optimizer.setAlgorithm(solver);
// Calibration
const cv::Mat &K1 = pKF1->mK;
const cv::Mat &K2 = pKF2->mK;
// Camera poses
const cv::Mat R1w = pKF1->GetRotation();
const cv::Mat t1w = pKF1->GetTranslation();
Verbose::PrintMess("Extracted rotation and traslation from the first KF ", Verbose::VERBOSITY_DEBUG);
const cv::Mat R2w = pKF2->GetRotation();
const cv::Mat t2w = pKF2->GetTranslation();
Verbose::PrintMess("Extracted rotation and traslation from the second KF ", Verbose::VERBOSITY_DEBUG);
// Set Sim3 vertex
g2o::VertexSim3Expmap * vSim3 = new g2o::VertexSim3Expmap();
vSim3->_fix_scale=bFixScale;
vSim3->setEstimate(g2oS12);
vSim3->setId(0);
vSim3->setFixed(false);
vSim3->_principle_point1[0] = K1.at<float>(0,2);
vSim3->_principle_point1[1] = K1.at<float>(1,2);
vSim3->_focal_length1[0] = K1.at<float>(0,0);
vSim3->_focal_length1[1] = K1.at<float>(1,1);
vSim3->_principle_point2[0] = K2.at<float>(0,2);
vSim3->_principle_point2[1] = K2.at<float>(1,2);
vSim3->_focal_length2[0] = K2.at<float>(0,0);
vSim3->_focal_length2[1] = K2.at<float>(1,1);
optimizer.addVertex(vSim3);
// Set MapPoint vertices
const int N = vpMatches1.size();
const vector<MapPoint*> vpMapPoints1 = pKF1->GetMapPointMatches();
vector<ORB_SLAM3::EdgeSim3ProjectXYZ*> vpEdges12;
vector<ORB_SLAM3::EdgeInverseSim3ProjectXYZ*> vpEdges21;
vector<size_t> vnIndexEdge;
vnIndexEdge.reserve(2*N);
vpEdges12.reserve(2*N);
vpEdges21.reserve(2*N);
const float deltaHuber = sqrt(th2);
int nCorrespondences = 0;
KeyFrame* pKFm = pKF2;
for(int i=0; i<N; i++)
{
if(!vpMatches1[i])
continue;
MapPoint* pMP1 = vpMapPoints1[i];
MapPoint* pMP2 = vpMatches1[i];
const int id1 = 2*i+1;
const int id2 = 2*(i+1);
pKFm = vpMatches1KF[i];
const int i2 = get<0>(pMP2->GetIndexInKeyFrame(pKFm));
if(i2 < 0)
Verbose::PrintMess("Sim3-OPT: Error, there is a matched which is not find it", Verbose::VERBOSITY_DEBUG);
cv::Mat P3D2c;
if(pMP1 && pMP2)
{
//if(!pMP1->isBad() && !pMP2->isBad() && i2>=0)
if(!pMP1->isBad() && !pMP2->isBad())
{
g2o::VertexSBAPointXYZ* vPoint1 = new g2o::VertexSBAPointXYZ();
cv::Mat P3D1w = pMP1->GetWorldPos();
cv::Mat P3D1c = R1w*P3D1w + t1w;
vPoint1->setEstimate(Converter::toVector3d(P3D1c));
vPoint1->setId(id1);
vPoint1->setFixed(true);
optimizer.addVertex(vPoint1);
g2o::VertexSBAPointXYZ* vPoint2 = new g2o::VertexSBAPointXYZ();
cv::Mat P3D2w = pMP2->GetWorldPos();
P3D2c = R2w*P3D2w + t2w;
vPoint2->setEstimate(Converter::toVector3d(P3D2c));
vPoint2->setId(id2);
vPoint2->setFixed(true);
optimizer.addVertex(vPoint2);
}
else
continue;
}
else
continue;
if(i2<0 && !bAllPoints)
{
Verbose::PrintMess(" Remove point -> i2: " + to_string(i2) + "; bAllPoints: " + to_string(bAllPoints), Verbose::VERBOSITY_DEBUG);
continue;
}
nCorrespondences++;
// Set edge x1 = S12*X2
Eigen::Matrix<double,2,1> obs1;
const cv::KeyPoint &kpUn1 = pKF1->mvKeysUn[i];
obs1 << kpUn1.pt.x, kpUn1.pt.y;
ORB_SLAM3::EdgeSim3ProjectXYZ* e12 = new ORB_SLAM3::EdgeSim3ProjectXYZ();
e12->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id2)));
e12->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(0)));
e12->setMeasurement(obs1);
const float &invSigmaSquare1 = pKF1->mvInvLevelSigma2[kpUn1.octave];
e12->setInformation(Eigen::Matrix2d::Identity()*invSigmaSquare1);
g2o::RobustKernelHuber* rk1 = new g2o::RobustKernelHuber;
e12->setRobustKernel(rk1);
rk1->setDelta(deltaHuber);
optimizer.addEdge(e12);
// Set edge x2 = S21*X1
Eigen::Matrix<double,2,1> obs2;
cv::KeyPoint kpUn2;
if(i2 >= 0 && pKFm == pKF2)
{
kpUn2 = pKFm->mvKeysUn[i2];
obs2 << kpUn2.pt.x, kpUn2.pt.y;
}
else
{
float invz = 1/P3D2c.at<float>(2);
float x = P3D2c.at<float>(0)*invz;
float y = P3D2c.at<float>(1)*invz;
// Project in image and check it is not outside
float u = pKF2->fx * x + pKFm->cx;
float v = pKF2->fy * y + pKFm->cy;
obs2 << u, v;
kpUn2 = cv::KeyPoint(cv::Point2f(u, v), pMP2->mnTrackScaleLevel);
}
ORB_SLAM3::EdgeInverseSim3ProjectXYZ* e21 = new ORB_SLAM3::EdgeInverseSim3ProjectXYZ();
e21->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id1)));
e21->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(0)));
e21->setMeasurement(obs2);
float invSigmaSquare2 = pKFm->mvInvLevelSigma2[kpUn2.octave];
e21->setInformation(Eigen::Matrix2d::Identity()*invSigmaSquare2);
g2o::RobustKernelHuber* rk2 = new g2o::RobustKernelHuber;
e21->setRobustKernel(rk2);
rk2->setDelta(deltaHuber);
optimizer.addEdge(e21);
vpEdges12.push_back(e12);
vpEdges21.push_back(e21);
vnIndexEdge.push_back(i);
}
// Optimize!
optimizer.initializeOptimization();
optimizer.optimize(5);
// Check inliers
int nBad=0;
for(size_t i=0; i<vpEdges12.size();i++)
{
ORB_SLAM3::EdgeSim3ProjectXYZ* e12 = vpEdges12[i];
ORB_SLAM3::EdgeInverseSim3ProjectXYZ* e21 = vpEdges21[i];
if(!e12 || !e21)
continue;
if(e12->chi2()>th2 || e21->chi2()>th2)
{
size_t idx = vnIndexEdge[i];
vpMatches1[idx]=static_cast<MapPoint*>(NULL);
optimizer.removeEdge(e12);
optimizer.removeEdge(e21);
vpEdges12[i]=static_cast<ORB_SLAM3::EdgeSim3ProjectXYZ*>(NULL);
vpEdges21[i]=static_cast<ORB_SLAM3::EdgeInverseSim3ProjectXYZ*>(NULL);
nBad++;
continue;
}
//Check if remove the robust adjustment improve the result
e12->setRobustKernel(0);
e21->setRobustKernel(0);
}
//cout << "Sim3 -> Correspondences: " << nCorrespondences << "; nBad: " << nBad << endl;
int nMoreIterations;
if(nBad>0)
nMoreIterations=10;
else
nMoreIterations=5;
if(nCorrespondences-nBad<10)
return 0;
// Optimize again only with inliers
optimizer.initializeOptimization();
optimizer.optimize(nMoreIterations);
int nIn = 0;
mAcumHessian = Eigen::MatrixXd::Zero(7, 7);
for(size_t i=0; i<vpEdges12.size();i++)
{
ORB_SLAM3::EdgeSim3ProjectXYZ* e12 = vpEdges12[i];
ORB_SLAM3::EdgeInverseSim3ProjectXYZ* e21 = vpEdges21[i];
if(!e12 || !e21)
continue;
e12->computeError();
e21->computeError();
if(e12->chi2()>th2 || e21->chi2()>th2)
{
size_t idx = vnIndexEdge[i];
vpMatches1[idx]=static_cast<MapPoint*>(NULL);
}
else
{
nIn++;
//mAcumHessian += e12->GetHessian();
}
}
// Recover optimized Sim3
ORB_SLAM3::VertexSim3Expmap* vSim3_recov = static_cast<ORB_SLAM3::VertexSim3Expmap*>(optimizer.vertex(0));
g2oS12= vSim3_recov->estimate();
return nIn;
}
void Optimizer::LocalInertialBA(KeyFrame *pKF, bool *pbStopFlag, Map *pMap, bool bLarge, bool bRecInit)
{
std::chrono::steady_clock::time_point t0 = std::chrono::steady_clock::now();
Map* pCurrentMap = pKF->GetMap();
int maxOpt=10;
int opt_it=10;
if(bLarge)
{
maxOpt=25;
opt_it=4;
}
const int Nd = std::min((int)pCurrentMap->KeyFramesInMap()-2,maxOpt);
const unsigned long maxKFid = pKF->mnId;
vector<KeyFrame*> vpOptimizableKFs;
const vector<KeyFrame*> vpNeighsKFs = pKF->GetVectorCovisibleKeyFrames();
list<KeyFrame*> lpOptVisKFs;
vpOptimizableKFs.reserve(Nd);
vpOptimizableKFs.push_back(pKF);
pKF->mnBALocalForKF = pKF->mnId;
for(int i=1; i<Nd; i++)
{
if(vpOptimizableKFs.back()->mPrevKF)
{
vpOptimizableKFs.push_back(vpOptimizableKFs.back()->mPrevKF);
vpOptimizableKFs.back()->mnBALocalForKF = pKF->mnId;
}
else
break;
}
int N = vpOptimizableKFs.size();
// Optimizable points seen by temporal optimizable keyframes
list<MapPoint*> lLocalMapPoints;
for(int i=0; i<N; i++)
{
vector<MapPoint*> vpMPs = vpOptimizableKFs[i]->GetMapPointMatches();
for(vector<MapPoint*>::iterator vit=vpMPs.begin(), vend=vpMPs.end(); vit!=vend; vit++)
{
MapPoint* pMP = *vit;
if(pMP)
if(!pMP->isBad())
if(pMP->mnBALocalForKF!=pKF->mnId)
{
lLocalMapPoints.push_back(pMP);
pMP->mnBALocalForKF=pKF->mnId;
}
}
}
// Fixed Keyframe: First frame previous KF to optimization window)
list<KeyFrame*> lFixedKeyFrames;
if(vpOptimizableKFs.back()->mPrevKF)
{
lFixedKeyFrames.push_back(vpOptimizableKFs.back()->mPrevKF);
vpOptimizableKFs.back()->mPrevKF->mnBAFixedForKF=pKF->mnId;
}
else
{
vpOptimizableKFs.back()->mnBALocalForKF=0;
vpOptimizableKFs.back()->mnBAFixedForKF=pKF->mnId;
lFixedKeyFrames.push_back(vpOptimizableKFs.back());
vpOptimizableKFs.pop_back();
}
// Optimizable visual KFs
const int maxCovKF = 0;
for(int i=0, iend=vpNeighsKFs.size(); i<iend; i++)
{
if(lpOptVisKFs.size() >= maxCovKF)
break;
KeyFrame* pKFi = vpNeighsKFs[i];
if(pKFi->mnBALocalForKF == pKF->mnId || pKFi->mnBAFixedForKF == pKF->mnId)
continue;
pKFi->mnBALocalForKF = pKF->mnId;
if(!pKFi->isBad() && pKFi->GetMap() == pCurrentMap)
{
lpOptVisKFs.push_back(pKFi);
vector<MapPoint*> vpMPs = pKFi->GetMapPointMatches();
for(vector<MapPoint*>::iterator vit=vpMPs.begin(), vend=vpMPs.end(); vit!=vend; vit++)
{
MapPoint* pMP = *vit;
if(pMP)
if(!pMP->isBad())
if(pMP->mnBALocalForKF!=pKF->mnId)
{
lLocalMapPoints.push_back(pMP);
pMP->mnBALocalForKF=pKF->mnId;
}
}
}
}
// Fixed KFs which are not covisible optimizable
const int maxFixKF = 200;
for(list<MapPoint*>::iterator lit=lLocalMapPoints.begin(), lend=lLocalMapPoints.end(); lit!=lend; lit++)
{
map<KeyFrame*,tuple<int,int>> observations = (*lit)->GetObservations();
for(map<KeyFrame*,tuple<int,int>>::iterator mit=observations.begin(), mend=observations.end(); mit!=mend; mit++)
{
KeyFrame* pKFi = mit->first;
if(pKFi->mnBALocalForKF!=pKF->mnId && pKFi->mnBAFixedForKF!=pKF->mnId)
{
pKFi->mnBAFixedForKF=pKF->mnId;
if(!pKFi->isBad())
{
lFixedKeyFrames.push_back(pKFi);
break;
}
}
}
if(lFixedKeyFrames.size()>=maxFixKF)
break;
}
bool bNonFixed = (lFixedKeyFrames.size() == 0);
// Setup optimizer
g2o::SparseOptimizer optimizer;
g2o::BlockSolverX::LinearSolverType * linearSolver;
linearSolver = new g2o::LinearSolverEigen<g2o::BlockSolverX::PoseMatrixType>();
g2o::BlockSolverX * solver_ptr = new g2o::BlockSolverX(linearSolver);
if(bLarge)
{
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
solver->setUserLambdaInit(1e-2); // to avoid iterating for finding optimal lambda
optimizer.setAlgorithm(solver);
}
else
{
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
solver->setUserLambdaInit(1e0);
optimizer.setAlgorithm(solver);
}
// Set Local temporal KeyFrame vertices
N=vpOptimizableKFs.size();
for(int i=0; i<N; i++)
{
KeyFrame* pKFi = vpOptimizableKFs[i];
VertexPose * VP = new VertexPose(pKFi);
VP->setId(pKFi->mnId);
VP->setFixed(false);
optimizer.addVertex(VP);
if(pKFi->bImu)
{
VertexVelocity* VV = new VertexVelocity(pKFi);
VV->setId(maxKFid+3*(pKFi->mnId)+1);
VV->setFixed(false);
optimizer.addVertex(VV);
VertexGyroBias* VG = new VertexGyroBias(pKFi);
VG->setId(maxKFid+3*(pKFi->mnId)+2);
VG->setFixed(false);
optimizer.addVertex(VG);
VertexAccBias* VA = new VertexAccBias(pKFi);
VA->setId(maxKFid+3*(pKFi->mnId)+3);
VA->setFixed(false);
optimizer.addVertex(VA);
}
}
// Set Local visual KeyFrame vertices
for(list<KeyFrame*>::iterator it=lpOptVisKFs.begin(), itEnd = lpOptVisKFs.end(); it!=itEnd; it++)
{
KeyFrame* pKFi = *it;
VertexPose * VP = new VertexPose(pKFi);
VP->setId(pKFi->mnId);
VP->setFixed(false);
optimizer.addVertex(VP);
}
// Set Fixed KeyFrame vertices
for(list<KeyFrame*>::iterator lit=lFixedKeyFrames.begin(), lend=lFixedKeyFrames.end(); lit!=lend; lit++)
{
KeyFrame* pKFi = *lit;
VertexPose * VP = new VertexPose(pKFi);
VP->setId(pKFi->mnId);
VP->setFixed(true);
optimizer.addVertex(VP);
if(pKFi->bImu) // This should be done only for keyframe just before temporal window
{
VertexVelocity* VV = new VertexVelocity(pKFi);
VV->setId(maxKFid+3*(pKFi->mnId)+1);
VV->setFixed(true);
optimizer.addVertex(VV);
VertexGyroBias* VG = new VertexGyroBias(pKFi);
VG->setId(maxKFid+3*(pKFi->mnId)+2);
VG->setFixed(true);
optimizer.addVertex(VG);
VertexAccBias* VA = new VertexAccBias(pKFi);
VA->setId(maxKFid+3*(pKFi->mnId)+3);
VA->setFixed(true);
optimizer.addVertex(VA);
}
}
// Create intertial constraints
vector<EdgeInertial*> vei(N,(EdgeInertial*)NULL);
vector<EdgeGyroRW*> vegr(N,(EdgeGyroRW*)NULL);
vector<EdgeAccRW*> vear(N,(EdgeAccRW*)NULL);
for(int i=0;i<N;i++)
{
KeyFrame* pKFi = vpOptimizableKFs[i];
if(!pKFi->mPrevKF)
{
cout << "NOT INERTIAL LINK TO PREVIOUS FRAME!!!!" << endl;
continue;
}
if(pKFi->bImu && pKFi->mPrevKF->bImu && pKFi->mpImuPreintegrated)
{
pKFi->mpImuPreintegrated->SetNewBias(pKFi->mPrevKF->GetImuBias());
g2o::HyperGraph::Vertex* VP1 = optimizer.vertex(pKFi->mPrevKF->mnId);
g2o::HyperGraph::Vertex* VV1 = optimizer.vertex(maxKFid+3*(pKFi->mPrevKF->mnId)+1);
g2o::HyperGraph::Vertex* VG1 = optimizer.vertex(maxKFid+3*(pKFi->mPrevKF->mnId)+2);
g2o::HyperGraph::Vertex* VA1 = optimizer.vertex(maxKFid+3*(pKFi->mPrevKF->mnId)+3);
g2o::HyperGraph::Vertex* VP2 = optimizer.vertex(pKFi->mnId);
g2o::HyperGraph::Vertex* VV2 = optimizer.vertex(maxKFid+3*(pKFi->mnId)+1);
g2o::HyperGraph::Vertex* VG2 = optimizer.vertex(maxKFid+3*(pKFi->mnId)+2);
g2o::HyperGraph::Vertex* VA2 = optimizer.vertex(maxKFid+3*(pKFi->mnId)+3);
if(!VP1 || !VV1 || !VG1 || !VA1 || !VP2 || !VV2 || !VG2 || !VA2)
{
cerr << "Error " << VP1 << ", "<< VV1 << ", "<< VG1 << ", "<< VA1 << ", " << VP2 << ", " << VV2 << ", "<< VG2 << ", "<< VA2 <<endl;
continue;
}
vei[i] = new EdgeInertial(pKFi->mpImuPreintegrated);
vei[i]->setVertex(0,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VP1));
vei[i]->setVertex(1,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VV1));
vei[i]->setVertex(2,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VG1));
vei[i]->setVertex(3,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VA1));
vei[i]->setVertex(4,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VP2));
vei[i]->setVertex(5,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VV2));
if(i==N-1 || bRecInit)
{
// All inertial residuals are included without robust cost function, but not that one linking the
// last optimizable keyframe inside of the local window and the first fixed keyframe out. The
// information matrix for this measurement is also downweighted. This is done to avoid accumulating
// error due to fixing variables.
g2o::RobustKernelHuber* rki = new g2o::RobustKernelHuber;
vei[i]->setRobustKernel(rki);
if(i==N-1)
vei[i]->setInformation(vei[i]->information()*1e-2);
rki->setDelta(sqrt(16.92));
}
optimizer.addEdge(vei[i]);
vegr[i] = new EdgeGyroRW();
vegr[i]->setVertex(0,VG1);
vegr[i]->setVertex(1,VG2);
cv::Mat cvInfoG = pKFi->mpImuPreintegrated->C.rowRange(9,12).colRange(9,12).inv(cv::DECOMP_SVD);
Eigen::Matrix3d InfoG;
for(int r=0;r<3;r++)
for(int c=0;c<3;c++)
InfoG(r,c)=cvInfoG.at<float>(r,c);
vegr[i]->setInformation(InfoG);
optimizer.addEdge(vegr[i]);
// cout << "b";
vear[i] = new EdgeAccRW();
vear[i]->setVertex(0,VA1);
vear[i]->setVertex(1,VA2);
cv::Mat cvInfoA = pKFi->mpImuPreintegrated->C.rowRange(12,15).colRange(12,15).inv(cv::DECOMP_SVD);
Eigen::Matrix3d InfoA;
for(int r=0;r<3;r++)
for(int c=0;c<3;c++)
InfoA(r,c)=cvInfoA.at<float>(r,c);
vear[i]->setInformation(InfoA);
optimizer.addEdge(vear[i]);
}
else
cout << "ERROR building inertial edge" << endl;
}
// Set MapPoint vertices
const int nExpectedSize = (N+lFixedKeyFrames.size())*lLocalMapPoints.size();
// Mono
vector<EdgeMono*> vpEdgesMono;
vpEdgesMono.reserve(nExpectedSize);
vector<KeyFrame*> vpEdgeKFMono;
vpEdgeKFMono.reserve(nExpectedSize);
vector<MapPoint*> vpMapPointEdgeMono;
vpMapPointEdgeMono.reserve(nExpectedSize);
// Stereo
vector<EdgeStereo*> vpEdgesStereo;
vpEdgesStereo.reserve(nExpectedSize);
vector<KeyFrame*> vpEdgeKFStereo;
vpEdgeKFStereo.reserve(nExpectedSize);
vector<MapPoint*> vpMapPointEdgeStereo;
vpMapPointEdgeStereo.reserve(nExpectedSize);
const float thHuberMono = sqrt(5.991);
const float chi2Mono2 = 5.991;
const float thHuberStereo = sqrt(7.815);
const float chi2Stereo2 = 7.815;
const unsigned long iniMPid = maxKFid*5;
map<int,int> mVisEdges;
for(int i=0;i<N;i++)
{
KeyFrame* pKFi = vpOptimizableKFs[i];
mVisEdges[pKFi->mnId] = 0;
}
for(list<KeyFrame*>::iterator lit=lFixedKeyFrames.begin(), lend=lFixedKeyFrames.end(); lit!=lend; lit++)
{
mVisEdges[(*lit)->mnId] = 0;
}
for(list<MapPoint*>::iterator lit=lLocalMapPoints.begin(), lend=lLocalMapPoints.end(); lit!=lend; lit++)
{
MapPoint* pMP = *lit;
g2o::VertexSBAPointXYZ* vPoint = new g2o::VertexSBAPointXYZ();
vPoint->setEstimate(Converter::toVector3d(pMP->GetWorldPos()));
unsigned long id = pMP->mnId+iniMPid+1;
vPoint->setId(id);
vPoint->setMarginalized(true);
optimizer.addVertex(vPoint);
const map<KeyFrame*,tuple<int,int>> observations = pMP->GetObservations();
// Create visual constraints
for(map<KeyFrame*,tuple<int,int>>::const_iterator mit=observations.begin(), mend=observations.end(); mit!=mend; mit++)
{
KeyFrame* pKFi = mit->first;
if(pKFi->mnBALocalForKF!=pKF->mnId && pKFi->mnBAFixedForKF!=pKF->mnId)
continue;
if(!pKFi->isBad() && pKFi->GetMap() == pCurrentMap)
{
const int leftIndex = get<0>(mit->second);
cv::KeyPoint kpUn;
// Monocular left observation
if(leftIndex != -1 && pKFi->mvuRight[leftIndex]<0)
{
mVisEdges[pKFi->mnId]++;
kpUn = pKFi->mvKeysUn[leftIndex];
Eigen::Matrix<double,2,1> obs;
obs << kpUn.pt.x, kpUn.pt.y;
EdgeMono* e = new EdgeMono(0);
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFi->mnId)));
e->setMeasurement(obs);
// Add here uncerteinty
const float unc2 = pKFi->mpCamera->uncertainty2(obs);
const float &invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave]/unc2;
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberMono);
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vpEdgeKFMono.push_back(pKFi);
vpMapPointEdgeMono.push_back(pMP);
}
// Stereo-observation
else if(leftIndex != -1)// Stereo observation
{
kpUn = pKFi->mvKeysUn[leftIndex];
mVisEdges[pKFi->mnId]++;
const float kp_ur = pKFi->mvuRight[leftIndex];
Eigen::Matrix<double,3,1> obs;
obs << kpUn.pt.x, kpUn.pt.y, kp_ur;
EdgeStereo* e = new EdgeStereo(0);
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFi->mnId)));
e->setMeasurement(obs);
// Add here uncerteinty
const float unc2 = pKFi->mpCamera->uncertainty2(obs.head(2));
const float &invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave]/unc2;
e->setInformation(Eigen::Matrix3d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberStereo);
optimizer.addEdge(e);
vpEdgesStereo.push_back(e);
vpEdgeKFStereo.push_back(pKFi);
vpMapPointEdgeStereo.push_back(pMP);
}
// Monocular right observation
if(pKFi->mpCamera2){
int rightIndex = get<1>(mit->second);
if(rightIndex != -1 ){
rightIndex -= pKFi->NLeft;
mVisEdges[pKFi->mnId]++;
Eigen::Matrix<double,2,1> obs;
cv::KeyPoint kp = pKFi->mvKeysRight[rightIndex];
obs << kp.pt.x, kp.pt.y;
EdgeMono* e = new EdgeMono(1);
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFi->mnId)));
e->setMeasurement(obs);
// Add here uncerteinty
const float unc2 = pKFi->mpCamera->uncertainty2(obs);
const float &invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave]/unc2;
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberMono);
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vpEdgeKFMono.push_back(pKFi);
vpMapPointEdgeMono.push_back(pMP);
}
}
}
}
}
//cout << "Total map points: " << lLocalMapPoints.size() << endl;
for(map<int,int>::iterator mit=mVisEdges.begin(), mend=mVisEdges.end(); mit!=mend; mit++)
{
assert(mit->second>=3);
}
optimizer.initializeOptimization();
optimizer.computeActiveErrors();
std::chrono::steady_clock::time_point t1 = std::chrono::steady_clock::now();
float err = optimizer.activeRobustChi2();
optimizer.optimize(opt_it); // Originally to 2
float err_end = optimizer.activeRobustChi2();
if(pbStopFlag)
optimizer.setForceStopFlag(pbStopFlag);
std::chrono::steady_clock::time_point t2 = std::chrono::steady_clock::now();
vector<pair<KeyFrame*,MapPoint*> > vToErase;
vToErase.reserve(vpEdgesMono.size()+vpEdgesStereo.size());
// Check inlier observations
// Mono
for(size_t i=0, iend=vpEdgesMono.size(); i<iend;i++)
{
EdgeMono* e = vpEdgesMono[i];
MapPoint* pMP = vpMapPointEdgeMono[i];
bool bClose = pMP->mTrackDepth<10.f;
if(pMP->isBad())
continue;
if((e->chi2()>chi2Mono2 && !bClose) || (e->chi2()>1.5f*chi2Mono2 && bClose) || !e->isDepthPositive())
{
KeyFrame* pKFi = vpEdgeKFMono[i];
vToErase.push_back(make_pair(pKFi,pMP));
}
}
// Stereo
for(size_t i=0, iend=vpEdgesStereo.size(); i<iend;i++)
{
EdgeStereo* e = vpEdgesStereo[i];
MapPoint* pMP = vpMapPointEdgeStereo[i];
if(pMP->isBad())
continue;
if(e->chi2()>chi2Stereo2)
{
KeyFrame* pKFi = vpEdgeKFStereo[i];
vToErase.push_back(make_pair(pKFi,pMP));
}
}
// Get Map Mutex and erase outliers
unique_lock<mutex> lock(pMap->mMutexMapUpdate);
// TODO: Some convergence problems have been detected here
//cout << "err0 = " << err << endl;
//cout << "err_end = " << err_end << endl;
if((2*err < err_end || isnan(err) || isnan(err_end)) && !bLarge) //bGN)
{
cout << "FAIL LOCAL-INERTIAL BA!!!!" << endl;
return;
}
if(!vToErase.empty())
{
for(size_t i=0;i<vToErase.size();i++)
{
KeyFrame* pKFi = vToErase[i].first;
MapPoint* pMPi = vToErase[i].second;
pKFi->EraseMapPointMatch(pMPi);
pMPi->EraseObservation(pKFi);
}
}
// Display main statistcis of optimization
Verbose::PrintMess("LIBA KFs: " + to_string(N), Verbose::VERBOSITY_DEBUG);
Verbose::PrintMess("LIBA bNonFixed?: " + to_string(bNonFixed), Verbose::VERBOSITY_DEBUG);
Verbose::PrintMess("LIBA KFs visual outliers: " + to_string(vToErase.size()), Verbose::VERBOSITY_DEBUG);
for(list<KeyFrame*>::iterator lit=lFixedKeyFrames.begin(), lend=lFixedKeyFrames.end(); lit!=lend; lit++)
(*lit)->mnBAFixedForKF = 0;
// Recover optimized data
// Local temporal Keyframes
N=vpOptimizableKFs.size();
for(int i=0; i<N; i++)
{
KeyFrame* pKFi = vpOptimizableKFs[i];
VertexPose* VP = static_cast<VertexPose*>(optimizer.vertex(pKFi->mnId));
cv::Mat Tcw = Converter::toCvSE3(VP->estimate().Rcw[0], VP->estimate().tcw[0]);
pKFi->SetPose(Tcw);
pKFi->mnBALocalForKF=0;
if(pKFi->bImu)
{
VertexVelocity* VV = static_cast<VertexVelocity*>(optimizer.vertex(maxKFid+3*(pKFi->mnId)+1));
pKFi->SetVelocity(Converter::toCvMat(VV->estimate()));
VertexGyroBias* VG = static_cast<VertexGyroBias*>(optimizer.vertex(maxKFid+3*(pKFi->mnId)+2));
VertexAccBias* VA = static_cast<VertexAccBias*>(optimizer.vertex(maxKFid+3*(pKFi->mnId)+3));
Vector6d b;
b << VG->estimate(), VA->estimate();
pKFi->SetNewBias(IMU::Bias(b[3],b[4],b[5],b[0],b[1],b[2]));
}
}
// Local visual KeyFrame
for(list<KeyFrame*>::iterator it=lpOptVisKFs.begin(), itEnd = lpOptVisKFs.end(); it!=itEnd; it++)
{
KeyFrame* pKFi = *it;
VertexPose* VP = static_cast<VertexPose*>(optimizer.vertex(pKFi->mnId));
cv::Mat Tcw = Converter::toCvSE3(VP->estimate().Rcw[0], VP->estimate().tcw[0]);
pKFi->SetPose(Tcw);
pKFi->mnBALocalForKF=0;
}
//Points
for(list<MapPoint*>::iterator lit=lLocalMapPoints.begin(), lend=lLocalMapPoints.end(); lit!=lend; lit++)
{
MapPoint* pMP = *lit;
g2o::VertexSBAPointXYZ* vPoint = static_cast<g2o::VertexSBAPointXYZ*>(optimizer.vertex(pMP->mnId+iniMPid+1));
pMP->SetWorldPos(Converter::toCvMat(vPoint->estimate()));
pMP->UpdateNormalAndDepth();
}
pMap->IncreaseChangeIndex();
std::chrono::steady_clock::time_point t3 = std::chrono::steady_clock::now();
/*double t_const = std::chrono::duration_cast<std::chrono::duration<double> >(t1 - t0).count();
double t_opt = std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count();
double t_rec = std::chrono::duration_cast<std::chrono::duration<double> >(t3 - t2).count();
/*std::cout << " Construction time: " << t_const << std::endl;
std::cout << " Optimization time: " << t_opt << std::endl;
std::cout << " Recovery time: " << t_rec << std::endl;
std::cout << " Total time: " << t_const+t_opt+t_rec << std::endl;
std::cout << " Optimization iterations: " << opt_it << std::endl;*/
}
Eigen::MatrixXd Optimizer::Marginalize(const Eigen::MatrixXd &H, const int &start, const int &end)
{
// Goal
// a | ab | ac a* | 0 | ac*
// ba | b | bc --> 0 | 0 | 0
// ca | cb | c ca* | 0 | c*
// Size of block before block to marginalize
const int a = start;
// Size of block to marginalize
const int b = end-start+1;
// Size of block after block to marginalize
const int c = H.cols() - (end+1);
// Reorder as follows:
// a | ab | ac a | ac | ab
// ba | b | bc --> ca | c | cb
// ca | cb | c ba | bc | b
Eigen::MatrixXd Hn = Eigen::MatrixXd::Zero(H.rows(),H.cols());
if(a>0)
{
Hn.block(0,0,a,a) = H.block(0,0,a,a);
Hn.block(0,a+c,a,b) = H.block(0,a,a,b);
Hn.block(a+c,0,b,a) = H.block(a,0,b,a);
}
if(a>0 && c>0)
{
Hn.block(0,a,a,c) = H.block(0,a+b,a,c);
Hn.block(a,0,c,a) = H.block(a+b,0,c,a);
}
if(c>0)
{
Hn.block(a,a,c,c) = H.block(a+b,a+b,c,c);
Hn.block(a,a+c,c,b) = H.block(a+b,a,c,b);
Hn.block(a+c,a,b,c) = H.block(a,a+b,b,c);
}
Hn.block(a+c,a+c,b,b) = H.block(a,a,b,b);
// Perform marginalization (Schur complement)
Eigen::JacobiSVD<Eigen::MatrixXd> svd(Hn.block(a+c,a+c,b,b),Eigen::ComputeThinU | Eigen::ComputeThinV);
Eigen::JacobiSVD<Eigen::MatrixXd>::SingularValuesType singularValues_inv=svd.singularValues();
for (int i=0; i<b; ++i)
{
if (singularValues_inv(i)>1e-6)
singularValues_inv(i)=1.0/singularValues_inv(i);
else singularValues_inv(i)=0;
}
Eigen::MatrixXd invHb = svd.matrixV()*singularValues_inv.asDiagonal()*svd.matrixU().transpose();
Hn.block(0,0,a+c,a+c) = Hn.block(0,0,a+c,a+c) - Hn.block(0,a+c,a+c,b)*invHb*Hn.block(a+c,0,b,a+c);
Hn.block(a+c,a+c,b,b) = Eigen::MatrixXd::Zero(b,b);
Hn.block(0,a+c,a+c,b) = Eigen::MatrixXd::Zero(a+c,b);
Hn.block(a+c,0,b,a+c) = Eigen::MatrixXd::Zero(b,a+c);
// Inverse reorder
// a* | ac* | 0 a* | 0 | ac*
// ca* | c* | 0 --> 0 | 0 | 0
// 0 | 0 | 0 ca* | 0 | c*
Eigen::MatrixXd res = Eigen::MatrixXd::Zero(H.rows(),H.cols());
if(a>0)
{
res.block(0,0,a,a) = Hn.block(0,0,a,a);
res.block(0,a,a,b) = Hn.block(0,a+c,a,b);
res.block(a,0,b,a) = Hn.block(a+c,0,b,a);
}
if(a>0 && c>0)
{
res.block(0,a+b,a,c) = Hn.block(0,a,a,c);
res.block(a+b,0,c,a) = Hn.block(a,0,c,a);
}
if(c>0)
{
res.block(a+b,a+b,c,c) = Hn.block(a,a,c,c);
res.block(a+b,a,c,b) = Hn.block(a,a+c,c,b);
res.block(a,a+b,b,c) = Hn.block(a+c,a,b,c);
}
res.block(a,a,b,b) = Hn.block(a+c,a+c,b,b);
return res;
}
Eigen::MatrixXd Optimizer::Condition(const Eigen::MatrixXd &H, const int &start, const int &end)
{
// Size of block before block to condition
const int a = start;
// Size of block to condition
const int b = end+1-start;
// Set to zero elements related to block b(start:end,start:end)
// a | ab | ac a | 0 | ac
// ba | b | bc --> 0 | 0 | 0
// ca | cb | c ca | 0 | c
Eigen::MatrixXd Hn = H;
Hn.block(a,0,b,H.cols()) = Eigen::MatrixXd::Zero(b,H.cols());
Hn.block(0,a,H.rows(),b) = Eigen::MatrixXd::Zero(H.rows(),b);
return Hn;
}
Eigen::MatrixXd Optimizer::Sparsify(const Eigen::MatrixXd &H, const int &start1, const int &end1, const int &start2, const int &end2)
{
// Goal: remove link between a and b
// p(a,b,c) ~ p(a,b,c)*p(a|c)/p(a|b,c) => H' = H + H1 - H2
// H1: marginalize b and condition c
// H2: condition b and c
Eigen::MatrixXd Hac = Marginalize(H,start2,end2);
Eigen::MatrixXd Hbc = Marginalize(H,start1,end1);
Eigen::MatrixXd Hc = Marginalize(Hac,start1,end1);
return Hac+Hbc-Hc;
}
void Optimizer::InertialOptimization(Map *pMap, Eigen::Matrix3d &Rwg, double &scale, Eigen::Vector3d &bg, Eigen::Vector3d &ba, bool bMono, Eigen::MatrixXd &covInertial, bool bFixedVel, bool bGauss, float priorG, float priorA)
{
Verbose::PrintMess("inertial optimization", Verbose::VERBOSITY_NORMAL);
int its = 200; // Check number of iterations
long unsigned int maxKFid = pMap->GetMaxKFid();
const vector<KeyFrame*> vpKFs = pMap->GetAllKeyFrames();
// Setup optimizer
g2o::SparseOptimizer optimizer;
g2o::BlockSolverX::LinearSolverType * linearSolver;
linearSolver = new g2o::LinearSolverEigen<g2o::BlockSolverX::PoseMatrixType>();
g2o::BlockSolverX * solver_ptr = new g2o::BlockSolverX(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
if (priorG!=0.f)
solver->setUserLambdaInit(1e3);
optimizer.setAlgorithm(solver);
// Set KeyFrame vertices (fixed poses and optimizable velocities)
for(size_t i=0; i<vpKFs.size(); i++)
{
KeyFrame* pKFi = vpKFs[i];
if(pKFi->mnId>maxKFid)
continue;
VertexPose * VP = new VertexPose(pKFi);
VP->setId(pKFi->mnId);
VP->setFixed(true);
optimizer.addVertex(VP);
VertexVelocity* VV = new VertexVelocity(pKFi);
VV->setId(maxKFid+(pKFi->mnId)+1);
if (bFixedVel)
VV->setFixed(true);
else
VV->setFixed(false);
optimizer.addVertex(VV);
}
// Biases
VertexGyroBias* VG = new VertexGyroBias(vpKFs.front());
VG->setId(maxKFid*2+2);
if (bFixedVel)
VG->setFixed(true);
else
VG->setFixed(false);
optimizer.addVertex(VG);
VertexAccBias* VA = new VertexAccBias(vpKFs.front());
VA->setId(maxKFid*2+3);
if (bFixedVel)
VA->setFixed(true);
else
VA->setFixed(false);
optimizer.addVertex(VA);
// prior acc bias
EdgePriorAcc* epa = new EdgePriorAcc(cv::Mat::zeros(3,1,CV_32F));
epa->setVertex(0,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VA));
double infoPriorA = priorA;
epa->setInformation(infoPriorA*Eigen::Matrix3d::Identity());
optimizer.addEdge(epa);
EdgePriorGyro* epg = new EdgePriorGyro(cv::Mat::zeros(3,1,CV_32F));
epg->setVertex(0,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VG));
double infoPriorG = priorG;
epg->setInformation(infoPriorG*Eigen::Matrix3d::Identity());
optimizer.addEdge(epg);
// Gravity and scale
VertexGDir* VGDir = new VertexGDir(Rwg);
VGDir->setId(maxKFid*2+4);
VGDir->setFixed(false);
optimizer.addVertex(VGDir);
VertexScale* VS = new VertexScale(scale);
VS->setId(maxKFid*2+5);
VS->setFixed(!bMono); // Fixed for stereo case
optimizer.addVertex(VS);
// Graph edges
// IMU links with gravity and scale
vector<EdgeInertialGS*> vpei;
vpei.reserve(vpKFs.size());
vector<pair<KeyFrame*,KeyFrame*> > vppUsedKF;
vppUsedKF.reserve(vpKFs.size());
std::cout << "build optimization graph" << std::endl;
for(size_t i=0;i<vpKFs.size();i++)
{
KeyFrame* pKFi = vpKFs[i];
if(pKFi->mPrevKF && pKFi->mnId<=maxKFid)
{
if(pKFi->isBad() || pKFi->mPrevKF->mnId>maxKFid)
continue;
if(!pKFi->mpImuPreintegrated)
std::cout << "Not preintegrated measurement" << std::endl;
pKFi->mpImuPreintegrated->SetNewBias(pKFi->mPrevKF->GetImuBias());
g2o::HyperGraph::Vertex* VP1 = optimizer.vertex(pKFi->mPrevKF->mnId);
g2o::HyperGraph::Vertex* VV1 = optimizer.vertex(maxKFid+(pKFi->mPrevKF->mnId)+1);
g2o::HyperGraph::Vertex* VP2 = optimizer.vertex(pKFi->mnId);
g2o::HyperGraph::Vertex* VV2 = optimizer.vertex(maxKFid+(pKFi->mnId)+1);
g2o::HyperGraph::Vertex* VG = optimizer.vertex(maxKFid*2+2);
g2o::HyperGraph::Vertex* VA = optimizer.vertex(maxKFid*2+3);
g2o::HyperGraph::Vertex* VGDir = optimizer.vertex(maxKFid*2+4);
g2o::HyperGraph::Vertex* VS = optimizer.vertex(maxKFid*2+5);
if(!VP1 || !VV1 || !VG || !VA || !VP2 || !VV2 || !VGDir || !VS)
{
cout << "Error" << VP1 << ", "<< VV1 << ", "<< VG << ", "<< VA << ", " << VP2 << ", " << VV2 << ", "<< VGDir << ", "<< VS <<endl;
continue;
}
EdgeInertialGS* ei = new EdgeInertialGS(pKFi->mpImuPreintegrated);
ei->setVertex(0,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VP1));
ei->setVertex(1,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VV1));
ei->setVertex(2,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VG));
ei->setVertex(3,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VA));
ei->setVertex(4,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VP2));
ei->setVertex(5,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VV2));
ei->setVertex(6,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VGDir));
ei->setVertex(7,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VS));
vpei.push_back(ei);
vppUsedKF.push_back(make_pair(pKFi->mPrevKF,pKFi));
optimizer.addEdge(ei);
}
}
// Compute error for different scales
std::set<g2o::HyperGraph::Edge*> setEdges = optimizer.edges();
std::cout << "start optimization" << std::endl;
optimizer.setVerbose(false);
optimizer.initializeOptimization();
optimizer.optimize(its);
std::cout << "end optimization" << std::endl;
scale = VS->estimate();
// Recover optimized data
// Biases
VG = static_cast<VertexGyroBias*>(optimizer.vertex(maxKFid*2+2));
VA = static_cast<VertexAccBias*>(optimizer.vertex(maxKFid*2+3));
Vector6d vb;
vb << VG->estimate(), VA->estimate();
bg << VG->estimate();
ba << VA->estimate();
scale = VS->estimate();
IMU::Bias b (vb[3],vb[4],vb[5],vb[0],vb[1],vb[2]);
Rwg = VGDir->estimate().Rwg;
cv::Mat cvbg = Converter::toCvMat(bg);
//Keyframes velocities and biases
std::cout << "update Keyframes velocities and biases" << std::endl;
const int N = vpKFs.size();
for(size_t i=0; i<N; i++)
{
KeyFrame* pKFi = vpKFs[i];
if(pKFi->mnId>maxKFid)
continue;
VertexVelocity* VV = static_cast<VertexVelocity*>(optimizer.vertex(maxKFid+(pKFi->mnId)+1));
Eigen::Vector3d Vw = VV->estimate(); // Velocity is scaled after
pKFi->SetVelocity(Converter::toCvMat(Vw));
if (cv::norm(pKFi->GetGyroBias()-cvbg)>0.01)
{
pKFi->SetNewBias(b);
if (pKFi->mpImuPreintegrated)
pKFi->mpImuPreintegrated->Reintegrate();
}
else
pKFi->SetNewBias(b);
}
}
void Optimizer::InertialOptimization(Map *pMap, Eigen::Vector3d &bg, Eigen::Vector3d &ba, float priorG, float priorA)
{
int its = 200; // Check number of iterations
long unsigned int maxKFid = pMap->GetMaxKFid();
const vector<KeyFrame*> vpKFs = pMap->GetAllKeyFrames();
// Setup optimizer
g2o::SparseOptimizer optimizer;
g2o::BlockSolverX::LinearSolverType * linearSolver;
linearSolver = new g2o::LinearSolverEigen<g2o::BlockSolverX::PoseMatrixType>();
g2o::BlockSolverX * solver_ptr = new g2o::BlockSolverX(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
solver->setUserLambdaInit(1e3);
optimizer.setAlgorithm(solver);
// Set KeyFrame vertices (fixed poses and optimizable velocities)
for(size_t i=0; i<vpKFs.size(); i++)
{
KeyFrame* pKFi = vpKFs[i];
if(pKFi->mnId>maxKFid)
continue;
VertexPose * VP = new VertexPose(pKFi);
VP->setId(pKFi->mnId);
VP->setFixed(true);
optimizer.addVertex(VP);
VertexVelocity* VV = new VertexVelocity(pKFi);
VV->setId(maxKFid+(pKFi->mnId)+1);
VV->setFixed(false);
optimizer.addVertex(VV);
}
// Biases
VertexGyroBias* VG = new VertexGyroBias(vpKFs.front());
VG->setId(maxKFid*2+2);
VG->setFixed(false);
optimizer.addVertex(VG);
VertexAccBias* VA = new VertexAccBias(vpKFs.front());
VA->setId(maxKFid*2+3);
VA->setFixed(false);
optimizer.addVertex(VA);
// prior acc bias
EdgePriorAcc* epa = new EdgePriorAcc(cv::Mat::zeros(3,1,CV_32F));
epa->setVertex(0,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VA));
double infoPriorA = priorA;
epa->setInformation(infoPriorA*Eigen::Matrix3d::Identity());
optimizer.addEdge(epa);
EdgePriorGyro* epg = new EdgePriorGyro(cv::Mat::zeros(3,1,CV_32F));
epg->setVertex(0,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VG));
double infoPriorG = priorG;
epg->setInformation(infoPriorG*Eigen::Matrix3d::Identity());
optimizer.addEdge(epg);
// Gravity and scale
VertexGDir* VGDir = new VertexGDir(Eigen::Matrix3d::Identity());
VGDir->setId(maxKFid*2+4);
VGDir->setFixed(true);
optimizer.addVertex(VGDir);
VertexScale* VS = new VertexScale(1.0);
VS->setId(maxKFid*2+5);
VS->setFixed(true); // Fixed since scale is obtained from already well initialized map
optimizer.addVertex(VS);
// Graph edges
// IMU links with gravity and scale
vector<EdgeInertialGS*> vpei;
vpei.reserve(vpKFs.size());
vector<pair<KeyFrame*,KeyFrame*> > vppUsedKF;
vppUsedKF.reserve(vpKFs.size());
for(size_t i=0;i<vpKFs.size();i++)
{
KeyFrame* pKFi = vpKFs[i];
if(pKFi->mPrevKF && pKFi->mnId<=maxKFid)
{
if(pKFi->isBad() || pKFi->mPrevKF->mnId>maxKFid)
continue;
pKFi->mpImuPreintegrated->SetNewBias(pKFi->mPrevKF->GetImuBias());
g2o::HyperGraph::Vertex* VP1 = optimizer.vertex(pKFi->mPrevKF->mnId);
g2o::HyperGraph::Vertex* VV1 = optimizer.vertex(maxKFid+(pKFi->mPrevKF->mnId)+1);
g2o::HyperGraph::Vertex* VP2 = optimizer.vertex(pKFi->mnId);
g2o::HyperGraph::Vertex* VV2 = optimizer.vertex(maxKFid+(pKFi->mnId)+1);
g2o::HyperGraph::Vertex* VG = optimizer.vertex(maxKFid*2+2);
g2o::HyperGraph::Vertex* VA = optimizer.vertex(maxKFid*2+3);
g2o::HyperGraph::Vertex* VGDir = optimizer.vertex(maxKFid*2+4);
g2o::HyperGraph::Vertex* VS = optimizer.vertex(maxKFid*2+5);
if(!VP1 || !VV1 || !VG || !VA || !VP2 || !VV2 || !VGDir || !VS)
{
cout << "Error" << VP1 << ", "<< VV1 << ", "<< VG << ", "<< VA << ", " << VP2 << ", " << VV2 << ", "<< VGDir << ", "<< VS <<endl;
continue;
}
EdgeInertialGS* ei = new EdgeInertialGS(pKFi->mpImuPreintegrated);
ei->setVertex(0,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VP1));
ei->setVertex(1,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VV1));
ei->setVertex(2,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VG));
ei->setVertex(3,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VA));
ei->setVertex(4,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VP2));
ei->setVertex(5,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VV2));
ei->setVertex(6,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VGDir));
ei->setVertex(7,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VS));
vpei.push_back(ei);
vppUsedKF.push_back(make_pair(pKFi->mPrevKF,pKFi));
optimizer.addEdge(ei);
}
}
// Compute error for different scales
optimizer.setVerbose(false);
optimizer.initializeOptimization();
optimizer.optimize(its);
// Recover optimized data
// Biases
VG = static_cast<VertexGyroBias*>(optimizer.vertex(maxKFid*2+2));
VA = static_cast<VertexAccBias*>(optimizer.vertex(maxKFid*2+3));
Vector6d vb;
vb << VG->estimate(), VA->estimate();
bg << VG->estimate();
ba << VA->estimate();
IMU::Bias b (vb[3],vb[4],vb[5],vb[0],vb[1],vb[2]);
cv::Mat cvbg = Converter::toCvMat(bg);
//Keyframes velocities and biases
const int N = vpKFs.size();
for(size_t i=0; i<N; i++)
{
KeyFrame* pKFi = vpKFs[i];
if(pKFi->mnId>maxKFid)
continue;
VertexVelocity* VV = static_cast<VertexVelocity*>(optimizer.vertex(maxKFid+(pKFi->mnId)+1));
Eigen::Vector3d Vw = VV->estimate();
pKFi->SetVelocity(Converter::toCvMat(Vw));
if (cv::norm(pKFi->GetGyroBias()-cvbg)>0.01)
{
pKFi->SetNewBias(b);
if (pKFi->mpImuPreintegrated)
pKFi->mpImuPreintegrated->Reintegrate();
}
else
pKFi->SetNewBias(b);
}
}
void Optimizer::InertialOptimization(vector<KeyFrame*> vpKFs, Eigen::Vector3d &bg, Eigen::Vector3d &ba, float priorG, float priorA)
{
int its = 200; // Check number of iterations
long unsigned int maxKFid = vpKFs[0]->GetMap()->GetMaxKFid();
// Setup optimizer
g2o::SparseOptimizer optimizer;
g2o::BlockSolverX::LinearSolverType * linearSolver;
linearSolver = new g2o::LinearSolverEigen<g2o::BlockSolverX::PoseMatrixType>();
g2o::BlockSolverX * solver_ptr = new g2o::BlockSolverX(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
solver->setUserLambdaInit(1e3);
optimizer.setAlgorithm(solver);
// Set KeyFrame vertices (fixed poses and optimizable velocities)
for(size_t i=0; i<vpKFs.size(); i++)
{
KeyFrame* pKFi = vpKFs[i];
//if(pKFi->mnId>maxKFid)
// continue;
VertexPose * VP = new VertexPose(pKFi);
VP->setId(pKFi->mnId);
VP->setFixed(true);
optimizer.addVertex(VP);
VertexVelocity* VV = new VertexVelocity(pKFi);
VV->setId(maxKFid+(pKFi->mnId)+1);
VV->setFixed(false);
optimizer.addVertex(VV);
}
// Biases
VertexGyroBias* VG = new VertexGyroBias(vpKFs.front());
VG->setId(maxKFid*2+2);
VG->setFixed(false);
optimizer.addVertex(VG);
VertexAccBias* VA = new VertexAccBias(vpKFs.front());
VA->setId(maxKFid*2+3);
VA->setFixed(false);
optimizer.addVertex(VA);
// prior acc bias
EdgePriorAcc* epa = new EdgePriorAcc(cv::Mat::zeros(3,1,CV_32F));
epa->setVertex(0,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VA));
double infoPriorA = priorA;
epa->setInformation(infoPriorA*Eigen::Matrix3d::Identity());
optimizer.addEdge(epa);
EdgePriorGyro* epg = new EdgePriorGyro(cv::Mat::zeros(3,1,CV_32F));
epg->setVertex(0,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VG));
double infoPriorG = priorG;
epg->setInformation(infoPriorG*Eigen::Matrix3d::Identity());
optimizer.addEdge(epg);
// Gravity and scale
VertexGDir* VGDir = new VertexGDir(Eigen::Matrix3d::Identity());
VGDir->setId(maxKFid*2+4);
VGDir->setFixed(true);
optimizer.addVertex(VGDir);
VertexScale* VS = new VertexScale(1.0);
VS->setId(maxKFid*2+5);
VS->setFixed(true); // Fixed since scale is obtained from already well initialized map
optimizer.addVertex(VS);
// Graph edges
// IMU links with gravity and scale
vector<EdgeInertialGS*> vpei;
vpei.reserve(vpKFs.size());
vector<pair<KeyFrame*,KeyFrame*> > vppUsedKF;
vppUsedKF.reserve(vpKFs.size());
for(size_t i=0;i<vpKFs.size();i++)
{
KeyFrame* pKFi = vpKFs[i];
if(pKFi->mPrevKF && pKFi->mnId<=maxKFid)
{
if(pKFi->isBad() || pKFi->mPrevKF->mnId>maxKFid)
continue;
pKFi->mpImuPreintegrated->SetNewBias(pKFi->mPrevKF->GetImuBias());
g2o::HyperGraph::Vertex* VP1 = optimizer.vertex(pKFi->mPrevKF->mnId);
g2o::HyperGraph::Vertex* VV1 = optimizer.vertex(maxKFid+(pKFi->mPrevKF->mnId)+1);
g2o::HyperGraph::Vertex* VP2 = optimizer.vertex(pKFi->mnId);
g2o::HyperGraph::Vertex* VV2 = optimizer.vertex(maxKFid+(pKFi->mnId)+1);
g2o::HyperGraph::Vertex* VG = optimizer.vertex(maxKFid*2+2);
g2o::HyperGraph::Vertex* VA = optimizer.vertex(maxKFid*2+3);
g2o::HyperGraph::Vertex* VGDir = optimizer.vertex(maxKFid*2+4);
g2o::HyperGraph::Vertex* VS = optimizer.vertex(maxKFid*2+5);
if(!VP1 || !VV1 || !VG || !VA || !VP2 || !VV2 || !VGDir || !VS)
{
cout << "Error" << VP1 << ", "<< VV1 << ", "<< VG << ", "<< VA << ", " << VP2 << ", " << VV2 << ", "<< VGDir << ", "<< VS <<endl;
continue;
}
EdgeInertialGS* ei = new EdgeInertialGS(pKFi->mpImuPreintegrated);
ei->setVertex(0,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VP1));
ei->setVertex(1,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VV1));
ei->setVertex(2,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VG));
ei->setVertex(3,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VA));
ei->setVertex(4,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VP2));
ei->setVertex(5,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VV2));
ei->setVertex(6,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VGDir));
ei->setVertex(7,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VS));
vpei.push_back(ei);
vppUsedKF.push_back(make_pair(pKFi->mPrevKF,pKFi));
optimizer.addEdge(ei);
}
}
// Compute error for different scales
optimizer.setVerbose(false);
optimizer.initializeOptimization();
optimizer.optimize(its);
// Recover optimized data
// Biases
VG = static_cast<VertexGyroBias*>(optimizer.vertex(maxKFid*2+2));
VA = static_cast<VertexAccBias*>(optimizer.vertex(maxKFid*2+3));
Vector6d vb;
vb << VG->estimate(), VA->estimate();
bg << VG->estimate();
ba << VA->estimate();
IMU::Bias b (vb[3],vb[4],vb[5],vb[0],vb[1],vb[2]);
cv::Mat cvbg = Converter::toCvMat(bg);
//Keyframes velocities and biases
const int N = vpKFs.size();
for(size_t i=0; i<N; i++)
{
KeyFrame* pKFi = vpKFs[i];
if(pKFi->mnId>maxKFid)
continue;
VertexVelocity* VV = static_cast<VertexVelocity*>(optimizer.vertex(maxKFid+(pKFi->mnId)+1));
Eigen::Vector3d Vw = VV->estimate();
pKFi->SetVelocity(Converter::toCvMat(Vw));
if (cv::norm(pKFi->GetGyroBias()-cvbg)>0.01)
{
pKFi->SetNewBias(b);
if (pKFi->mpImuPreintegrated)
pKFi->mpImuPreintegrated->Reintegrate();
}
else
pKFi->SetNewBias(b);
}
}
void Optimizer::InertialOptimization(Map *pMap, Eigen::Matrix3d &Rwg, double &scale)
{
int its = 10;
long unsigned int maxKFid = pMap->GetMaxKFid();
const vector<KeyFrame*> vpKFs = pMap->GetAllKeyFrames();
// Setup optimizer
g2o::SparseOptimizer optimizer;
g2o::BlockSolverX::LinearSolverType * linearSolver;
linearSolver = new g2o::LinearSolverEigen<g2o::BlockSolverX::PoseMatrixType>();
g2o::BlockSolverX * solver_ptr = new g2o::BlockSolverX(linearSolver);
g2o::OptimizationAlgorithmGaussNewton* solver = new g2o::OptimizationAlgorithmGaussNewton(solver_ptr);
optimizer.setAlgorithm(solver);
// Set KeyFrame vertices (all variables are fixed)
for(size_t i=0; i<vpKFs.size(); i++)
{
KeyFrame* pKFi = vpKFs[i];
if(pKFi->mnId>maxKFid)
continue;
VertexPose * VP = new VertexPose(pKFi);
VP->setId(pKFi->mnId);
VP->setFixed(true);
optimizer.addVertex(VP);
VertexVelocity* VV = new VertexVelocity(pKFi);
VV->setId(maxKFid+1+(pKFi->mnId));
VV->setFixed(true);
optimizer.addVertex(VV);
// Vertex of fixed biases
VertexGyroBias* VG = new VertexGyroBias(vpKFs.front());
VG->setId(2*(maxKFid+1)+(pKFi->mnId));
VG->setFixed(true);
optimizer.addVertex(VG);
VertexAccBias* VA = new VertexAccBias(vpKFs.front());
VA->setId(3*(maxKFid+1)+(pKFi->mnId));
VA->setFixed(true);
optimizer.addVertex(VA);
}
// Gravity and scale
VertexGDir* VGDir = new VertexGDir(Rwg);
VGDir->setId(4*(maxKFid+1));
VGDir->setFixed(false);
optimizer.addVertex(VGDir);
VertexScale* VS = new VertexScale(scale);
VS->setId(4*(maxKFid+1)+1);
VS->setFixed(false);
optimizer.addVertex(VS);
// Graph edges
for(size_t i=0;i<vpKFs.size();i++)
{
KeyFrame* pKFi = vpKFs[i];
if(pKFi->mPrevKF && pKFi->mnId<=maxKFid)
{
if(pKFi->isBad() || pKFi->mPrevKF->mnId>maxKFid)
continue;
g2o::HyperGraph::Vertex* VP1 = optimizer.vertex(pKFi->mPrevKF->mnId);
g2o::HyperGraph::Vertex* VV1 = optimizer.vertex((maxKFid+1)+pKFi->mPrevKF->mnId);
g2o::HyperGraph::Vertex* VP2 = optimizer.vertex(pKFi->mnId);
g2o::HyperGraph::Vertex* VV2 = optimizer.vertex((maxKFid+1)+pKFi->mnId);
g2o::HyperGraph::Vertex* VG = optimizer.vertex(2*(maxKFid+1)+pKFi->mPrevKF->mnId);
g2o::HyperGraph::Vertex* VA = optimizer.vertex(3*(maxKFid+1)+pKFi->mPrevKF->mnId);
g2o::HyperGraph::Vertex* VGDir = optimizer.vertex(4*(maxKFid+1));
g2o::HyperGraph::Vertex* VS = optimizer.vertex(4*(maxKFid+1)+1);
if(!VP1 || !VV1 || !VG || !VA || !VP2 || !VV2 || !VGDir || !VS)
{
Verbose::PrintMess("Error" + to_string(VP1->id()) + ", " + to_string(VV1->id()) + ", " + to_string(VG->id()) + ", " + to_string(VA->id()) + ", " + to_string(VP2->id()) + ", " + to_string(VV2->id()) + ", " + to_string(VGDir->id()) + ", " + to_string(VS->id()), Verbose::VERBOSITY_NORMAL);
continue;
}
EdgeInertialGS* ei = new EdgeInertialGS(pKFi->mpImuPreintegrated);
ei->setVertex(0,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VP1));
ei->setVertex(1,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VV1));
ei->setVertex(2,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VG));
ei->setVertex(3,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VA));
ei->setVertex(4,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VP2));
ei->setVertex(5,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VV2));
ei->setVertex(6,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VGDir));
ei->setVertex(7,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VS));
optimizer.addEdge(ei);
}
}
// Compute error for different scales
optimizer.setVerbose(false);
optimizer.initializeOptimization();
optimizer.optimize(its);
// Recover optimized data
scale = VS->estimate();
Rwg = VGDir->estimate().Rwg;
}
void Optimizer::MergeBundleAdjustmentVisual(KeyFrame* pCurrentKF, vector<KeyFrame*> vpWeldingKFs, vector<KeyFrame*> vpFixedKFs, bool *pbStopFlag)
{
vector<MapPoint*> vpMPs;
g2o::SparseOptimizer optimizer;
g2o::BlockSolver_6_3::LinearSolverType * linearSolver;
linearSolver = new g2o::LinearSolverEigen<g2o::BlockSolver_6_3::PoseMatrixType>();
g2o::BlockSolver_6_3 * solver_ptr = new g2o::BlockSolver_6_3(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
optimizer.setAlgorithm(solver);
if(pbStopFlag)
optimizer.setForceStopFlag(pbStopFlag);
long unsigned int maxKFid = 0;
set<KeyFrame*> spKeyFrameBA;
// Set not fixed KeyFrame vertices
for(KeyFrame* pKFi : vpWeldingKFs)
{
if(pKFi->isBad())
continue;
pKFi->mnBALocalForKF = pCurrentKF->mnId;
g2o::VertexSE3Expmap * vSE3 = new g2o::VertexSE3Expmap();
vSE3->setEstimate(Converter::toSE3Quat(pKFi->GetPose()));
vSE3->setId(pKFi->mnId);
vSE3->setFixed(false);
optimizer.addVertex(vSE3);
if(pKFi->mnId>maxKFid)
maxKFid=pKFi->mnId;
set<MapPoint*> spViewMPs = pKFi->GetMapPoints();
for(MapPoint* pMPi : spViewMPs)
{
if(pMPi)
if(!pMPi->isBad())
if(pMPi->mnBALocalForKF!=pCurrentKF->mnId)
{
vpMPs.push_back(pMPi);
pMPi->mnBALocalForKF=pCurrentKF->mnId;
}
}
spKeyFrameBA.insert(pKFi);
}
// Set fixed KeyFrame vertices
for(KeyFrame* pKFi : vpFixedKFs)
{
if(pKFi->isBad())
continue;
pKFi->mnBALocalForKF = pCurrentKF->mnId;
g2o::VertexSE3Expmap * vSE3 = new g2o::VertexSE3Expmap();
vSE3->setEstimate(Converter::toSE3Quat(pKFi->GetPose()));
vSE3->setId(pKFi->mnId);
vSE3->setFixed(true);
optimizer.addVertex(vSE3);
if(pKFi->mnId>maxKFid)
maxKFid=pKFi->mnId;
set<MapPoint*> spViewMPs = pKFi->GetMapPoints();
for(MapPoint* pMPi : spViewMPs)
{
if(pMPi)
if(!pMPi->isBad())
if(pMPi->mnBALocalForKF!=pCurrentKF->mnId)
{
vpMPs.push_back(pMPi);
pMPi->mnBALocalForKF=pCurrentKF->mnId;
}
}
spKeyFrameBA.insert(pKFi);
}
const int nExpectedSize = (vpWeldingKFs.size()+vpFixedKFs.size())*vpMPs.size();
vector<g2o::EdgeSE3ProjectXYZ*> vpEdgesMono;
vpEdgesMono.reserve(nExpectedSize);
vector<KeyFrame*> vpEdgeKFMono;
vpEdgeKFMono.reserve(nExpectedSize);
vector<MapPoint*> vpMapPointEdgeMono;
vpMapPointEdgeMono.reserve(nExpectedSize);
vector<g2o::EdgeStereoSE3ProjectXYZ*> vpEdgesStereo;
vpEdgesStereo.reserve(nExpectedSize);
vector<KeyFrame*> vpEdgeKFStereo;
vpEdgeKFStereo.reserve(nExpectedSize);
vector<MapPoint*> vpMapPointEdgeStereo;
vpMapPointEdgeStereo.reserve(nExpectedSize);
const float thHuber2D = sqrt(5.99);
const float thHuber3D = sqrt(7.815);
// Set MapPoint vertices
for(unsigned int i=0; i < vpMPs.size(); ++i)
{
MapPoint* pMPi = vpMPs[i];
if(pMPi->isBad())
continue;
g2o::VertexSBAPointXYZ* vPoint = new g2o::VertexSBAPointXYZ();
vPoint->setEstimate(Converter::toVector3d(pMPi->GetWorldPos()));
const int id = pMPi->mnId+maxKFid+1;
vPoint->setId(id);
vPoint->setMarginalized(true);
optimizer.addVertex(vPoint);
const map<KeyFrame*,tuple<int,int>> observations = pMPi->GetObservations();
int nEdges = 0;
//SET EDGES
for(map<KeyFrame*,tuple<int,int>>::const_iterator mit=observations.begin(); mit!=observations.end(); mit++)
{
//cout << "--KF view init" << endl;
KeyFrame* pKF = mit->first;
if(spKeyFrameBA.find(pKF) == spKeyFrameBA.end() || pKF->isBad() || pKF->mnId>maxKFid || pKF->mnBALocalForKF != pCurrentKF->mnId || !pKF->GetMapPoint(get<0>(mit->second)))
continue;
//cout << "-- KF view exists" << endl;
nEdges++;
const cv::KeyPoint &kpUn = pKF->mvKeysUn[get<0>(mit->second)];
//cout << "-- KeyPoint loads" << endl;
if(pKF->mvuRight[get<0>(mit->second)]<0) //Monocular
{
Eigen::Matrix<double,2,1> obs;
obs << kpUn.pt.x, kpUn.pt.y;
g2o::EdgeSE3ProjectXYZ* e = new g2o::EdgeSE3ProjectXYZ();
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKF->mnId)));
e->setMeasurement(obs);
const float &invSigma2 = pKF->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
//cout << "-- Sigma loads" << endl;
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuber2D);
e->fx = pKF->fx;
e->fy = pKF->fy;
e->cx = pKF->cx;
e->cy = pKF->cy;
//cout << "-- Calibration loads" << endl;
optimizer.addEdge(e);
//cout << "-- Edge added" << endl;
vpEdgesMono.push_back(e);
vpEdgeKFMono.push_back(pKF);
vpMapPointEdgeMono.push_back(pMPi);
//cout << "-- Added to vector" << endl;
}
else // RGBD or Stereo
{
Eigen::Matrix<double,3,1> obs;
const float kp_ur = pKF->mvuRight[get<0>(mit->second)];
obs << kpUn.pt.x, kpUn.pt.y, kp_ur;
g2o::EdgeStereoSE3ProjectXYZ* e = new g2o::EdgeStereoSE3ProjectXYZ();
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKF->mnId)));
e->setMeasurement(obs);
const float &invSigma2 = pKF->mvInvLevelSigma2[kpUn.octave];
Eigen::Matrix3d Info = Eigen::Matrix3d::Identity()*invSigma2;
e->setInformation(Info);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuber3D);
e->fx = pKF->fx;
e->fy = pKF->fy;
e->cx = pKF->cx;
e->cy = pKF->cy;
e->bf = pKF->mbf;
optimizer.addEdge(e);
vpEdgesStereo.push_back(e);
vpEdgeKFStereo.push_back(pKF);
vpMapPointEdgeStereo.push_back(pMPi);
}
//cout << "-- End to load point" << endl;
}
}
//cout << "End to load MPs" << endl;
if(pbStopFlag)
if(*pbStopFlag)
return;
optimizer.initializeOptimization();
optimizer.optimize(5);
//cout << "End the first optimization" << endl;
bool bDoMore= true;
if(pbStopFlag)
if(*pbStopFlag)
bDoMore = false;
if(bDoMore)
{
// Check inlier observations
for(size_t i=0, iend=vpEdgesMono.size(); i<iend;i++)
{
g2o::EdgeSE3ProjectXYZ* e = vpEdgesMono[i];
MapPoint* pMP = vpMapPointEdgeMono[i];
if(pMP->isBad())
continue;
if(e->chi2()>5.991 || !e->isDepthPositive())
{
e->setLevel(1);
}
e->setRobustKernel(0);
}
for(size_t i=0, iend=vpEdgesStereo.size(); i<iend;i++)
{
g2o::EdgeStereoSE3ProjectXYZ* e = vpEdgesStereo[i];
MapPoint* pMP = vpMapPointEdgeStereo[i];
if(pMP->isBad())
continue;
if(e->chi2()>7.815 || !e->isDepthPositive())
{
e->setLevel(1);
}
e->setRobustKernel(0);
}
// Optimize again without the outliers
optimizer.initializeOptimization(0);
optimizer.optimize(10);
//cout << "End the second optimization (without outliers)" << endl;
}
vector<pair<KeyFrame*,MapPoint*> > vToErase;
vToErase.reserve(vpEdgesMono.size()+vpEdgesStereo.size());
// Check inlier observations
for(size_t i=0, iend=vpEdgesMono.size(); i<iend;i++)
{
g2o::EdgeSE3ProjectXYZ* e = vpEdgesMono[i];
MapPoint* pMP = vpMapPointEdgeMono[i];
if(pMP->isBad())
continue;
if(e->chi2()>5.991 || !e->isDepthPositive())
{
KeyFrame* pKFi = vpEdgeKFMono[i];
vToErase.push_back(make_pair(pKFi,pMP));
}
}
for(size_t i=0, iend=vpEdgesStereo.size(); i<iend;i++)
{
g2o::EdgeStereoSE3ProjectXYZ* e = vpEdgesStereo[i];
MapPoint* pMP = vpMapPointEdgeStereo[i];
if(pMP->isBad())
continue;
if(e->chi2()>7.815 || !e->isDepthPositive())
{
KeyFrame* pKFi = vpEdgeKFStereo[i];
vToErase.push_back(make_pair(pKFi,pMP));
}
}
// Get Map Mutex
unique_lock<mutex> lock(pCurrentKF->GetMap()->mMutexMapUpdate);
if(!vToErase.empty())
{
for(size_t i=0;i<vToErase.size();i++)
{
KeyFrame* pKFi = vToErase[i].first;
MapPoint* pMPi = vToErase[i].second;
pKFi->EraseMapPointMatch(pMPi);
pMPi->EraseObservation(pKFi);
}
}
//cout << "End to erase observations" << endl;
// Recover optimized data
//Keyframes
for(KeyFrame* pKFi : vpWeldingKFs)
{
if(pKFi->isBad())
continue;
g2o::VertexSE3Expmap* vSE3 = static_cast<g2o::VertexSE3Expmap*>(optimizer.vertex(pKFi->mnId));
g2o::SE3Quat SE3quat = vSE3->estimate();
pKFi->SetPose(Converter::toCvMat(SE3quat));
}
//cout << "End to update the KeyFrames" << endl;
//Points
for(MapPoint* pMPi : vpMPs)
{
if(pMPi->isBad())
continue;
g2o::VertexSBAPointXYZ* vPoint = static_cast<g2o::VertexSBAPointXYZ*>(optimizer.vertex(pMPi->mnId+maxKFid+1));
pMPi->SetWorldPos(Converter::toCvMat(vPoint->estimate()));
pMPi->UpdateNormalAndDepth();
}
}
void Optimizer::LocalBundleAdjustment(KeyFrame* pMainKF,vector<KeyFrame*> vpAdjustKF, vector<KeyFrame*> vpFixedKF, bool *pbStopFlag)
{
bool bShowImages = false;
vector<MapPoint*> vpMPs;
g2o::SparseOptimizer optimizer;
g2o::BlockSolver_6_3::LinearSolverType * linearSolver;
linearSolver = new g2o::LinearSolverEigen<g2o::BlockSolver_6_3::PoseMatrixType>();
g2o::BlockSolver_6_3 * solver_ptr = new g2o::BlockSolver_6_3(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
optimizer.setAlgorithm(solver);
optimizer.setVerbose(false);
if(pbStopFlag)
optimizer.setForceStopFlag(pbStopFlag);
long unsigned int maxKFid = 0;
set<KeyFrame*> spKeyFrameBA;
Map* pCurrentMap = pMainKF->GetMap();
//set<MapPoint*> sNumObsMP;
// Set fixed KeyFrame vertices
for(KeyFrame* pKFi : vpFixedKF)
{
if(pKFi->isBad() || pKFi->GetMap() != pCurrentMap)
{
Verbose::PrintMess("ERROR LBA: KF is bad or is not in the current map", Verbose::VERBOSITY_NORMAL);
continue;
}
pKFi->mnBALocalForMerge = pMainKF->mnId;
g2o::VertexSE3Expmap * vSE3 = new g2o::VertexSE3Expmap();
vSE3->setEstimate(Converter::toSE3Quat(pKFi->GetPose()));
vSE3->setId(pKFi->mnId);
vSE3->setFixed(true);
optimizer.addVertex(vSE3);
if(pKFi->mnId>maxKFid)
maxKFid=pKFi->mnId;
set<MapPoint*> spViewMPs = pKFi->GetMapPoints();
for(MapPoint* pMPi : spViewMPs)
{
if(pMPi)
if(!pMPi->isBad() && pMPi->GetMap() == pCurrentMap)
if(pMPi->mnBALocalForMerge!=pMainKF->mnId)
{
vpMPs.push_back(pMPi);
pMPi->mnBALocalForMerge=pMainKF->mnId;
}
/*if(sNumObsMP.find(pMPi) == sNumObsMP.end())
{
sNumObsMP.insert(pMPi);
}
else
{
if(pMPi->mnBALocalForMerge!=pMainKF->mnId)
{
vpMPs.push_back(pMPi);
pMPi->mnBALocalForMerge=pMainKF->mnId;
}
}*/
}
spKeyFrameBA.insert(pKFi);
}
//cout << "End to load Fixed KFs" << endl;
// Set non fixed Keyframe vertices
set<KeyFrame*> spAdjustKF(vpAdjustKF.begin(), vpAdjustKF.end());
for(KeyFrame* pKFi : vpAdjustKF)
{
if(pKFi->isBad() || pKFi->GetMap() != pCurrentMap)
continue;
pKFi->mnBALocalForKF = pMainKF->mnId;
g2o::VertexSE3Expmap * vSE3 = new g2o::VertexSE3Expmap();
vSE3->setEstimate(Converter::toSE3Quat(pKFi->GetPose()));
vSE3->setId(pKFi->mnId);
optimizer.addVertex(vSE3);
if(pKFi->mnId>maxKFid)
maxKFid=pKFi->mnId;
set<MapPoint*> spViewMPs = pKFi->GetMapPoints();
for(MapPoint* pMPi : spViewMPs)
{
if(pMPi)
{
if(!pMPi->isBad() && pMPi->GetMap() == pCurrentMap)
{
/*if(sNumObsMP.find(pMPi) == sNumObsMP.end())
{
sNumObsMP.insert(pMPi);
}*/
if(pMPi->mnBALocalForMerge != pMainKF->mnId)
{
vpMPs.push_back(pMPi);
pMPi->mnBALocalForMerge = pMainKF->mnId;
}
}
}
}
spKeyFrameBA.insert(pKFi);
}
//Verbose::PrintMess("LBA: There are " + to_string(vpMPs.size()) + " MPs to optimize", Verbose::VERBOSITY_NORMAL);
//cout << "End to load KFs for position adjust" << endl;
const int nExpectedSize = (vpAdjustKF.size()+vpFixedKF.size())*vpMPs.size();
vector<ORB_SLAM3::EdgeSE3ProjectXYZ*> vpEdgesMono;
vpEdgesMono.reserve(nExpectedSize);
vector<KeyFrame*> vpEdgeKFMono;
vpEdgeKFMono.reserve(nExpectedSize);
vector<MapPoint*> vpMapPointEdgeMono;
vpMapPointEdgeMono.reserve(nExpectedSize);
vector<g2o::EdgeStereoSE3ProjectXYZ*> vpEdgesStereo;
vpEdgesStereo.reserve(nExpectedSize);
vector<KeyFrame*> vpEdgeKFStereo;
vpEdgeKFStereo.reserve(nExpectedSize);
vector<MapPoint*> vpMapPointEdgeStereo;
vpMapPointEdgeStereo.reserve(nExpectedSize);
const float thHuber2D = sqrt(5.99);
const float thHuber3D = sqrt(7.815);
// Set MapPoint vertices
map<KeyFrame*, int> mpObsKFs;
map<KeyFrame*, int> mpObsFinalKFs;
map<MapPoint*, int> mpObsMPs;
for(unsigned int i=0; i < vpMPs.size(); ++i)
{
MapPoint* pMPi = vpMPs[i];
if(pMPi->isBad())
continue;
g2o::VertexSBAPointXYZ* vPoint = new g2o::VertexSBAPointXYZ();
vPoint->setEstimate(Converter::toVector3d(pMPi->GetWorldPos()));
const int id = pMPi->mnId+maxKFid+1;
vPoint->setId(id);
vPoint->setMarginalized(true);
optimizer.addVertex(vPoint);
const map<KeyFrame*,tuple<int,int>> observations = pMPi->GetObservations();
int nEdges = 0;
//SET EDGES
for(map<KeyFrame*,tuple<int,int>>::const_iterator mit=observations.begin(); mit!=observations.end(); mit++)
{
//cout << "--KF view init" << endl;
KeyFrame* pKF = mit->first;
if(pKF->isBad() || pKF->mnId>maxKFid || pKF->mnBALocalForMerge != pMainKF->mnId || !pKF->GetMapPoint(get<0>(mit->second)))
continue;
//cout << "-- KF view exists" << endl;
nEdges++;
const cv::KeyPoint &kpUn = pKF->mvKeysUn[get<0>(mit->second)];
//cout << "-- KeyPoint loads" << endl;
if(pKF->mvuRight[get<0>(mit->second)]<0) //Monocular
{
mpObsMPs[pMPi]++;
Eigen::Matrix<double,2,1> obs;
obs << kpUn.pt.x, kpUn.pt.y;
ORB_SLAM3::EdgeSE3ProjectXYZ* e = new ORB_SLAM3::EdgeSE3ProjectXYZ();
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKF->mnId)));
e->setMeasurement(obs);
const float &invSigma2 = pKF->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
//cout << "-- Sigma loads" << endl;
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuber2D);
e->pCamera = pKF->mpCamera;
//cout << "-- Calibration loads" << endl;
optimizer.addEdge(e);
//cout << "-- Edge added" << endl;
vpEdgesMono.push_back(e);
vpEdgeKFMono.push_back(pKF);
vpMapPointEdgeMono.push_back(pMPi);
//cout << "-- Added to vector" << endl;
mpObsKFs[pKF]++;
}
else // RGBD or Stereo
{
mpObsMPs[pMPi]+=2;
Eigen::Matrix<double,3,1> obs;
const float kp_ur = pKF->mvuRight[get<0>(mit->second)];
obs << kpUn.pt.x, kpUn.pt.y, kp_ur;
g2o::EdgeStereoSE3ProjectXYZ* e = new g2o::EdgeStereoSE3ProjectXYZ();
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKF->mnId)));
e->setMeasurement(obs);
const float &invSigma2 = pKF->mvInvLevelSigma2[kpUn.octave];
Eigen::Matrix3d Info = Eigen::Matrix3d::Identity()*invSigma2;
e->setInformation(Info);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuber3D);
e->fx = pKF->fx;
e->fy = pKF->fy;
e->cx = pKF->cx;
e->cy = pKF->cy;
e->bf = pKF->mbf;
optimizer.addEdge(e);
vpEdgesStereo.push_back(e);
vpEdgeKFStereo.push_back(pKF);
vpMapPointEdgeStereo.push_back(pMPi);
mpObsKFs[pKF]++;
}
//cout << "-- End to load point" << endl;
}
}
//Verbose::PrintMess("LBA: number total of edged -> " + to_string(vpEdgeKFMono.size() + vpEdgeKFStereo.size()), Verbose::VERBOSITY_NORMAL);
map<int, int> mStatsObs;
for(map<MapPoint*, int>::iterator it = mpObsMPs.begin(); it != mpObsMPs.end(); ++it)
{
MapPoint* pMPi = it->first;
int numObs = it->second;
mStatsObs[numObs]++;
/*if(numObs < 5)
{
cout << "LBA: MP " << pMPi->mnId << " has " << numObs << " observations" << endl;
}*/
}
/*for(map<int, int>::iterator it = mStatsObs.begin(); it != mStatsObs.end(); ++it)
{
cout << "LBA: There are " << it->second << " MPs with " << it->first << " observations" << endl;
}*/
//cout << "End to load MPs" << endl;
if(pbStopFlag)
if(*pbStopFlag)
return;
optimizer.initializeOptimization();
optimizer.optimize(5);
//cout << "End the first optimization" << endl;
bool bDoMore= true;
if(pbStopFlag)
if(*pbStopFlag)
bDoMore = false;
map<unsigned long int, int> mWrongObsKF;
if(bDoMore)
{
// Check inlier observations
int badMonoMP = 0, badStereoMP = 0;
for(size_t i=0, iend=vpEdgesMono.size(); i<iend;i++)
{
ORB_SLAM3::EdgeSE3ProjectXYZ* e = vpEdgesMono[i];
MapPoint* pMP = vpMapPointEdgeMono[i];
if(pMP->isBad())
continue;
if(e->chi2()>5.991 || !e->isDepthPositive())
{
e->setLevel(1);
badMonoMP++;
}
e->setRobustKernel(0);
}
for(size_t i=0, iend=vpEdgesStereo.size(); i<iend;i++)
{
g2o::EdgeStereoSE3ProjectXYZ* e = vpEdgesStereo[i];
MapPoint* pMP = vpMapPointEdgeStereo[i];
if(pMP->isBad())
continue;
if(e->chi2()>7.815 || !e->isDepthPositive())
{
e->setLevel(1);
badStereoMP++;
}
e->setRobustKernel(0);
}
Verbose::PrintMess("LBA: First optimization, there are " + to_string(badMonoMP) + " monocular and " + to_string(badStereoMP) + " sterero bad edges", Verbose::VERBOSITY_DEBUG);
// Optimize again without the outliers
optimizer.initializeOptimization(0);
optimizer.optimize(10);
//cout << "End the second optimization (without outliers)" << endl;
}
vector<pair<KeyFrame*,MapPoint*> > vToErase;
vToErase.reserve(vpEdgesMono.size()+vpEdgesStereo.size());
set<MapPoint*> spErasedMPs;
set<KeyFrame*> spErasedKFs;
// Check inlier observations
int badMonoMP = 0, badStereoMP = 0;
for(size_t i=0, iend=vpEdgesMono.size(); i<iend;i++)
{
ORB_SLAM3::EdgeSE3ProjectXYZ* e = vpEdgesMono[i];
MapPoint* pMP = vpMapPointEdgeMono[i];
if(pMP->isBad())
continue;
if(e->chi2()>5.991 || !e->isDepthPositive())
{
KeyFrame* pKFi = vpEdgeKFMono[i];
vToErase.push_back(make_pair(pKFi,pMP));
mWrongObsKF[pKFi->mnId]++;
badMonoMP++;
spErasedMPs.insert(pMP);
spErasedKFs.insert(pKFi);
}
}
for(size_t i=0, iend=vpEdgesStereo.size(); i<iend;i++)
{
g2o::EdgeStereoSE3ProjectXYZ* e = vpEdgesStereo[i];
MapPoint* pMP = vpMapPointEdgeStereo[i];
if(pMP->isBad())
continue;
if(e->chi2()>7.815 || !e->isDepthPositive())
{
KeyFrame* pKFi = vpEdgeKFStereo[i];
vToErase.push_back(make_pair(pKFi,pMP));
mWrongObsKF[pKFi->mnId]++;
badStereoMP++;
spErasedMPs.insert(pMP);
spErasedKFs.insert(pKFi);
}
}
Verbose::PrintMess("LBA: Second optimization, there are " + to_string(badMonoMP) + " monocular and " + to_string(badStereoMP) + " sterero bad edges", Verbose::VERBOSITY_DEBUG);
// Get Map Mutex
unique_lock<mutex> lock(pMainKF->GetMap()->mMutexMapUpdate);
if(!vToErase.empty())
{
map<KeyFrame*, int> mpMPs_in_KF;
for(KeyFrame* pKFi : spErasedKFs)
{
int num_MPs = pKFi->GetMapPoints().size();
mpMPs_in_KF[pKFi] = num_MPs;
}
Verbose::PrintMess("LBA: There are " + to_string(vToErase.size()) + " observations whose will be deleted from the map", Verbose::VERBOSITY_DEBUG);
for(size_t i=0;i<vToErase.size();i++)
{
KeyFrame* pKFi = vToErase[i].first;
MapPoint* pMPi = vToErase[i].second;
pKFi->EraseMapPointMatch(pMPi);
pMPi->EraseObservation(pKFi);
}
Verbose::PrintMess("LBA: " + to_string(spErasedMPs.size()) + " MPs had deleted observations", Verbose::VERBOSITY_DEBUG);
Verbose::PrintMess("LBA: Current map is " + to_string(pMainKF->GetMap()->GetId()), Verbose::VERBOSITY_DEBUG);
int numErasedMP = 0;
for(MapPoint* pMPi : spErasedMPs)
{
if(pMPi->isBad())
{
Verbose::PrintMess("LBA: MP " + to_string(pMPi->mnId) + " has lost almost all the observations, its origin map is " + to_string(pMPi->mnOriginMapId), Verbose::VERBOSITY_DEBUG);
numErasedMP++;
}
}
Verbose::PrintMess("LBA: " + to_string(numErasedMP) + " MPs had deleted from the map", Verbose::VERBOSITY_DEBUG);
for(KeyFrame* pKFi : spErasedKFs)
{
int num_MPs = pKFi->GetMapPoints().size();
int num_init_MPs = mpMPs_in_KF[pKFi];
Verbose::PrintMess("LBA: Initially KF " + to_string(pKFi->mnId) + " had " + to_string(num_init_MPs) + ", at the end has " + to_string(num_MPs), Verbose::VERBOSITY_DEBUG);
}
}
for(unsigned int i=0; i < vpMPs.size(); ++i)
{
MapPoint* pMPi = vpMPs[i];
if(pMPi->isBad())
continue;
const map<KeyFrame*,tuple<int,int>> observations = pMPi->GetObservations();
for(map<KeyFrame*,tuple<int,int>>::const_iterator mit=observations.begin(); mit!=observations.end(); mit++)
{
//cout << "--KF view init" << endl;
KeyFrame* pKF = mit->first;
if(pKF->isBad() || pKF->mnId>maxKFid || pKF->mnBALocalForKF != pMainKF->mnId || !pKF->GetMapPoint(get<0>(mit->second)))
continue;
const cv::KeyPoint &kpUn = pKF->mvKeysUn[get<0>(mit->second)];
//cout << "-- KeyPoint loads" << endl;
if(pKF->mvuRight[get<0>(mit->second)]<0) //Monocular
{
mpObsFinalKFs[pKF]++;
}
else // RGBD or Stereo
{
mpObsFinalKFs[pKF]++;
}
//cout << "-- End to load point" << endl;
}
}
//cout << "End to erase observations" << endl;
// Recover optimized data
//Keyframes
for(KeyFrame* pKFi : vpAdjustKF)
{
if(pKFi->isBad())
continue;
g2o::VertexSE3Expmap* vSE3 = static_cast<g2o::VertexSE3Expmap*>(optimizer.vertex(pKFi->mnId));
g2o::SE3Quat SE3quat = vSE3->estimate();
cv::Mat Tiw = Converter::toCvMat(SE3quat);
cv::Mat Tco_cn = pKFi->GetPose() * Tiw.inv();
cv::Vec3d trasl = Tco_cn.rowRange(0,3).col(3);
double dist = cv::norm(trasl);
int numMonoBadPoints = 0, numMonoOptPoints = 0;
int numStereoBadPoints = 0, numStereoOptPoints = 0;
vector<MapPoint*> vpMonoMPsOpt, vpStereoMPsOpt;
vector<MapPoint*> vpMonoMPsBad, vpStereoMPsBad;
for(size_t i=0, iend=vpEdgesMono.size(); i<iend;i++)
{
ORB_SLAM3::EdgeSE3ProjectXYZ* e = vpEdgesMono[i];
MapPoint* pMP = vpMapPointEdgeMono[i];
KeyFrame* pKFedge = vpEdgeKFMono[i];
if(pKFi != pKFedge)
{
continue;
}
if(pMP->isBad())
continue;
if(e->chi2()>5.991 || !e->isDepthPositive())
{
numMonoBadPoints++;
vpMonoMPsBad.push_back(pMP);
}
else
{
numMonoOptPoints++;
vpMonoMPsOpt.push_back(pMP);
}
}
for(size_t i=0, iend=vpEdgesStereo.size(); i<iend;i++)
{
g2o::EdgeStereoSE3ProjectXYZ* e = vpEdgesStereo[i];
MapPoint* pMP = vpMapPointEdgeStereo[i];
KeyFrame* pKFedge = vpEdgeKFMono[i];
if(pKFi != pKFedge)
{
continue;
}
if(pMP->isBad())
continue;
if(e->chi2()>7.815 || !e->isDepthPositive())
{
numStereoBadPoints++;
vpStereoMPsBad.push_back(pMP);
}
else
{
numStereoOptPoints++;
vpStereoMPsOpt.push_back(pMP);
}
}
if(numMonoOptPoints + numStereoOptPoints < 50)
{
Verbose::PrintMess("LBA ERROR: KF " + to_string(pKFi->mnId) + " has only " + to_string(numMonoOptPoints) + " monocular and " + to_string(numStereoOptPoints) + " stereo points", Verbose::VERBOSITY_DEBUG);
}
if(dist > 1.0)
{
if(bShowImages)
{
string strNameFile = pKFi->mNameFile;
cv::Mat imLeft = cv::imread(strNameFile, CV_LOAD_IMAGE_UNCHANGED);
cv::cvtColor(imLeft, imLeft, CV_GRAY2BGR);
int numPointsMono = 0, numPointsStereo = 0;
int numPointsMonoBad = 0, numPointsStereoBad = 0;
for(int i=0; i<vpMonoMPsOpt.size(); ++i)
{
if(!vpMonoMPsOpt[i] || vpMonoMPsOpt[i]->isBad())
{
continue;
}
int index = get<0>(vpMonoMPsOpt[i]->GetIndexInKeyFrame(pKFi));
if(index < 0)
{
//cout << "LBA ERROR: KF has a monocular observation which is not recognized by the MP" << endl;
//cout << "LBA: KF " << pKFi->mnId << " and MP " << vpMonoMPsOpt[i]->mnId << " with index " << endl;
continue;
}
//string strNumOBs = to_string(vpMapPointsKF[i]->Observations());
cv::circle(imLeft, pKFi->mvKeys[index].pt, 2, cv::Scalar(255, 0, 0));
//cv::putText(imLeft, strNumOBs, pKF->mvKeys[i].pt, CV_FONT_HERSHEY_DUPLEX, 1, cv::Scalar(255, 0, 0));
numPointsMono++;
}
for(int i=0; i<vpStereoMPsOpt.size(); ++i)
{
if(!vpStereoMPsOpt[i] || vpStereoMPsOpt[i]->isBad())
{
continue;
}
int index = get<0>(vpStereoMPsOpt[i]->GetIndexInKeyFrame(pKFi));
if(index < 0)
{
//cout << "LBA: KF has a stereo observation which is not recognized by the MP" << endl;
//cout << "LBA: KF " << pKFi->mnId << " and MP " << vpStereoMPsOpt[i]->mnId << endl;
continue;
}
//string strNumOBs = to_string(vpMapPointsKF[i]->Observations());
cv::circle(imLeft, pKFi->mvKeys[index].pt, 2, cv::Scalar(0, 255, 0));
//cv::putText(imLeft, strNumOBs, pKF->mvKeys[i].pt, CV_FONT_HERSHEY_DUPLEX, 1, cv::Scalar(255, 0, 0));
numPointsStereo++;
}
for(int i=0; i<vpMonoMPsBad.size(); ++i)
{
if(!vpMonoMPsBad[i] || vpMonoMPsBad[i]->isBad())
{
continue;
}
int index = get<0>(vpMonoMPsBad[i]->GetIndexInKeyFrame(pKFi));
if(index < 0)
{
//cout << "LBA ERROR: KF has a monocular observation which is not recognized by the MP" << endl;
//cout << "LBA: KF " << pKFi->mnId << " and MP " << vpMonoMPsOpt[i]->mnId << " with index " << endl;
continue;
}
//string strNumOBs = to_string(vpMapPointsKF[i]->Observations());
cv::circle(imLeft, pKFi->mvKeys[index].pt, 2, cv::Scalar(0, 0, 255));
//cv::putText(imLeft, strNumOBs, pKF->mvKeys[i].pt, CV_FONT_HERSHEY_DUPLEX, 1, cv::Scalar(255, 0, 0));
numPointsMonoBad++;
}
for(int i=0; i<vpStereoMPsBad.size(); ++i)
{
if(!vpStereoMPsBad[i] || vpStereoMPsBad[i]->isBad())
{
continue;
}
int index = get<0>(vpStereoMPsBad[i]->GetIndexInKeyFrame(pKFi));
if(index < 0)
{
//cout << "LBA: KF has a stereo observation which is not recognized by the MP" << endl;
//cout << "LBA: KF " << pKFi->mnId << " and MP " << vpStereoMPsOpt[i]->mnId << endl;
continue;
}
//string strNumOBs = to_string(vpMapPointsKF[i]->Observations());
cv::circle(imLeft, pKFi->mvKeys[index].pt, 2, cv::Scalar(0, 0, 255));
//cv::putText(imLeft, strNumOBs, pKF->mvKeys[i].pt, CV_FONT_HERSHEY_DUPLEX, 1, cv::Scalar(255, 0, 0));
numPointsStereoBad++;
}
string namefile = "./test_LBA/LBA_KF" + to_string(pKFi->mnId) + "_" + to_string(numPointsMono + numPointsStereo) +"_D" + to_string(dist) +".png";
cv::imwrite(namefile, imLeft);
Verbose::PrintMess("--LBA in KF " + to_string(pKFi->mnId), Verbose::VERBOSITY_DEBUG);
Verbose::PrintMess("--Distance: " + to_string(dist) + " meters", Verbose::VERBOSITY_DEBUG);
Verbose::PrintMess("--Number of observations: " + to_string(numMonoOptPoints) + " in mono and " + to_string(numStereoOptPoints) + " in stereo", Verbose::VERBOSITY_DEBUG);
Verbose::PrintMess("--Number of discarded observations: " + to_string(numMonoBadPoints) + " in mono and " + to_string(numStereoBadPoints) + " in stereo", Verbose::VERBOSITY_DEBUG);
Verbose::PrintMess("--To much distance correction in LBA: It has " + to_string(mpObsKFs[pKFi]) + " observated MPs", Verbose::VERBOSITY_DEBUG);
Verbose::PrintMess("--To much distance correction in LBA: It has " + to_string(mpObsFinalKFs[pKFi]) + " deleted observations", Verbose::VERBOSITY_DEBUG);
Verbose::PrintMess("--------", Verbose::VERBOSITY_DEBUG);
}
}
pKFi->SetPose(Tiw);
}
//cout << "End to update the KeyFrames" << endl;
//Points
for(MapPoint* pMPi : vpMPs)
{
if(pMPi->isBad())
continue;
g2o::VertexSBAPointXYZ* vPoint = static_cast<g2o::VertexSBAPointXYZ*>(optimizer.vertex(pMPi->mnId+maxKFid+1));
pMPi->SetWorldPos(Converter::toCvMat(vPoint->estimate()));
pMPi->UpdateNormalAndDepth();
}
//cout << "End to update MapPoint" << endl;
}
void Optimizer::MergeInertialBA(KeyFrame* pCurrKF, KeyFrame* pMergeKF, bool *pbStopFlag, Map *pMap, LoopClosing::KeyFrameAndPose &corrPoses)
{
const int Nd = 6;
const unsigned long maxKFid = pCurrKF->mnId;
vector<KeyFrame*> vpOptimizableKFs;
vpOptimizableKFs.reserve(2*Nd);
// For cov KFS, inertial parameters are not optimized
const int maxCovKF=30;
vector<KeyFrame*> vpOptimizableCovKFs;
vpOptimizableCovKFs.reserve(maxCovKF);
// Add sliding window for current KF
vpOptimizableKFs.push_back(pCurrKF);
pCurrKF->mnBALocalForKF = pCurrKF->mnId;
for(int i=1; i<Nd; i++)
{
if(vpOptimizableKFs.back()->mPrevKF)
{
vpOptimizableKFs.push_back(vpOptimizableKFs.back()->mPrevKF);
vpOptimizableKFs.back()->mnBALocalForKF = pCurrKF->mnId;
}
else
break;
}
list<KeyFrame*> lFixedKeyFrames;
if(vpOptimizableKFs.back()->mPrevKF)
{
vpOptimizableCovKFs.push_back(vpOptimizableKFs.back()->mPrevKF);
vpOptimizableKFs.back()->mPrevKF->mnBALocalForKF=pCurrKF->mnId;
}
else
{
vpOptimizableCovKFs.push_back(vpOptimizableKFs.back());
vpOptimizableKFs.pop_back();
}
KeyFrame* pKF0 = vpOptimizableCovKFs.back();
cv::Mat Twc0 = pKF0->GetPoseInverse();
// Add temporal neighbours to merge KF (previous and next KFs)
vpOptimizableKFs.push_back(pMergeKF);
pMergeKF->mnBALocalForKF = pCurrKF->mnId;
// Previous KFs
for(int i=1; i<(Nd/2); i++)
{
if(vpOptimizableKFs.back()->mPrevKF)
{
vpOptimizableKFs.push_back(vpOptimizableKFs.back()->mPrevKF);
vpOptimizableKFs.back()->mnBALocalForKF = pCurrKF->mnId;
}
else
break;
}
// We fix just once the old map
if(vpOptimizableKFs.back()->mPrevKF)
{
lFixedKeyFrames.push_back(vpOptimizableKFs.back()->mPrevKF);
vpOptimizableKFs.back()->mPrevKF->mnBAFixedForKF=pCurrKF->mnId;
}
else
{
vpOptimizableKFs.back()->mnBALocalForKF=0;
vpOptimizableKFs.back()->mnBAFixedForKF=pCurrKF->mnId;
lFixedKeyFrames.push_back(vpOptimizableKFs.back());
vpOptimizableKFs.pop_back();
}
// Next KFs
if(pMergeKF->mNextKF)
{
vpOptimizableKFs.push_back(pMergeKF->mNextKF);
vpOptimizableKFs.back()->mnBALocalForKF = pCurrKF->mnId;
}
while(vpOptimizableKFs.size()<(2*Nd))
{
if(vpOptimizableKFs.back()->mNextKF)
{
vpOptimizableKFs.push_back(vpOptimizableKFs.back()->mNextKF);
vpOptimizableKFs.back()->mnBALocalForKF = pCurrKF->mnId;
}
else
break;
}
int N = vpOptimizableKFs.size();
// Optimizable points seen by optimizable keyframes
list<MapPoint*> lLocalMapPoints;
map<MapPoint*,int> mLocalObs;
for(int i=0; i<N; i++)
{
vector<MapPoint*> vpMPs = vpOptimizableKFs[i]->GetMapPointMatches();
for(vector<MapPoint*>::iterator vit=vpMPs.begin(), vend=vpMPs.end(); vit!=vend; vit++)
{
// Using mnBALocalForKF we avoid redundance here, one MP can not be added several times to lLocalMapPoints
MapPoint* pMP = *vit;
if(pMP)
if(!pMP->isBad())
if(pMP->mnBALocalForKF!=pCurrKF->mnId)
{
mLocalObs[pMP]=1;
lLocalMapPoints.push_back(pMP);
pMP->mnBALocalForKF=pCurrKF->mnId;
}
else
mLocalObs[pMP]++;
}
}
std::vector<std::pair<MapPoint*, int>> pairs;
pairs.reserve(mLocalObs.size());
for (auto itr = mLocalObs.begin(); itr != mLocalObs.end(); ++itr)
pairs.push_back(*itr);
sort(pairs.begin(), pairs.end(),sortByVal);
// Fixed Keyframes. Keyframes that see Local MapPoints but that are not Local Keyframes
int i=0;
for(vector<pair<MapPoint*,int>>::iterator lit=pairs.begin(), lend=pairs.end(); lit!=lend; lit++, i++)
{
map<KeyFrame*,tuple<int,int>> observations = lit->first->GetObservations();
if(i>=maxCovKF)
break;
for(map<KeyFrame*,tuple<int,int>>::iterator mit=observations.begin(), mend=observations.end(); mit!=mend; mit++)
{
KeyFrame* pKFi = mit->first;
if(pKFi->mnBALocalForKF!=pCurrKF->mnId && pKFi->mnBAFixedForKF!=pCurrKF->mnId) // If optimizable or already included...
{
pKFi->mnBALocalForKF=pCurrKF->mnId;
if(!pKFi->isBad())
{
vpOptimizableCovKFs.push_back(pKFi);
break;
}
}
}
}
g2o::SparseOptimizer optimizer;
g2o::BlockSolverX::LinearSolverType * linearSolver;
linearSolver = new g2o::LinearSolverEigen<g2o::BlockSolverX::PoseMatrixType>();
g2o::BlockSolverX * solver_ptr = new g2o::BlockSolverX(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
solver->setUserLambdaInit(1e3); // TODO uncomment
optimizer.setAlgorithm(solver);
optimizer.setVerbose(false);
// Set Local KeyFrame vertices
N=vpOptimizableKFs.size();
for(int i=0; i<N; i++)
{
KeyFrame* pKFi = vpOptimizableKFs[i];
VertexPose * VP = new VertexPose(pKFi);
VP->setId(pKFi->mnId);
VP->setFixed(false);
optimizer.addVertex(VP);
if(pKFi->bImu)
{
VertexVelocity* VV = new VertexVelocity(pKFi);
VV->setId(maxKFid+3*(pKFi->mnId)+1);
VV->setFixed(false);
optimizer.addVertex(VV);
VertexGyroBias* VG = new VertexGyroBias(pKFi);
VG->setId(maxKFid+3*(pKFi->mnId)+2);
VG->setFixed(false);
optimizer.addVertex(VG);
VertexAccBias* VA = new VertexAccBias(pKFi);
VA->setId(maxKFid+3*(pKFi->mnId)+3);
VA->setFixed(false);
optimizer.addVertex(VA);
}
}
// Set Local cov keyframes vertices
int Ncov=vpOptimizableCovKFs.size();
for(int i=0; i<Ncov; i++)
{
KeyFrame* pKFi = vpOptimizableCovKFs[i];
VertexPose * VP = new VertexPose(pKFi);
VP->setId(pKFi->mnId);
VP->setFixed(false);
optimizer.addVertex(VP);
if(pKFi->bImu)
{
VertexVelocity* VV = new VertexVelocity(pKFi);
VV->setId(maxKFid+3*(pKFi->mnId)+1);
VV->setFixed(false);
optimizer.addVertex(VV);
VertexGyroBias* VG = new VertexGyroBias(pKFi);
VG->setId(maxKFid+3*(pKFi->mnId)+2);
VG->setFixed(false);
optimizer.addVertex(VG);
VertexAccBias* VA = new VertexAccBias(pKFi);
VA->setId(maxKFid+3*(pKFi->mnId)+3);
VA->setFixed(false);
optimizer.addVertex(VA);
}
}
// Set Fixed KeyFrame vertices
for(list<KeyFrame*>::iterator lit=lFixedKeyFrames.begin(), lend=lFixedKeyFrames.end(); lit!=lend; lit++)
{
KeyFrame* pKFi = *lit;
VertexPose * VP = new VertexPose(pKFi);
VP->setId(pKFi->mnId);
VP->setFixed(true);
optimizer.addVertex(VP);
if(pKFi->bImu)
{
VertexVelocity* VV = new VertexVelocity(pKFi);
VV->setId(maxKFid+3*(pKFi->mnId)+1);
VV->setFixed(true);
optimizer.addVertex(VV);
VertexGyroBias* VG = new VertexGyroBias(pKFi);
VG->setId(maxKFid+3*(pKFi->mnId)+2);
VG->setFixed(true);
optimizer.addVertex(VG);
VertexAccBias* VA = new VertexAccBias(pKFi);
VA->setId(maxKFid+3*(pKFi->mnId)+3);
VA->setFixed(true);
optimizer.addVertex(VA);
}
}
// Create intertial constraints
vector<EdgeInertial*> vei(N,(EdgeInertial*)NULL);
vector<EdgeGyroRW*> vegr(N,(EdgeGyroRW*)NULL);
vector<EdgeAccRW*> vear(N,(EdgeAccRW*)NULL);
for(int i=0;i<N;i++)
{
//cout << "inserting inertial edge " << i << endl;
KeyFrame* pKFi = vpOptimizableKFs[i];
if(!pKFi->mPrevKF)
{
Verbose::PrintMess("NOT INERTIAL LINK TO PREVIOUS FRAME!!!!", Verbose::VERBOSITY_NORMAL);
continue;
}
if(pKFi->bImu && pKFi->mPrevKF->bImu && pKFi->mpImuPreintegrated)
{
pKFi->mpImuPreintegrated->SetNewBias(pKFi->mPrevKF->GetImuBias());
g2o::HyperGraph::Vertex* VP1 = optimizer.vertex(pKFi->mPrevKF->mnId);
g2o::HyperGraph::Vertex* VV1 = optimizer.vertex(maxKFid+3*(pKFi->mPrevKF->mnId)+1);
g2o::HyperGraph::Vertex* VG1 = optimizer.vertex(maxKFid+3*(pKFi->mPrevKF->mnId)+2);
g2o::HyperGraph::Vertex* VA1 = optimizer.vertex(maxKFid+3*(pKFi->mPrevKF->mnId)+3);
g2o::HyperGraph::Vertex* VP2 = optimizer.vertex(pKFi->mnId);
g2o::HyperGraph::Vertex* VV2 = optimizer.vertex(maxKFid+3*(pKFi->mnId)+1);
g2o::HyperGraph::Vertex* VG2 = optimizer.vertex(maxKFid+3*(pKFi->mnId)+2);
g2o::HyperGraph::Vertex* VA2 = optimizer.vertex(maxKFid+3*(pKFi->mnId)+3);
if(!VP1 || !VV1 || !VG1 || !VA1 || !VP2 || !VV2 || !VG2 || !VA2)
{
cerr << "Error " << VP1 << ", "<< VV1 << ", "<< VG1 << ", "<< VA1 << ", " << VP2 << ", " << VV2 << ", "<< VG2 << ", "<< VA2 <<endl;
continue;
}
vei[i] = new EdgeInertial(pKFi->mpImuPreintegrated);
vei[i]->setVertex(0,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VP1));
vei[i]->setVertex(1,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VV1));
vei[i]->setVertex(2,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VG1));
vei[i]->setVertex(3,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VA1));
vei[i]->setVertex(4,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VP2));
vei[i]->setVertex(5,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VV2));
// TODO Uncomment
g2o::RobustKernelHuber* rki = new g2o::RobustKernelHuber;
vei[i]->setRobustKernel(rki);
rki->setDelta(sqrt(16.92));
optimizer.addEdge(vei[i]);
vegr[i] = new EdgeGyroRW();
vegr[i]->setVertex(0,VG1);
vegr[i]->setVertex(1,VG2);
cv::Mat cvInfoG = pKFi->mpImuPreintegrated->C.rowRange(9,12).colRange(9,12).inv(cv::DECOMP_SVD);
Eigen::Matrix3d InfoG;
for(int r=0;r<3;r++)
for(int c=0;c<3;c++)
InfoG(r,c)=cvInfoG.at<float>(r,c);
vegr[i]->setInformation(InfoG);
optimizer.addEdge(vegr[i]);
vear[i] = new EdgeAccRW();
vear[i]->setVertex(0,VA1);
vear[i]->setVertex(1,VA2);
cv::Mat cvInfoA = pKFi->mpImuPreintegrated->C.rowRange(12,15).colRange(12,15).inv(cv::DECOMP_SVD);
Eigen::Matrix3d InfoA;
for(int r=0;r<3;r++)
for(int c=0;c<3;c++)
InfoA(r,c)=cvInfoA.at<float>(r,c);
vear[i]->setInformation(InfoA);
optimizer.addEdge(vear[i]);
}
else
Verbose::PrintMess("ERROR building inertial edge", Verbose::VERBOSITY_NORMAL);
}
Verbose::PrintMess("end inserting inertial edges", Verbose::VERBOSITY_NORMAL);
// Set MapPoint vertices
const int nExpectedSize = (N+Ncov+lFixedKeyFrames.size())*lLocalMapPoints.size();
// Mono
vector<EdgeMono*> vpEdgesMono;
vpEdgesMono.reserve(nExpectedSize);
vector<KeyFrame*> vpEdgeKFMono;
vpEdgeKFMono.reserve(nExpectedSize);
vector<MapPoint*> vpMapPointEdgeMono;
vpMapPointEdgeMono.reserve(nExpectedSize);
// Stereo
vector<EdgeStereo*> vpEdgesStereo;
vpEdgesStereo.reserve(nExpectedSize);
vector<KeyFrame*> vpEdgeKFStereo;
vpEdgeKFStereo.reserve(nExpectedSize);
vector<MapPoint*> vpMapPointEdgeStereo;
vpMapPointEdgeStereo.reserve(nExpectedSize);
const float thHuberMono = sqrt(5.991);
const float chi2Mono2 = 5.991;
const float thHuberStereo = sqrt(7.815);
const float chi2Stereo2 = 7.815;
const unsigned long iniMPid = maxKFid*5; // TODO: should be maxKFid*4;
Verbose::PrintMess("start inserting MPs", Verbose::VERBOSITY_NORMAL);
for(list<MapPoint*>::iterator lit=lLocalMapPoints.begin(), lend=lLocalMapPoints.end(); lit!=lend; lit++)
{
MapPoint* pMP = *lit;
if (!pMP)
continue;
g2o::VertexSBAPointXYZ* vPoint = new g2o::VertexSBAPointXYZ();
vPoint->setEstimate(Converter::toVector3d(pMP->GetWorldPos()));
unsigned long id = pMP->mnId+iniMPid+1;
vPoint->setId(id);
vPoint->setMarginalized(true);
optimizer.addVertex(vPoint);
const map<KeyFrame*,tuple<int,int>> observations = pMP->GetObservations();
// Create visual constraints
for(map<KeyFrame*,tuple<int,int>>::const_iterator mit=observations.begin(), mend=observations.end(); mit!=mend; mit++)
{
KeyFrame* pKFi = mit->first;
if (!pKFi)
continue;
if ((pKFi->mnBALocalForKF!=pCurrKF->mnId) && (pKFi->mnBAFixedForKF!=pCurrKF->mnId))
continue;
if (pKFi->mnId>maxKFid){
Verbose::PrintMess("ID greater than current KF is", Verbose::VERBOSITY_NORMAL);
continue;
}
if(optimizer.vertex(id)==NULL || optimizer.vertex(pKFi->mnId)==NULL)
continue;
if(!pKFi->isBad())
{
const cv::KeyPoint &kpUn = pKFi->mvKeysUn[get<0>(mit->second)];
if(pKFi->mvuRight[get<0>(mit->second)]<0) // Monocular observation
{
Eigen::Matrix<double,2,1> obs;
obs << kpUn.pt.x, kpUn.pt.y;
EdgeMono* e = new EdgeMono();
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFi->mnId)));
e->setMeasurement(obs);
const float &invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberMono);
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vpEdgeKFMono.push_back(pKFi);
vpMapPointEdgeMono.push_back(pMP);
}
else // stereo observation
{
const float kp_ur = pKFi->mvuRight[get<0>(mit->second)];
Eigen::Matrix<double,3,1> obs;
obs << kpUn.pt.x, kpUn.pt.y, kp_ur;
EdgeStereo* e = new EdgeStereo();
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFi->mnId)));
e->setMeasurement(obs);
const float &invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix3d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberStereo);
optimizer.addEdge(e);
vpEdgesStereo.push_back(e);
vpEdgeKFStereo.push_back(pKFi);
vpMapPointEdgeStereo.push_back(pMP);
}
}
}
}
if(pbStopFlag)
if(*pbStopFlag)
return;
optimizer.initializeOptimization();
optimizer.optimize(3);
if(pbStopFlag)
if(!*pbStopFlag)
optimizer.optimize(5);
optimizer.setForceStopFlag(pbStopFlag);
vector<pair<KeyFrame*,MapPoint*> > vToErase;
vToErase.reserve(vpEdgesMono.size()+vpEdgesStereo.size());
// Check inlier observations
// Mono
for(size_t i=0, iend=vpEdgesMono.size(); i<iend;i++)
{
EdgeMono* e = vpEdgesMono[i];
MapPoint* pMP = vpMapPointEdgeMono[i];
if(pMP->isBad())
continue;
if(e->chi2()>chi2Mono2)
{
KeyFrame* pKFi = vpEdgeKFMono[i];
vToErase.push_back(make_pair(pKFi,pMP));
}
}
// Stereo
for(size_t i=0, iend=vpEdgesStereo.size(); i<iend;i++)
{
EdgeStereo* e = vpEdgesStereo[i];
MapPoint* pMP = vpMapPointEdgeStereo[i];
if(pMP->isBad())
continue;
if(e->chi2()>chi2Stereo2)
{
KeyFrame* pKFi = vpEdgeKFStereo[i];
vToErase.push_back(make_pair(pKFi,pMP));
}
}
// Get Map Mutex and erase outliers
unique_lock<mutex> lock(pMap->mMutexMapUpdate);
if(!vToErase.empty())
{
for(size_t i=0;i<vToErase.size();i++)
{
KeyFrame* pKFi = vToErase[i].first;
MapPoint* pMPi = vToErase[i].second;
pKFi->EraseMapPointMatch(pMPi);
pMPi->EraseObservation(pKFi);
}
}
// Recover optimized data
//Keyframes
for(int i=0; i<N; i++)
{
KeyFrame* pKFi = vpOptimizableKFs[i];
VertexPose* VP = static_cast<VertexPose*>(optimizer.vertex(pKFi->mnId));
cv::Mat Tcw = Converter::toCvSE3(VP->estimate().Rcw[0], VP->estimate().tcw[0]);
pKFi->SetPose(Tcw);
cv::Mat Tiw=pKFi->GetPose();
cv::Mat Riw = Tiw.rowRange(0,3).colRange(0,3);
cv::Mat tiw = Tiw.rowRange(0,3).col(3);
g2o::Sim3 g2oSiw(Converter::toMatrix3d(Riw),Converter::toVector3d(tiw),1.0);
corrPoses[pKFi] = g2oSiw;
if(pKFi->bImu)
{
VertexVelocity* VV = static_cast<VertexVelocity*>(optimizer.vertex(maxKFid+3*(pKFi->mnId)+1));
pKFi->SetVelocity(Converter::toCvMat(VV->estimate()));
VertexGyroBias* VG = static_cast<VertexGyroBias*>(optimizer.vertex(maxKFid+3*(pKFi->mnId)+2));
VertexAccBias* VA = static_cast<VertexAccBias*>(optimizer.vertex(maxKFid+3*(pKFi->mnId)+3));
Vector6d b;
b << VG->estimate(), VA->estimate();
pKFi->SetNewBias(IMU::Bias(b[3],b[4],b[5],b[0],b[1],b[2]));
}
}
for(int i=0; i<Ncov; i++)
{
KeyFrame* pKFi = vpOptimizableCovKFs[i];
VertexPose* VP = static_cast<VertexPose*>(optimizer.vertex(pKFi->mnId));
cv::Mat Tcw = Converter::toCvSE3(VP->estimate().Rcw[0], VP->estimate().tcw[0]);
pKFi->SetPose(Tcw);
cv::Mat Tiw=pKFi->GetPose();
cv::Mat Riw = Tiw.rowRange(0,3).colRange(0,3);
cv::Mat tiw = Tiw.rowRange(0,3).col(3);
g2o::Sim3 g2oSiw(Converter::toMatrix3d(Riw),Converter::toVector3d(tiw),1.0);
corrPoses[pKFi] = g2oSiw;
if(pKFi->bImu)
{
VertexVelocity* VV = static_cast<VertexVelocity*>(optimizer.vertex(maxKFid+3*(pKFi->mnId)+1));
pKFi->SetVelocity(Converter::toCvMat(VV->estimate()));
VertexGyroBias* VG = static_cast<VertexGyroBias*>(optimizer.vertex(maxKFid+3*(pKFi->mnId)+2));
VertexAccBias* VA = static_cast<VertexAccBias*>(optimizer.vertex(maxKFid+3*(pKFi->mnId)+3));
Vector6d b;
b << VG->estimate(), VA->estimate();
pKFi->SetNewBias(IMU::Bias(b[3],b[4],b[5],b[0],b[1],b[2]));
}
}
//Points
for(list<MapPoint*>::iterator lit=lLocalMapPoints.begin(), lend=lLocalMapPoints.end(); lit!=lend; lit++)
{
MapPoint* pMP = *lit;
g2o::VertexSBAPointXYZ* vPoint = static_cast<g2o::VertexSBAPointXYZ*>(optimizer.vertex(pMP->mnId+iniMPid+1));
pMP->SetWorldPos(Converter::toCvMat(vPoint->estimate()));
pMP->UpdateNormalAndDepth();
}
pMap->IncreaseChangeIndex();
}
int Optimizer::PoseInertialOptimizationLastKeyFrame(Frame *pFrame, bool bRecInit)
{
g2o::SparseOptimizer optimizer;
g2o::BlockSolverX::LinearSolverType * linearSolver;
linearSolver = new g2o::LinearSolverDense<g2o::BlockSolverX::PoseMatrixType>();
g2o::BlockSolverX * solver_ptr = new g2o::BlockSolverX(linearSolver);
g2o::OptimizationAlgorithmGaussNewton* solver = new g2o::OptimizationAlgorithmGaussNewton(solver_ptr);
optimizer.setVerbose(false);
optimizer.setAlgorithm(solver);
int nInitialMonoCorrespondences=0;
int nInitialStereoCorrespondences=0;
int nInitialCorrespondences=0;
// Set Frame vertex
VertexPose* VP = new VertexPose(pFrame);
VP->setId(0);
VP->setFixed(false);
optimizer.addVertex(VP);
VertexVelocity* VV = new VertexVelocity(pFrame);
VV->setId(1);
VV->setFixed(false);
optimizer.addVertex(VV);
VertexGyroBias* VG = new VertexGyroBias(pFrame);
VG->setId(2);
VG->setFixed(false);
optimizer.addVertex(VG);
VertexAccBias* VA = new VertexAccBias(pFrame);
VA->setId(3);
VA->setFixed(false);
optimizer.addVertex(VA);
// Set MapPoint vertices
const int N = pFrame->N;
const int Nleft = pFrame->Nleft;
const bool bRight = (Nleft!=-1);
vector<EdgeMonoOnlyPose*> vpEdgesMono;
vector<EdgeStereoOnlyPose*> vpEdgesStereo;
vector<size_t> vnIndexEdgeMono;
vector<size_t> vnIndexEdgeStereo;
vpEdgesMono.reserve(N);
vpEdgesStereo.reserve(N);
vnIndexEdgeMono.reserve(N);
vnIndexEdgeStereo.reserve(N);
const float thHuberMono = sqrt(5.991);
const float thHuberStereo = sqrt(7.815);
{
unique_lock<mutex> lock(MapPoint::mGlobalMutex);
for(int i=0; i<N; i++)
{
MapPoint* pMP = pFrame->mvpMapPoints[i];
if(pMP)
{
cv::KeyPoint kpUn;
// Left monocular observation
if((!bRight && pFrame->mvuRight[i]<0) || i < Nleft)
{
if(i < Nleft) // pair left-right
kpUn = pFrame->mvKeys[i];
else
kpUn = pFrame->mvKeysUn[i];
nInitialMonoCorrespondences++;
pFrame->mvbOutlier[i] = false;
Eigen::Matrix<double,2,1> obs;
obs << kpUn.pt.x, kpUn.pt.y;
EdgeMonoOnlyPose* e = new EdgeMonoOnlyPose(pMP->GetWorldPos(),0);
e->setVertex(0,VP);
e->setMeasurement(obs);
// Add here uncerteinty
const float unc2 = pFrame->mpCamera->uncertainty2(obs);
const float invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave]/unc2;
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberMono);
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vnIndexEdgeMono.push_back(i);
}
// Stereo observation
else if(!bRight)
{
nInitialStereoCorrespondences++;
pFrame->mvbOutlier[i] = false;
kpUn = pFrame->mvKeysUn[i];
const float kp_ur = pFrame->mvuRight[i];
Eigen::Matrix<double,3,1> obs;
obs << kpUn.pt.x, kpUn.pt.y, kp_ur;
EdgeStereoOnlyPose* e = new EdgeStereoOnlyPose(pMP->GetWorldPos());
e->setVertex(0, VP);
e->setMeasurement(obs);
// Add here uncerteinty
const float unc2 = pFrame->mpCamera->uncertainty2(obs.head(2));
const float &invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave]/unc2;
e->setInformation(Eigen::Matrix3d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberStereo);
optimizer.addEdge(e);
vpEdgesStereo.push_back(e);
vnIndexEdgeStereo.push_back(i);
}
// Right monocular observation
if(bRight && i >= Nleft)
{
nInitialMonoCorrespondences++;
pFrame->mvbOutlier[i] = false;
kpUn = pFrame->mvKeysRight[i - Nleft];
Eigen::Matrix<double,2,1> obs;
obs << kpUn.pt.x, kpUn.pt.y;
EdgeMonoOnlyPose* e = new EdgeMonoOnlyPose(pMP->GetWorldPos(),1);
e->setVertex(0,VP);
e->setMeasurement(obs);
// Add here uncerteinty
const float unc2 = pFrame->mpCamera->uncertainty2(obs);
const float invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave]/unc2;
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberMono);
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vnIndexEdgeMono.push_back(i);
}
}
}
}
nInitialCorrespondences = nInitialMonoCorrespondences + nInitialStereoCorrespondences;
KeyFrame* pKF = pFrame->mpLastKeyFrame;
VertexPose* VPk = new VertexPose(pKF);
VPk->setId(4);
VPk->setFixed(true);
optimizer.addVertex(VPk);
VertexVelocity* VVk = new VertexVelocity(pKF);
VVk->setId(5);
VVk->setFixed(true);
optimizer.addVertex(VVk);
VertexGyroBias* VGk = new VertexGyroBias(pKF);
VGk->setId(6);
VGk->setFixed(true);
optimizer.addVertex(VGk);
VertexAccBias* VAk = new VertexAccBias(pKF);
VAk->setId(7);
VAk->setFixed(true);
optimizer.addVertex(VAk);
EdgeInertial* ei = new EdgeInertial(pFrame->mpImuPreintegrated);
ei->setVertex(0, VPk);
ei->setVertex(1, VVk);
ei->setVertex(2, VGk);
ei->setVertex(3, VAk);
ei->setVertex(4, VP);
ei->setVertex(5, VV);
optimizer.addEdge(ei);
EdgeGyroRW* egr = new EdgeGyroRW();
egr->setVertex(0,VGk);
egr->setVertex(1,VG);
cv::Mat cvInfoG = pFrame->mpImuPreintegrated->C.rowRange(9,12).colRange(9,12).inv(cv::DECOMP_SVD);
Eigen::Matrix3d InfoG;
for(int r=0;r<3;r++)
for(int c=0;c<3;c++)
InfoG(r,c)=cvInfoG.at<float>(r,c);
egr->setInformation(InfoG);
optimizer.addEdge(egr);
EdgeAccRW* ear = new EdgeAccRW();
ear->setVertex(0,VAk);
ear->setVertex(1,VA);
cv::Mat cvInfoA = pFrame->mpImuPreintegrated->C.rowRange(12,15).colRange(12,15).inv(cv::DECOMP_SVD);
Eigen::Matrix3d InfoA;
for(int r=0;r<3;r++)
for(int c=0;c<3;c++)
InfoA(r,c)=cvInfoA.at<float>(r,c);
ear->setInformation(InfoA);
optimizer.addEdge(ear);
// We perform 4 optimizations, after each optimization we classify observation as inlier/outlier
// At the next optimization, outliers are not included, but at the end they can be classified as inliers again.
float chi2Mono[4]={12,7.5,5.991,5.991};
float chi2Stereo[4]={15.6,9.8,7.815,7.815};
int its[4]={10,10,10,10};
int nBad=0;
int nBadMono = 0;
int nBadStereo = 0;
int nInliersMono = 0;
int nInliersStereo = 0;
int nInliers=0;
bool bOut = false;
for(size_t it=0; it<4; it++)
{
optimizer.initializeOptimization(0);
optimizer.optimize(its[it]);
nBad=0;
nBadMono = 0;
nBadStereo = 0;
nInliers=0;
nInliersMono=0;
nInliersStereo=0;
float chi2close = 1.5*chi2Mono[it];
// For monocular observations
for(size_t i=0, iend=vpEdgesMono.size(); i<iend; i++)
{
EdgeMonoOnlyPose* e = vpEdgesMono[i];
const size_t idx = vnIndexEdgeMono[i];
if(pFrame->mvbOutlier[idx])
{
e->computeError();
}
const float chi2 = e->chi2();
bool bClose = pFrame->mvpMapPoints[idx]->mTrackDepth<10.f;
if((chi2>chi2Mono[it]&&!bClose)||(bClose && chi2>chi2close)||!e->isDepthPositive())
{
pFrame->mvbOutlier[idx]=true;
e->setLevel(1);
nBadMono++;
}
else
{
pFrame->mvbOutlier[idx]=false;
e->setLevel(0);
nInliersMono++;
}
if (it==2)
e->setRobustKernel(0);
}
// For stereo observations
for(size_t i=0, iend=vpEdgesStereo.size(); i<iend; i++)
{
EdgeStereoOnlyPose* e = vpEdgesStereo[i];
const size_t idx = vnIndexEdgeStereo[i];
if(pFrame->mvbOutlier[idx])
{
e->computeError();
}
const float chi2 = e->chi2();
if(chi2>chi2Stereo[it])
{
pFrame->mvbOutlier[idx]=true;
e->setLevel(1); // not included in next optimization
nBadStereo++;
}
else
{
pFrame->mvbOutlier[idx]=false;
e->setLevel(0);
nInliersStereo++;
}
if(it==2)
e->setRobustKernel(0);
}
nInliers = nInliersMono + nInliersStereo;
nBad = nBadMono + nBadStereo;
if(optimizer.edges().size()<10)
{
cout << "PIOLKF: NOT ENOUGH EDGES" << endl;
break;
}
}
// If not too much tracks, recover not too bad points
if ((nInliers<30) && !bRecInit)
{
nBad=0;
const float chi2MonoOut = 18.f;
const float chi2StereoOut = 24.f;
EdgeMonoOnlyPose* e1;
EdgeStereoOnlyPose* e2;
for(size_t i=0, iend=vnIndexEdgeMono.size(); i<iend; i++)
{
const size_t idx = vnIndexEdgeMono[i];
e1 = vpEdgesMono[i];
e1->computeError();
if (e1->chi2()<chi2MonoOut)
pFrame->mvbOutlier[idx]=false;
else
nBad++;
}
for(size_t i=0, iend=vnIndexEdgeStereo.size(); i<iend; i++)
{
const size_t idx = vnIndexEdgeStereo[i];
e2 = vpEdgesStereo[i];
e2->computeError();
if (e2->chi2()<chi2StereoOut)
pFrame->mvbOutlier[idx]=false;
else
nBad++;
}
}
// Recover optimized pose, velocity and biases
pFrame->SetImuPoseVelocity(Converter::toCvMat(VP->estimate().Rwb),Converter::toCvMat(VP->estimate().twb),Converter::toCvMat(VV->estimate()));
Vector6d b;
b << VG->estimate(), VA->estimate();
pFrame->mImuBias = IMU::Bias(b[3],b[4],b[5],b[0],b[1],b[2]);
// Recover Hessian, marginalize keyFframe states and generate new prior for frame
Eigen::Matrix<double,15,15> H;
H.setZero();
H.block<9,9>(0,0)+= ei->GetHessian2();
H.block<3,3>(9,9) += egr->GetHessian2();
H.block<3,3>(12,12) += ear->GetHessian2();
int tot_in = 0, tot_out = 0;
for(size_t i=0, iend=vpEdgesMono.size(); i<iend; i++)
{
EdgeMonoOnlyPose* e = vpEdgesMono[i];
const size_t idx = vnIndexEdgeMono[i];
if(!pFrame->mvbOutlier[idx])
{
H.block<6,6>(0,0) += e->GetHessian();
tot_in++;
}
else
tot_out++;
}
for(size_t i=0, iend=vpEdgesStereo.size(); i<iend; i++)
{
EdgeStereoOnlyPose* e = vpEdgesStereo[i];
const size_t idx = vnIndexEdgeStereo[i];
if(!pFrame->mvbOutlier[idx])
{
H.block<6,6>(0,0) += e->GetHessian();
tot_in++;
}
else
tot_out++;
}
pFrame->mpcpi = new ConstraintPoseImu(VP->estimate().Rwb,VP->estimate().twb,VV->estimate(),VG->estimate(),VA->estimate(),H);
return nInitialCorrespondences-nBad;
}
int Optimizer::PoseInertialOptimizationLastFrame(Frame *pFrame, bool bRecInit)
{
g2o::SparseOptimizer optimizer;
g2o::BlockSolverX::LinearSolverType * linearSolver;
linearSolver = new g2o::LinearSolverDense<g2o::BlockSolverX::PoseMatrixType>();
g2o::BlockSolverX * solver_ptr = new g2o::BlockSolverX(linearSolver);
g2o::OptimizationAlgorithmGaussNewton* solver = new g2o::OptimizationAlgorithmGaussNewton(solver_ptr);
optimizer.setAlgorithm(solver);
optimizer.setVerbose(false);
int nInitialMonoCorrespondences=0;
int nInitialStereoCorrespondences=0;
int nInitialCorrespondences=0;
// Set Current Frame vertex
VertexPose* VP = new VertexPose(pFrame);
VP->setId(0);
VP->setFixed(false);
optimizer.addVertex(VP);
VertexVelocity* VV = new VertexVelocity(pFrame);
VV->setId(1);
VV->setFixed(false);
optimizer.addVertex(VV);
VertexGyroBias* VG = new VertexGyroBias(pFrame);
VG->setId(2);
VG->setFixed(false);
optimizer.addVertex(VG);
VertexAccBias* VA = new VertexAccBias(pFrame);
VA->setId(3);
VA->setFixed(false);
optimizer.addVertex(VA);
// Set MapPoint vertices
const int N = pFrame->N;
const int Nleft = pFrame->Nleft;
const bool bRight = (Nleft!=-1);
vector<EdgeMonoOnlyPose*> vpEdgesMono;
vector<EdgeStereoOnlyPose*> vpEdgesStereo;
vector<size_t> vnIndexEdgeMono;
vector<size_t> vnIndexEdgeStereo;
vpEdgesMono.reserve(N);
vpEdgesStereo.reserve(N);
vnIndexEdgeMono.reserve(N);
vnIndexEdgeStereo.reserve(N);
const float thHuberMono = sqrt(5.991);
const float thHuberStereo = sqrt(7.815);
{
unique_lock<mutex> lock(MapPoint::mGlobalMutex);
for(int i=0; i<N; i++)
{
MapPoint* pMP = pFrame->mvpMapPoints[i];
if(pMP)
{
cv::KeyPoint kpUn;
// Left monocular observation
if((!bRight && pFrame->mvuRight[i]<0) || i < Nleft)
{
if(i < Nleft) // pair left-right
kpUn = pFrame->mvKeys[i];
else
kpUn = pFrame->mvKeysUn[i];
nInitialMonoCorrespondences++;
pFrame->mvbOutlier[i] = false;
Eigen::Matrix<double,2,1> obs;
obs << kpUn.pt.x, kpUn.pt.y;
EdgeMonoOnlyPose* e = new EdgeMonoOnlyPose(pMP->GetWorldPos(),0);
e->setVertex(0,VP);
e->setMeasurement(obs);
// Add here uncerteinty
const float unc2 = pFrame->mpCamera->uncertainty2(obs);
const float invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave]/unc2;
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberMono);
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vnIndexEdgeMono.push_back(i);
}
// Stereo observation
else if(!bRight)
{
nInitialStereoCorrespondences++;
pFrame->mvbOutlier[i] = false;
kpUn = pFrame->mvKeysUn[i];
const float kp_ur = pFrame->mvuRight[i];
Eigen::Matrix<double,3,1> obs;
obs << kpUn.pt.x, kpUn.pt.y, kp_ur;
EdgeStereoOnlyPose* e = new EdgeStereoOnlyPose(pMP->GetWorldPos());
e->setVertex(0, VP);
e->setMeasurement(obs);
// Add here uncerteinty
const float unc2 = pFrame->mpCamera->uncertainty2(obs.head(2));
const float &invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave]/unc2;
e->setInformation(Eigen::Matrix3d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberStereo);
optimizer.addEdge(e);
vpEdgesStereo.push_back(e);
vnIndexEdgeStereo.push_back(i);
}
// Right monocular observation
if(bRight && i >= Nleft)
{
nInitialMonoCorrespondences++;
pFrame->mvbOutlier[i] = false;
kpUn = pFrame->mvKeysRight[i - Nleft];
Eigen::Matrix<double,2,1> obs;
obs << kpUn.pt.x, kpUn.pt.y;
EdgeMonoOnlyPose* e = new EdgeMonoOnlyPose(pMP->GetWorldPos(),1);
e->setVertex(0,VP);
e->setMeasurement(obs);
// Add here uncerteinty
const float unc2 = pFrame->mpCamera->uncertainty2(obs);
const float invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave]/unc2;
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberMono);
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vnIndexEdgeMono.push_back(i);
}
}
}
}
nInitialCorrespondences = nInitialMonoCorrespondences + nInitialStereoCorrespondences;
// Set Previous Frame Vertex
Frame* pFp = pFrame->mpPrevFrame;
VertexPose* VPk = new VertexPose(pFp);
VPk->setId(4);
VPk->setFixed(false);
optimizer.addVertex(VPk);
VertexVelocity* VVk = new VertexVelocity(pFp);
VVk->setId(5);
VVk->setFixed(false);
optimizer.addVertex(VVk);
VertexGyroBias* VGk = new VertexGyroBias(pFp);
VGk->setId(6);
VGk->setFixed(false);
optimizer.addVertex(VGk);
VertexAccBias* VAk = new VertexAccBias(pFp);
VAk->setId(7);
VAk->setFixed(false);
optimizer.addVertex(VAk);
EdgeInertial* ei = new EdgeInertial(pFrame->mpImuPreintegratedFrame);
ei->setVertex(0, VPk);
ei->setVertex(1, VVk);
ei->setVertex(2, VGk);
ei->setVertex(3, VAk);
ei->setVertex(4, VP);
ei->setVertex(5, VV);
optimizer.addEdge(ei);
EdgeGyroRW* egr = new EdgeGyroRW();
egr->setVertex(0,VGk);
egr->setVertex(1,VG);
cv::Mat cvInfoG = pFrame->mpImuPreintegratedFrame->C.rowRange(9,12).colRange(9,12).inv(cv::DECOMP_SVD);
Eigen::Matrix3d InfoG;
for(int r=0;r<3;r++)
for(int c=0;c<3;c++)
InfoG(r,c)=cvInfoG.at<float>(r,c);
egr->setInformation(InfoG);
optimizer.addEdge(egr);
EdgeAccRW* ear = new EdgeAccRW();
ear->setVertex(0,VAk);
ear->setVertex(1,VA);
cv::Mat cvInfoA = pFrame->mpImuPreintegratedFrame->C.rowRange(12,15).colRange(12,15).inv(cv::DECOMP_SVD);
Eigen::Matrix3d InfoA;
for(int r=0;r<3;r++)
for(int c=0;c<3;c++)
InfoA(r,c)=cvInfoA.at<float>(r,c);
ear->setInformation(InfoA);
optimizer.addEdge(ear);
if (!pFp->mpcpi)
Verbose::PrintMess("pFp->mpcpi does not exist!!!\nPrevious Frame " + to_string(pFp->mnId), Verbose::VERBOSITY_NORMAL);
EdgePriorPoseImu* ep = new EdgePriorPoseImu(pFp->mpcpi);
ep->setVertex(0,VPk);
ep->setVertex(1,VVk);
ep->setVertex(2,VGk);
ep->setVertex(3,VAk);
g2o::RobustKernelHuber* rkp = new g2o::RobustKernelHuber;
ep->setRobustKernel(rkp);
rkp->setDelta(5);
optimizer.addEdge(ep);
// We perform 4 optimizations, after each optimization we classify observation as inlier/outlier
// At the next optimization, outliers are not included, but at the end they can be classified as inliers again.
const float chi2Mono[4]={5.991,5.991,5.991,5.991};
const float chi2Stereo[4]={15.6f,9.8f,7.815f,7.815f};
const int its[4]={10,10,10,10};
int nBad=0;
int nBadMono = 0;
int nBadStereo = 0;
int nInliersMono = 0;
int nInliersStereo = 0;
int nInliers=0;
for(size_t it=0; it<4; it++)
{
optimizer.initializeOptimization(0);
optimizer.optimize(its[it]);
nBad=0;
nBadMono = 0;
nBadStereo = 0;
nInliers=0;
nInliersMono=0;
nInliersStereo=0;
float chi2close = 1.5*chi2Mono[it];
for(size_t i=0, iend=vpEdgesMono.size(); i<iend; i++)
{
EdgeMonoOnlyPose* e = vpEdgesMono[i];
const size_t idx = vnIndexEdgeMono[i];
bool bClose = pFrame->mvpMapPoints[idx]->mTrackDepth<10.f;
if(pFrame->mvbOutlier[idx])
{
e->computeError();
}
const float chi2 = e->chi2();
if((chi2>chi2Mono[it]&&!bClose)||(bClose && chi2>chi2close)||!e->isDepthPositive())
{
pFrame->mvbOutlier[idx]=true;
e->setLevel(1);
nBadMono++;
}
else
{
pFrame->mvbOutlier[idx]=false;
e->setLevel(0);
nInliersMono++;
}
if (it==2)
e->setRobustKernel(0);
}
for(size_t i=0, iend=vpEdgesStereo.size(); i<iend; i++)
{
EdgeStereoOnlyPose* e = vpEdgesStereo[i];
const size_t idx = vnIndexEdgeStereo[i];
if(pFrame->mvbOutlier[idx])
{
e->computeError();
}
const float chi2 = e->chi2();
if(chi2>chi2Stereo[it])
{
pFrame->mvbOutlier[idx]=true;
e->setLevel(1);
nBadStereo++;
}
else
{
pFrame->mvbOutlier[idx]=false;
e->setLevel(0);
nInliersStereo++;
}
if(it==2)
e->setRobustKernel(0);
}
nInliers = nInliersMono + nInliersStereo;
nBad = nBadMono + nBadStereo;
if(optimizer.edges().size()<10)
{
cout << "PIOLF: NOT ENOUGH EDGES" << endl;
break;
}
}
if ((nInliers<30) && !bRecInit)
{
nBad=0;
const float chi2MonoOut = 18.f;
const float chi2StereoOut = 24.f;
EdgeMonoOnlyPose* e1;
EdgeStereoOnlyPose* e2;
for(size_t i=0, iend=vnIndexEdgeMono.size(); i<iend; i++)
{
const size_t idx = vnIndexEdgeMono[i];
e1 = vpEdgesMono[i];
e1->computeError();
if (e1->chi2()<chi2MonoOut)
pFrame->mvbOutlier[idx]=false;
else
nBad++;
}
for(size_t i=0, iend=vnIndexEdgeStereo.size(); i<iend; i++)
{
const size_t idx = vnIndexEdgeStereo[i];
e2 = vpEdgesStereo[i];
e2->computeError();
if (e2->chi2()<chi2StereoOut)
pFrame->mvbOutlier[idx]=false;
else
nBad++;
}
}
nInliers = nInliersMono + nInliersStereo;
// Recover optimized pose, velocity and biases
pFrame->SetImuPoseVelocity(Converter::toCvMat(VP->estimate().Rwb),Converter::toCvMat(VP->estimate().twb),Converter::toCvMat(VV->estimate()));
Vector6d b;
b << VG->estimate(), VA->estimate();
pFrame->mImuBias = IMU::Bias(b[3],b[4],b[5],b[0],b[1],b[2]);
// Recover Hessian, marginalize previous frame states and generate new prior for frame
Eigen::Matrix<double,30,30> H;
H.setZero();
H.block<24,24>(0,0)+= ei->GetHessian();
Eigen::Matrix<double,6,6> Hgr = egr->GetHessian();
H.block<3,3>(9,9) += Hgr.block<3,3>(0,0);
H.block<3,3>(9,24) += Hgr.block<3,3>(0,3);
H.block<3,3>(24,9) += Hgr.block<3,3>(3,0);
H.block<3,3>(24,24) += Hgr.block<3,3>(3,3);
Eigen::Matrix<double,6,6> Har = ear->GetHessian();
H.block<3,3>(12,12) += Har.block<3,3>(0,0);
H.block<3,3>(12,27) += Har.block<3,3>(0,3);
H.block<3,3>(27,12) += Har.block<3,3>(3,0);
H.block<3,3>(27,27) += Har.block<3,3>(3,3);
H.block<15,15>(0,0) += ep->GetHessian();
int tot_in = 0, tot_out = 0;
for(size_t i=0, iend=vpEdgesMono.size(); i<iend; i++)
{
EdgeMonoOnlyPose* e = vpEdgesMono[i];
const size_t idx = vnIndexEdgeMono[i];
if(!pFrame->mvbOutlier[idx])
{
H.block<6,6>(15,15) += e->GetHessian();
tot_in++;
}
else
tot_out++;
}
for(size_t i=0, iend=vpEdgesStereo.size(); i<iend; i++)
{
EdgeStereoOnlyPose* e = vpEdgesStereo[i];
const size_t idx = vnIndexEdgeStereo[i];
if(!pFrame->mvbOutlier[idx])
{
H.block<6,6>(15,15) += e->GetHessian();
tot_in++;
}
else
tot_out++;
}
H = Marginalize(H,0,14);
pFrame->mpcpi = new ConstraintPoseImu(VP->estimate().Rwb,VP->estimate().twb,VV->estimate(),VG->estimate(),VA->estimate(),H.block<15,15>(15,15));
delete pFp->mpcpi;
pFp->mpcpi = NULL;
return nInitialCorrespondences-nBad;
}
void Optimizer::OptimizeEssentialGraph4DoF(Map* pMap, KeyFrame* pLoopKF, KeyFrame* pCurKF,
const LoopClosing::KeyFrameAndPose &NonCorrectedSim3,
const LoopClosing::KeyFrameAndPose &CorrectedSim3,
const map<KeyFrame *, set<KeyFrame *> > &LoopConnections)
{
typedef g2o::BlockSolver< g2o::BlockSolverTraits<4, 4> > BlockSolver_4_4;
// Setup optimizer
g2o::SparseOptimizer optimizer;
optimizer.setVerbose(false);
g2o::BlockSolverX::LinearSolverType * linearSolver =
new g2o::LinearSolverEigen<g2o::BlockSolverX::PoseMatrixType>();
g2o::BlockSolverX * solver_ptr = new g2o::BlockSolverX(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
optimizer.setAlgorithm(solver);
const vector<KeyFrame*> vpKFs = pMap->GetAllKeyFrames();
const vector<MapPoint*> vpMPs = pMap->GetAllMapPoints();
const unsigned int nMaxKFid = pMap->GetMaxKFid();
vector<g2o::Sim3,Eigen::aligned_allocator<g2o::Sim3> > vScw(nMaxKFid+1);
vector<g2o::Sim3,Eigen::aligned_allocator<g2o::Sim3> > vCorrectedSwc(nMaxKFid+1);
vector<VertexPose4DoF*> vpVertices(nMaxKFid+1);
const int minFeat = 100;
// Set KeyFrame vertices
for(size_t i=0, iend=vpKFs.size(); i<iend;i++)
{
KeyFrame* pKF = vpKFs[i];
if(pKF->isBad())
continue;
VertexPose4DoF* V4DoF;
const int nIDi = pKF->mnId;
LoopClosing::KeyFrameAndPose::const_iterator it = CorrectedSim3.find(pKF);
if(it!=CorrectedSim3.end())
{
vScw[nIDi] = it->second;
const g2o::Sim3 Swc = it->second.inverse();
Eigen::Matrix3d Rwc = Swc.rotation().toRotationMatrix();
Eigen::Vector3d twc = Swc.translation();
V4DoF = new VertexPose4DoF(Rwc, twc, pKF);
}
else
{
Eigen::Matrix<double,3,3> Rcw = Converter::toMatrix3d(pKF->GetRotation());
Eigen::Matrix<double,3,1> tcw = Converter::toVector3d(pKF->GetTranslation());
g2o::Sim3 Siw(Rcw,tcw,1.0);
vScw[nIDi] = Siw;
V4DoF = new VertexPose4DoF(pKF);
}
if(pKF==pLoopKF)
V4DoF->setFixed(true);
V4DoF->setId(nIDi);
V4DoF->setMarginalized(false);
optimizer.addVertex(V4DoF);
vpVertices[nIDi]=V4DoF;
}
cout << "PoseGraph4DoF: KFs loaded" << endl;
set<pair<long unsigned int,long unsigned int> > sInsertedEdges;
// Edge used in posegraph has still 6Dof, even if updates of camera poses are just in 4DoF
Eigen::Matrix<double,6,6> matLambda = Eigen::Matrix<double,6,6>::Identity();
matLambda(0,0) = 1e3;
matLambda(1,1) = 1e3;
matLambda(0,0) = 1e3;
// Set Loop edges
Edge4DoF* e_loop;
for(map<KeyFrame *, set<KeyFrame *> >::const_iterator mit = LoopConnections.begin(), mend=LoopConnections.end(); mit!=mend; mit++)
{
KeyFrame* pKF = mit->first;
const long unsigned int nIDi = pKF->mnId;
const set<KeyFrame*> &spConnections = mit->second;
const g2o::Sim3 Siw = vScw[nIDi];
const g2o::Sim3 Swi = Siw.inverse();
for(set<KeyFrame*>::const_iterator sit=spConnections.begin(), send=spConnections.end(); sit!=send; sit++)
{
const long unsigned int nIDj = (*sit)->mnId;
if((nIDi!=pCurKF->mnId || nIDj!=pLoopKF->mnId) && pKF->GetWeight(*sit)<minFeat)
continue;
const g2o::Sim3 Sjw = vScw[nIDj];
const g2o::Sim3 Sij = Siw * Sjw.inverse();
Eigen::Matrix4d Tij;
Tij.block<3,3>(0,0) = Sij.rotation().toRotationMatrix();
Tij.block<3,1>(0,3) = Sij.translation();
Tij(3,3) = 1.;
Edge4DoF* e = new Edge4DoF(Tij);
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDj)));
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
e->information() = matLambda;
e_loop = e;
optimizer.addEdge(e);
sInsertedEdges.insert(make_pair(min(nIDi,nIDj),max(nIDi,nIDj)));
}
}
cout << "PoseGraph4DoF: Loop edges loaded" << endl;
// 1. Set normal edges
for(size_t i=0, iend=vpKFs.size(); i<iend; i++)
{
KeyFrame* pKF = vpKFs[i];
const int nIDi = pKF->mnId;
g2o::Sim3 Siw;
// Use noncorrected poses for posegraph edges
LoopClosing::KeyFrameAndPose::const_iterator iti = NonCorrectedSim3.find(pKF);
if(iti!=NonCorrectedSim3.end())
Siw = iti->second;
else
Siw = vScw[nIDi];
// 1.1.0 Spanning tree edge
KeyFrame* pParentKF = static_cast<KeyFrame*>(NULL);
if(pParentKF)
{
int nIDj = pParentKF->mnId;
g2o::Sim3 Swj;
LoopClosing::KeyFrameAndPose::const_iterator itj = NonCorrectedSim3.find(pParentKF);
if(itj!=NonCorrectedSim3.end())
Swj = (itj->second).inverse();
else
Swj = vScw[nIDj].inverse();
g2o::Sim3 Sij = Siw * Swj;
Eigen::Matrix4d Tij;
Tij.block<3,3>(0,0) = Sij.rotation().toRotationMatrix();
Tij.block<3,1>(0,3) = Sij.translation();
Tij(3,3)=1.;
Edge4DoF* e = new Edge4DoF(Tij);
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDj)));
e->information() = matLambda;
optimizer.addEdge(e);
}
// 1.1.1 Inertial edges
KeyFrame* prevKF = pKF->mPrevKF;
if(prevKF)
{
int nIDj = prevKF->mnId;
g2o::Sim3 Swj;
LoopClosing::KeyFrameAndPose::const_iterator itj = NonCorrectedSim3.find(prevKF);
if(itj!=NonCorrectedSim3.end())
Swj = (itj->second).inverse();
else
Swj = vScw[nIDj].inverse();
g2o::Sim3 Sij = Siw * Swj;
Eigen::Matrix4d Tij;
Tij.block<3,3>(0,0) = Sij.rotation().toRotationMatrix();
Tij.block<3,1>(0,3) = Sij.translation();
Tij(3,3)=1.;
Edge4DoF* e = new Edge4DoF(Tij);
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDj)));
e->information() = matLambda;
optimizer.addEdge(e);
}
// 1.2 Loop edges
const set<KeyFrame*> sLoopEdges = pKF->GetLoopEdges();
for(set<KeyFrame*>::const_iterator sit=sLoopEdges.begin(), send=sLoopEdges.end(); sit!=send; sit++)
{
KeyFrame* pLKF = *sit;
if(pLKF->mnId<pKF->mnId)
{
g2o::Sim3 Swl;
LoopClosing::KeyFrameAndPose::const_iterator itl = NonCorrectedSim3.find(pLKF);
if(itl!=NonCorrectedSim3.end())
Swl = itl->second.inverse();
else
Swl = vScw[pLKF->mnId].inverse();
g2o::Sim3 Sil = Siw * Swl;
Eigen::Matrix4d Til;
Til.block<3,3>(0,0) = Sil.rotation().toRotationMatrix();
Til.block<3,1>(0,3) = Sil.translation();
Til(3,3) = 1.;
Edge4DoF* e = new Edge4DoF(Til);
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pLKF->mnId)));
e->information() = matLambda;
optimizer.addEdge(e);
}
}
// 1.3 Covisibility graph edges
const vector<KeyFrame*> vpConnectedKFs = pKF->GetCovisiblesByWeight(minFeat);
for(vector<KeyFrame*>::const_iterator vit=vpConnectedKFs.begin(); vit!=vpConnectedKFs.end(); vit++)
{
KeyFrame* pKFn = *vit;
if(pKFn && pKFn!=pParentKF && pKFn!=prevKF && pKFn!=pKF->mNextKF && !pKF->hasChild(pKFn) && !sLoopEdges.count(pKFn))
{
if(!pKFn->isBad() && pKFn->mnId<pKF->mnId)
{
if(sInsertedEdges.count(make_pair(min(pKF->mnId,pKFn->mnId),max(pKF->mnId,pKFn->mnId))))
continue;
g2o::Sim3 Swn;
LoopClosing::KeyFrameAndPose::const_iterator itn = NonCorrectedSim3.find(pKFn);
if(itn!=NonCorrectedSim3.end())
Swn = itn->second.inverse();
else
Swn = vScw[pKFn->mnId].inverse();
g2o::Sim3 Sin = Siw * Swn;
Eigen::Matrix4d Tin;
Tin.block<3,3>(0,0) = Sin.rotation().toRotationMatrix();
Tin.block<3,1>(0,3) = Sin.translation();
Tin(3,3) = 1.;
Edge4DoF* e = new Edge4DoF(Tin);
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFn->mnId)));
e->information() = matLambda;
optimizer.addEdge(e);
}
}
}
}
cout << "PoseGraph4DoF: Covisibility edges loaded" << endl;
optimizer.initializeOptimization();
optimizer.computeActiveErrors();
optimizer.optimize(20);
unique_lock<mutex> lock(pMap->mMutexMapUpdate);
// SE3 Pose Recovering. Sim3:[sR t;0 1] -> SE3:[R t/s;0 1]
for(size_t i=0;i<vpKFs.size();i++)
{
KeyFrame* pKFi = vpKFs[i];
const int nIDi = pKFi->mnId;
VertexPose4DoF* Vi = static_cast<VertexPose4DoF*>(optimizer.vertex(nIDi));
Eigen::Matrix3d Ri = Vi->estimate().Rcw[0];
Eigen::Vector3d ti = Vi->estimate().tcw[0];
g2o::Sim3 CorrectedSiw = g2o::Sim3(Ri,ti,1.);
vCorrectedSwc[nIDi]=CorrectedSiw.inverse();
cv::Mat Tiw = Converter::toCvSE3(Ri,ti);
pKFi->SetPose(Tiw);
}
// Correct points. Transform to "non-optimized" reference keyframe pose and transform back with optimized pose
for(size_t i=0, iend=vpMPs.size(); i<iend; i++)
{
MapPoint* pMP = vpMPs[i];
if(pMP->isBad())
continue;
int nIDr;
KeyFrame* pRefKF = pMP->GetReferenceKeyFrame();
nIDr = pRefKF->mnId;
g2o::Sim3 Srw = vScw[nIDr];
g2o::Sim3 correctedSwr = vCorrectedSwc[nIDr];
cv::Mat P3Dw = pMP->GetWorldPos();
Eigen::Matrix<double,3,1> eigP3Dw = Converter::toVector3d(P3Dw);
Eigen::Matrix<double,3,1> eigCorrectedP3Dw = correctedSwr.map(Srw.map(eigP3Dw));
cv::Mat cvCorrectedP3Dw = Converter::toCvMat(eigCorrectedP3Dw);
pMP->SetWorldPos(cvCorrectedP3Dw);
pMP->UpdateNormalAndDepth();
}
pMap->IncreaseChangeIndex();
}
} //namespace ORB_SLAM