/** * This file is part of ORB-SLAM3 * * Copyright (C) 2017-2020 Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M.M. Montiel and Juan D. Tardós, University of Zaragoza. * Copyright (C) 2014-2016 Raúl Mur-Artal, José M.M. Montiel and Juan D. Tardós, University of Zaragoza. * * ORB-SLAM3 is free software: you can redistribute it and/or modify it under the terms of the GNU General Public * License as published by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * ORB-SLAM3 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even * the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with ORB-SLAM3. * If not, see . */ /****************************************************************************** * Author: Steffen Urban * * Contact: urbste@gmail.com * * License: Copyright (c) 2016 Steffen Urban, ANU. All rights reserved. * * * * Redistribution and use in source and binary forms, with or without * * modification, are permitted provided that the following conditions * * are met: * * * Redistributions of source code must retain the above copyright * * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * * notice, this list of conditions and the following disclaimer in the * * documentation and/or other materials provided with the distribution. * * * Neither the name of ANU nor the names of its contributors may be * * used to endorse or promote products derived from this software without * * specific prior written permission. * * * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"* * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * * ARE DISCLAIMED. IN NO EVENT SHALL ANU OR THE CONTRIBUTORS BE LIABLE * * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * * SUCH DAMAGE. * ******************************************************************************/ #include "MLPnPsolver.h" #include namespace ORB_SLAM3 { /** * @brief MLPnP 构造函数 * * @param[in] F 输入帧的数据 * @param[in] vpMapPointMatches 待匹配的特征点 * @param[in] mnInliersi 内点的个数 * @param[in] mnIterations Ransac迭代次数 * @param[in] mnBestInliers 最佳内点数 * @param[in] N 所有2D点的个数 * @param[in] mpCamera 相机模型,利用该变量对3D点进行投影 */ MLPnPsolver::MLPnPsolver(const Frame &F, const vector &vpMapPointMatches): mnInliersi(0), // 内点的个数 mnIterations(0), // Ransac迭代次数 mnBestInliers(0), // 最佳内点数 N(0), // 所有2D点的个数 mpCamera(F.mpCamera) // 相机模型,利用该变量对3D点进行投影 { mvpMapPointMatches = vpMapPointMatches; // 待匹配的特征点,是当前帧和候选关键帧用BoW进行快速匹配的结果 mvBearingVecs.reserve(F.mvpMapPoints.size()); // ? 初始化3D点的单位向量 mvP2D.reserve(F.mvpMapPoints.size()); // 初始化3D点的投影点 mvSigma2.reserve(F.mvpMapPoints.size()); // 初始化卡方检验中的sigma值 mvP3Dw.reserve(F.mvpMapPoints.size()); // 初始化3D点坐标 mvKeyPointIndices.reserve(F.mvpMapPoints.size()); // 初始化3D点的索引值 mvAllIndices.reserve(F.mvpMapPoints.size()); // 初始化所有索引值 // 一些必要的初始化操作 int idx = 0; for(size_t i = 0, iend = mvpMapPointMatches.size(); i < iend; i++){ MapPoint* pMP = vpMapPointMatches[i]; // 如果pMP存在,则接下来初始化一些参数,否则什么都不做 if(pMP){ // 判断是否是坏点 if(!pMP -> isBad()){ // 如果记录的点个数超过总数,则不做任何事情,否则继续记录 if(i >= F.mvKeysUn.size()) continue; const cv::KeyPoint &kp = F.mvKeysUn[i]; // 保存3D点的投影点 mvP2D.push_back(kp.pt); // 保存卡方检验中的sigma值 mvSigma2.push_back(F.mvLevelSigma2[kp.octave]); //Bearing vector should be normalized // 特征点投影,并计算单位向量 cv::Point3f cv_br = mpCamera->unproject(kp.pt); cv_br /= cv_br.z; bearingVector_t br(cv_br.x,cv_br.y,cv_br.z); mvBearingVecs.push_back(br); //3D coordinates // 获取当前特征点的3D坐标 cv::Mat cv_pos = pMP -> GetWorldPos(); point_t pos(cv_pos.at(0),cv_pos.at(1),cv_pos.at(2)); mvP3Dw.push_back(pos); // 记录当前特征点的索引值,挑选后的 mvKeyPointIndices.push_back(i); // 记录所有特征点的索引值 mvAllIndices.push_back(idx); idx++; } } } SetRansacParameters(); } //RANSAC methods /** * @brief MLPnP迭代计算相机位姿 * * @param[in] nIterations 迭代次数 * @param[in] bNoMore 达到最大迭代次数的标志 * @param[in] vbInliers 内点的标记 * @param[in] nInliers 总共内点数 * @return cv::Mat 计算出来的位姿 */ cv::Mat MLPnPsolver::iterate(int nIterations, bool &bNoMore, vector &vbInliers, int &nInliers){ bNoMore = false; // 已经达到最大迭代次数的标志 vbInliers.clear(); // 清除保存判断是否是内点的容器 nInliers=0; // 当前次迭代时的内点数 // N为所有2D点的个数, mRansacMinInliers为正常退出RANSAC迭代过程中最少的inlier数 // Step 1: 判断,如果2D点个数不足以启动RANSAC迭代过程的最小下限,则退出 if(N vAvailableIndices; // 当前的迭代次数id int nCurrentIterations = 0; // Step 2: 正常迭代计算进行相机位姿估计,如果满足效果上限,直接返回最佳估计结果,否则就继续利用最小集(6个点)估计位姿 // 进行迭代的条件: // 条件1: 历史进行的迭代次数少于最大迭代值 // 条件2: 当前进行的迭代次数少于当前函数给定的最大迭代值 while(mnIterations indexes(mRansacMinSet); // Get min set of points // 选取最小集,从vAvailableIndices中选取mRansacMinSet个点进行操作,这里应该是6 for(short i = 0; i < mRansacMinSet; ++i) { // 在所有备选点中随机抽取一个,通过随机抽取索引数组vAvailableIndices的索引[randi]来实现 int randi = DUtils::Random::RandomInt(0, vAvailableIndices.size()-1); // vAvailableIndices[randi]才是备选点真正的索引值,randi是索引数组的索引值,不要搞混了 int idx = vAvailableIndices[randi]; bearingVecs[i] = mvBearingVecs[idx]; p3DS[i] = mvP3Dw[idx]; indexes[i] = i; // 把抽取出来的点从所有备选点数组里删除掉,概率论中不放回的操作 vAvailableIndices[randi] = vAvailableIndices.back(); vAvailableIndices.pop_back(); } // 选取最小集 //By the moment, we are using MLPnP without covariance info // 目前为止,还没有使用协方差的信息,所以这里生成一个size=1的值为0的协方差矩阵 // |0 0 0| // covs[0] = |0 0 0| // |0 0 0| // ? 为什么不用协方差的SVD分解,计算耗时还是效果不明显? cov3_mats_t covs(1); //Result transformation_t result; // Compute camera pose // 相机位姿估计,MLPnP最主要的操作在这里 computePose(bearingVecs,p3DS,covs,indexes,result); //Save result // 论文中12个待求值赋值保存在mRi中,每个求解器都有保存各自的计算结果 mRi[0][0] = result(0,0); mRi[0][1] = result(0,1); mRi[0][2] = result(0,2); mRi[1][0] = result(1,0); mRi[1][1] = result(1,1); mRi[1][2] = result(1,2); mRi[2][0] = result(2,0); mRi[2][1] = result(2,1); mRi[2][2] = result(2,2); mti[0] = result(0,3);mti[1] = result(1,3);mti[2] = result(2,3); // Check inliers // 卡方检验内点,和EPnP基本类似 CheckInliers(); if(mnInliersi>=mRansacMinInliers) { // If it is the best solution so far, save it // 如果该结果是目前内点数最多的,说明该结果是目前最好的,保存起来 if(mnInliersi>mnBestInliers) { mvbBestInliers = mvbInliersi; // 每个点是否是内点的标记 mnBestInliers = mnInliersi; // 内点个数 cv::Mat Rcw(3,3,CV_64F,mRi); cv::Mat tcw(3,1,CV_64F,mti); Rcw.convertTo(Rcw,CV_32F); tcw.convertTo(tcw,CV_32F); mBestTcw = cv::Mat::eye(4,4,CV_32F); Rcw.copyTo(mBestTcw.rowRange(0,3).colRange(0,3)); tcw.copyTo(mBestTcw.rowRange(0,3).col(3)); } // 用新的内点对相机位姿精求解,提高位姿估计精度,这里如果有足够内点的话,函数直接返回该值,不再继续计算 if(Refine()) { nInliers = mnRefinedInliers; vbInliers = vector(mvpMapPointMatches.size(),false); for(int i=0; i=mRansacMaxIts) { bNoMore=true; if(mnBestInliers>=mRansacMinInliers) { nInliers=mnBestInliers; vbInliers = vector(mvpMapPointMatches.size(),false); for(int i=0; i 5 * @param[in] epsilon 理论最少内点个数,这里是按照总数的比例计算,所以epsilon是比例,默认是0.4 * @param[in] th2 卡方检验阈值 * */ void MLPnPsolver::SetRansacParameters(double probability, int minInliers, int maxIterations, int minSet, float epsilon, float th2){ mRansacProb = probability; // 模型最大概率值,默认0.9 mRansacMinInliers = minInliers; // 内点的最小阈值,默认8 mRansacMaxIts = maxIterations; // 最大迭代次数,默认300 mRansacEpsilon = epsilon; // 理论最少内点个数,这里是按照总数的比例计算,所以epsilon是比例,默认是0.4 mRansacMinSet = minSet; // 每次采样六个点,即最小集应该设置为6,论文里面写着I > 5 N = mvP2D.size(); // number of correspondences mvbInliersi.resize(N); // 是否是内点的标记位 // Adjust Parameters according to number of correspondences // 计算最少个数点,选择(给定内点数, 最小集, 理论内点数)的最小值 int nMinInliers = N*mRansacEpsilon; if(nMinInliersproject(P3Dc); float distX = P2D.x-uv.x; float distY = P2D.y-uv.y; float error2 = distX*distX+distY*distY; if(error2 vIndices; vIndices.reserve(mvbBestInliers.size()); for(size_t i=0; i indexes; for(size_t i=0; imRansacMinInliers) { cv::Mat Rcw(3,3,CV_64F,mRi); cv::Mat tcw(3,1,CV_64F,mti); Rcw.convertTo(Rcw,CV_32F); tcw.convertTo(tcw,CV_32F); mRefinedTcw = cv::Mat::eye(4,4,CV_32F); Rcw.copyTo(mRefinedTcw.rowRange(0,3).colRange(0,3)); tcw.copyTo(mRefinedTcw.rowRange(0,3).col(3)); return true; } return false; } //MLPnP methods /** * @brief MLPnP相机位姿估计 * * @param[in] f 单位向量 * @param[in] p 点的3D坐标 * @param[in] covMats 协方差矩阵 * @param[in] indices 对应点的索引值 * @param[in] result 相机位姿估计结果 * */ void MLPnPsolver::computePose(const bearingVectors_t &f, const points_t &p, const cov3_mats_t &covMats, const std::vector &indices, transformation_t &result) { // Step 1: 判断点的数量是否满足计算条件,否则直接报错 // 因为每个观测值会产生2个残差,所以至少需要6个点来计算公式12,所以要检验当前的点个数是否满足大于5的条件 size_t numberCorrespondences = indices.size(); // 当numberCorrespondences不满足>5的条件时会发生错误(如果小于6根本进不来) assert(numberCorrespondences > 5); // ? 用来标记是否满足平面条件,(平面情况下矩阵有相关性,秩为2,矩阵形式可以简化,但需要跟多的约束求解) bool planar = false; // compute the nullspace of all vectors // compute the nullspace of all vectors // step 2: 计算点的单位(方向向量)向量的零空间 // 利用公式7 Jvr(v) = null(v^T) = [r s] // 给每个向量都开辟一个零空间,所以数量相等 std::vector nullspaces(numberCorrespondences); // 存储世界坐标系下空间点的矩阵,3行N列,N是numberCorrespondences,即点的总个数 // |x1, x2, xn| // points3 = |y1, y2, ..., yn| // |z1, z2, zn| Eigen::MatrixXd points3(3, numberCorrespondences); // 空间点向量 // |xi| // points3v = |yi| // |zi| points_t points3v(numberCorrespondences); // 单个空间点的齐次坐标矩阵,TODO:没用到啊 // |xi| // points4v = |yi| // |zi| // |1 | points4_t points4v(numberCorrespondences); // numberCorrespondences不等于所有点,而是提取出来的内点的数量,其作为连续索引值对indices进行索引 // 因为内点的索引并非连续,想要方便遍历,必须用连续的索引值, // 所以就用了indices[i]嵌套形式,i表示内点数量numberCorrespondences范围内的连续形式 // indices里面保存的是不连续的内点的索引值 for (size_t i = 0; i < numberCorrespondences; i++) { // 当前空间点的单位向量,indices[i]是当前点坐标和向量的索引值, bearingVector_t f_current = f[indices[i]]; // 取出当前点记录到 points3 空间点矩阵里 points3.col(i) = p[indices[i]]; // nullspace of right vector // 求解方程 Jvr(v) = null(v^T) = [r s] // A = U * S * V^T // 这里只求解了V的完全解,没有求解U Eigen::JacobiSVD svd_f(f_current.transpose(), Eigen::ComputeFullV); // 取特征值最小的那两个对应的2个特征向量 // |r1 s1| // nullspaces = |r2 s2| // |r3 s3| nullspaces[i] = svd_f.matrixV().block(0, 1, 3, 2); // 取出当前点记录到 points3v 空间点向量 points3v[i] = p[indices[i]]; } // Step 3: 通过计算S的秩来判断是在平面情况还是在正常情况 // 令S = M * M^T,其中M = [p1,p2,...,pi],即 points3 空间点矩阵 ////////////////////////////////////// // 1. test if we have a planar scene // 在平面条件下,会产生4个解,因此需要另外判断和解决平面条件下的问题 ////////////////////////////////////// // 令S = M * M^T,其中M = [p1,p2,...,pi],即 points3 空间点矩阵 // 如果矩阵S的秩为3且最小特征值不接近于0,则不属于平面条件,否则需要解决一下 Eigen::Matrix3d planarTest = points3 * points3.transpose(); Eigen::FullPivHouseholderQR rankTest(planarTest); //int r, c; //double minEigenVal = abs(eigen_solver.eigenvalues().real().minCoeff(&r, &c)); // 特征旋转矩阵,用在平面条件下的计算 Eigen::Matrix3d eigenRot; eigenRot.setIdentity(); // if yes -> transform points to new eigen frame //if (minEigenVal < 1e-3 || minEigenVal == 0.0) //rankTest.setThreshold(1e-10); // 当矩阵S的秩为2时,属于平面条件, if (rankTest.rank() == 2) { planar = true; // self adjoint is faster and more accurate than general eigen solvers // also has closed form solution for 3x3 self-adjoint matrices // in addition this solver sorts the eigenvalues in increasing order // 计算矩阵S的特征值和特征向量 Eigen::SelfAdjointEigenSolver eigen_solver(planarTest); // 得到QR分解的结果 eigenRot = eigen_solver.eigenvectors().real(); // 把eigenRot变成其转置矩阵,即论文公式20的系数 R_S^T eigenRot.transposeInPlace(); // 公式20: pi' = R_S^T * pi for (size_t i = 0; i < numberCorrespondences; i++) points3.col(i) = eigenRot * points3.col(i); } ////////////////////////////////////// // 2. stochastic model ////////////////////////////////////// // Step 4: 计算随机模型中的协方差矩阵 // 但是作者并没有用到协方差信息 Eigen::SparseMatrix P(2 * numberCorrespondences, 2 * numberCorrespondences); bool use_cov = false; P.setIdentity(); // standard // if we do have covariance information // -> fill covariance matrix // 如果协方差矩阵的个数等于空间点的个数,说明前面已经计算好了,表示有协方差信息 // 目前版本是没有用到协方差信息的,所以调用本函数前就把协方差矩阵个数置为1了 if (covMats.size() == numberCorrespondences) { use_cov = true; int l = 0; for (size_t i = 0; i < numberCorrespondences; ++i) { // invert matrix cov2_mat_t temp = nullspaces[i].transpose() * covMats[i] * nullspaces[i]; temp = temp.inverse().eval(); P.coeffRef(l, l) = temp(0, 0); P.coeffRef(l, l + 1) = temp(0, 1); P.coeffRef(l + 1, l) = temp(1, 0); P.coeffRef(l + 1, l + 1) = temp(1, 1); l += 2; } } // Step 5: 构造矩阵A来完成线性方程组的构建 ////////////////////////////////////// // 3. fill the design matrix A ////////////////////////////////////// // 公式12,设矩阵A,则有 Au = 0 // u = [r11, r12, r13, r21, r22, r23, r31, r32, r33, t1, t2, t3]^T // 对单位向量v的2个零空间向量做微分,所以有[dr, ds]^T,一个点有2行,N个点就有2*N行 const int rowsA = 2 * numberCorrespondences; // 对应上面u的列数,因为旋转矩阵有9个元素,加上平移矩阵3个元素,总共12个元素 int colsA = 12; Eigen::MatrixXd A; // 如果世界点位于分别跨2个坐标轴的平面上,即所有世界点的一个元素是常数的时候,可简单地忽略矩阵A中对应的列 // 而且这不影响问题的结构本身,所以在计算公式20: pi' = R_S^T * pi的时候,忽略了r11,r21,r31,即第一列 // 对应的u只有9个元素 u = [r12, r13, r22, r23, r32, r33, t1, t2, t3]^T 所以A的列个数是9个 if (planar) { colsA = 9; A = Eigen::MatrixXd(rowsA, 9); } else A = Eigen::MatrixXd(rowsA, 12); A.setZero(); // fill design matrix // 构造矩阵A,分平面和非平面2种情况 if (planar) { for (size_t i = 0; i < numberCorrespondences; ++i) { // 列表示当前点的坐标 point_t pt3_current = points3.col(i); // r12 r12 的系数 r1*py 和 s1*py A(2 * i, 0) = nullspaces[i](0, 0) * pt3_current[1]; A(2 * i + 1, 0) = nullspaces[i](0, 1) * pt3_current[1]; // r13 r13 的系数 r1*pz 和 s1*pz A(2 * i, 1) = nullspaces[i](0, 0) * pt3_current[2]; A(2 * i + 1, 1) = nullspaces[i](0, 1) * pt3_current[2]; // r22 r22 的系数 r2*py 和 s2*py A(2 * i, 2) = nullspaces[i](1, 0) * pt3_current[1]; A(2 * i + 1, 2) = nullspaces[i](1, 1) * pt3_current[1]; // r23 r23 的系数 r2*pz 和 s2*pz A(2 * i, 3) = nullspaces[i](1, 0) * pt3_current[2]; A(2 * i + 1, 3) = nullspaces[i](1, 1) * pt3_current[2]; // r32 r32 的系数 r3*py 和 s3*py A(2 * i, 4) = nullspaces[i](2, 0) * pt3_current[1]; A(2 * i + 1, 4) = nullspaces[i](2, 1) * pt3_current[1]; // r33 r33 的系数 r3*pz 和 s3*pz A(2 * i, 5) = nullspaces[i](2, 0) * pt3_current[2]; A(2 * i + 1, 5) = nullspaces[i](2, 1) * pt3_current[2]; // t1 t1 的系数 r1 和 s1 A(2 * i, 6) = nullspaces[i](0, 0); A(2 * i + 1, 6) = nullspaces[i](0, 1); // t2 t2 的系数 r2 和 s2 A(2 * i, 7) = nullspaces[i](1, 0); A(2 * i + 1, 7) = nullspaces[i](1, 1); // t3 t3 的系数 r3 和 s3 A(2 * i, 8) = nullspaces[i](2, 0); A(2 * i + 1, 8) = nullspaces[i](2, 1); } } else { for (size_t i = 0; i < numberCorrespondences; ++i) { point_t pt3_current = points3.col(i); // 不是平面的情况下,三个列向量都保留求解 // r11 A(2 * i, 0) = nullspaces[i](0, 0) * pt3_current[0]; A(2 * i + 1, 0) = nullspaces[i](0, 1) * pt3_current[0]; // r12 A(2 * i, 1) = nullspaces[i](0, 0) * pt3_current[1]; A(2 * i + 1, 1) = nullspaces[i](0, 1) * pt3_current[1]; // r13 A(2 * i, 2) = nullspaces[i](0, 0) * pt3_current[2]; A(2 * i + 1, 2) = nullspaces[i](0, 1) * pt3_current[2]; // r21 A(2 * i, 3) = nullspaces[i](1, 0) * pt3_current[0]; A(2 * i + 1, 3) = nullspaces[i](1, 1) * pt3_current[0]; // r22 A(2 * i, 4) = nullspaces[i](1, 0) * pt3_current[1]; A(2 * i + 1, 4) = nullspaces[i](1, 1) * pt3_current[1]; // r23 A(2 * i, 5) = nullspaces[i](1, 0) * pt3_current[2]; A(2 * i + 1, 5) = nullspaces[i](1, 1) * pt3_current[2]; // r31 A(2 * i, 6) = nullspaces[i](2, 0) * pt3_current[0]; A(2 * i + 1, 6) = nullspaces[i](2, 1) * pt3_current[0]; // r32 A(2 * i, 7) = nullspaces[i](2, 0) * pt3_current[1]; A(2 * i + 1, 7) = nullspaces[i](2, 1) * pt3_current[1]; // r33 A(2 * i, 8) = nullspaces[i](2, 0) * pt3_current[2]; A(2 * i + 1, 8) = nullspaces[i](2, 1) * pt3_current[2]; // t1 A(2 * i, 9) = nullspaces[i](0, 0); A(2 * i + 1, 9) = nullspaces[i](0, 1); // t2 A(2 * i, 10) = nullspaces[i](1, 0); A(2 * i + 1, 10) = nullspaces[i](1, 1); // t3 A(2 * i, 11) = nullspaces[i](2, 0); A(2 * i + 1, 11) = nullspaces[i](2, 1); } } // Step 6: 计算线性方程组的最小二乘解 ////////////////////////////////////// // 4. solve least squares ////////////////////////////////////// // 求解方程的最小二乘解 Eigen::MatrixXd AtPA; if (use_cov) // 有协方差信息的情况下,一般方程是 A^T*P*A*u = N*u = 0 AtPA = A.transpose() * P * A; // setting up the full normal equations seems to be unstable else // 无协方差信息的情况下,一般方程是 A^T*A*u = N*u = 0 AtPA = A.transpose() * A; // SVD分解,满秩求解V Eigen::JacobiSVD svd_A(AtPA, Eigen::ComputeFullV); // 解就是对应奇异值最小的列向量,即最后一列 Eigen::MatrixXd result1 = svd_A.matrixV().col(colsA - 1); // Step 7: 根据平面和非平面情况下选择最终位姿解 //////////////////////////////// // now we treat the results differently, // depending on the scene (planar or not) //////////////////////////////// //transformation_t T_final; rotation_t Rout; translation_t tout; if (planar) // planar case { rotation_t tmp; // until now, we only estimated // row one and two of the transposed rotation matrix // 暂时只估计了旋转矩阵的第1行和第2行,先记录到tmp中 tmp << 0.0, result1(0, 0), result1(1, 0), 0.0, result1(2, 0), result1(3, 0), 0.0, result1(4, 0), result1(5, 0); //double scale = 1 / sqrt(tmp.col(1).norm() * tmp.col(2).norm()); // row 3 // 第3行等于第1行和第2行的叉积(这里应该是列,后面转置后成了行) tmp.col(0) = tmp.col(1).cross(tmp.col(2)); // 原来是: // |r11 r12 r13| // tmp = |r21 r22 r23| // |r31 r32 r33| // 转置变成: // |r11 r21 r31| // tmp = |r12 r22 r32| // |r13 r23 r33| tmp.transposeInPlace(); double scale = 1.0 / std::sqrt(std::abs(tmp.col(1).norm() * tmp.col(2).norm())); // find best rotation matrix in frobenius sense // 利用Frobenious范数计算最佳的旋转矩阵,利用公式(19), R = U_R*V_R^T // 本质上,采用矩阵,将其元素平方,将它们加在一起并对结果平方根。计算得出的数字是矩阵的Frobenious范数 // 由于列向量是单列矩阵,行向量是单行矩阵,所以这些矩阵的Frobenius范数等于向量的长度(L) Eigen::JacobiSVD svd_R_frob(tmp, Eigen::ComputeFullU | Eigen::ComputeFullV); rotation_t Rout1 = svd_R_frob.matrixU() * svd_R_frob.matrixV().transpose(); // test if we found a good rotation matrix // 如果估计出来的旋转矩阵的行列式小于0,则乘以-1(EPnP也是同样的操作) if (Rout1.determinant() < 0) Rout1 *= -1.0; // rotate this matrix back using the eigen frame // ? 因为是在平面情况下计算的,估计出来的旋转矩阵是要做一个转换的,根据公式(21),R = Rs*R // 其中,Rs表示特征向量的旋转矩阵 // 注意eigenRot之前已经转置过了transposeInPlace(),所以这里Rout1在之前也转置了,即tmp.transposeInPlace() Rout1 = eigenRot.transpose() * Rout1; // 估计最终的平移矩阵,带尺度信息的,根据公式(17),t = t^ / three-party(||r1||*||r2||*||r3||) // 这里是 t = t^ / sqrt(||r1||*||r2||) translation_t t = scale * translation_t(result1(6, 0), result1(7, 0), result1(8, 0)); // 把之前转置过来的矩阵再转回去,变成公式里面的形态: // |r11 r12 r13| // Rout1 = |r21 r22 r23| // |r31 r32 r33| Rout1.transposeInPlace(); // 这里乘以-1是为了计算4种结果 Rout1 *= -1; if (Rout1.determinant() < 0.0) Rout1.col(2) *= -1; // now we have to find the best out of 4 combinations // |r11 r12 r13| // R1 = |r21 r22 r23| // |r31 r32 r33| // |-r11 -r12 -r13| // R2 = |-r21 -r22 -r23| // |-r31 -r32 -r33| rotation_t R1, R2; R1.col(0) = Rout1.col(0); R1.col(1) = Rout1.col(1); R1.col(2) = Rout1.col(2); R2.col(0) = -Rout1.col(0); R2.col(1) = -Rout1.col(1); R2.col(2) = Rout1.col(2); // |R1 t| // Ts = |R1 -t| // |R2 t| // |R2 -t| vector> Ts(4); Ts[0].block<3, 3>(0, 0) = R1; Ts[0].block<3, 1>(0, 3) = t; Ts[1].block<3, 3>(0, 0) = R1; Ts[1].block<3, 1>(0, 3) = -t; Ts[2].block<3, 3>(0, 0) = R2; Ts[2].block<3, 1>(0, 3) = t; Ts[3].block<3, 3>(0, 0) = R2; Ts[3].block<3, 1>(0, 3) = -t; // 遍历4种解 vector normVal(4); for (int i = 0; i < 4; ++i) { point_t reproPt; double norms = 0.0; // 计算世界点p到切线空间v的投影的残差,对应最小的就是最好的解 // 用前6个点来验证4种解的残差 for (int p = 0; p < 6; ++p) { // 重投影的向量 reproPt = Ts[i].block<3, 3>(0, 0) * points3v[p] + Ts[i].block<3, 1>(0, 3); // 变成单位向量 reproPt = reproPt / reproPt.norm(); // f[indices[p]] 是当前空间点的单位向量 // 利用欧氏距离来表示重投影向量(观测)和当前空间点向量(实际)的偏差 // 即两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的欧氏距离 norms += (1.0 - reproPt.transpose() * f[indices[p]]); } // 统计每种解的误差和,第i个解的误差和放入对应的变量normVal[i] normVal[i] = norms; } // 搜索容器中的最小值,并返回该值对应的指针 std::vector::iterator findMinRepro = std::min_element(std::begin(normVal), std::end(normVal)); // 计算容器头指针到最小值指针的距离,即可作为该最小值的索引值 int idx = std::distance(std::begin(normVal), findMinRepro); // 得到最终相机位姿估计的结果 Rout = Ts[idx].block<3, 3>(0, 0); tout = Ts[idx].block<3, 1>(0, 3); } else // non-planar { rotation_t tmp; // 从AtPA的SVD分解中得到旋转矩阵,先存下来 // 注意这里的顺序是和公式16不同的 // |r11 r21 r31| // tmp = |r12 r22 r32| // |r13 r23 r33| tmp << result1(0, 0), result1(3, 0), result1(6, 0), result1(1, 0), result1(4, 0), result1(7, 0), result1(2, 0), result1(5, 0), result1(8, 0); // get the scale // 计算尺度,根据公式(17),t = t^ / three-party(||r1||*||r2||*||r3||) double scale = 1.0 / std::pow(std::abs(tmp.col(0).norm() * tmp.col(1).norm() * tmp.col(2).norm()), 1.0 / 3.0); //double scale = 1.0 / std::sqrt(std::abs(tmp.col(0).norm() * tmp.col(1).norm())); // find best rotation matrix in frobenius sense // 利用Frobenious范数计算最佳的旋转矩阵,利用公式(19), R = U_R*V_R^T Eigen::JacobiSVD svd_R_frob(tmp, Eigen::ComputeFullU | Eigen::ComputeFullV); Rout = svd_R_frob.matrixU() * svd_R_frob.matrixV().transpose(); // test if we found a good rotation matrix // 如果估计出来的旋转矩阵的行列式小于0,则乘以-1 if (Rout.determinant() < 0) Rout *= -1.0; // scale translation // 从相机坐标系到世界坐标系的转换关系是 lambda*v = R*pi+t // 从世界坐标系到相机坐标系的转换关系是 pi = R^T*v-R^Tt // 旋转矩阵的性质 R^-1 = R^T // 所以,在下面的计算中,需要计算从世界坐标系到相机坐标系的转换,这里tout = -R^T*t,下面再计算前半部分R^T*v // 先恢复平移部分的尺度再计算 tout = Rout * (scale * translation_t(result1(9, 0), result1(10, 0), result1(11, 0))); // find correct direction in terms of reprojection error, just take the first 6 correspondences // 非平面情况下,一共有2种解,R,t和R,-t // 利用前6个点计算重投影误差,选择残差最小的一个解 vector error(2); vector> Ts(2); for (int s = 0; s < 2; ++s) { // 初始化error的值为0 error[s] = 0.0; // |1 0 0 0| // Ts[s] = |0 1 0 0| // |0 0 1 0| // |0 0 0 1| Ts[s] = Eigen::Matrix4d::Identity(); // |. . . 0| // Ts[s] = |. Rout . 0| // |. . . 0| // |0 0 0 1| Ts[s].block<3, 3>(0, 0) = Rout; if (s == 0) // |. . . . | // Ts[s] = |. Rout . tout| // |. . . . | // |0 0 0 1 | Ts[s].block<3, 1>(0, 3) = tout; else // |. . . . | // Ts[s] = |. Rout . -tout| // |. . . . | // |0 0 0 1 | Ts[s].block<3, 1>(0, 3) = -tout; // 为了避免Eigen中aliasing的问题,后面在计算矩阵的逆的时候,需要添加eval()条件 // a = a.transpose(); //error: aliasing // a = a.transpose().eval(); //ok // a.transposeInPlace(); //ok // Eigen中aliasing指的是在赋值表达式的左右两边存在矩阵的重叠区域,这种情况下,有可能得到非预期的结果。 // 如mat = 2*mat或者mat = mat.transpose(),第一个例子中的alias是没有问题的,而第二的例子则会导致非预期的计算结果。 Ts[s] = Ts[s].inverse().eval(); for (int p = 0; p < 6; ++p) { // 从世界坐标系到相机坐标系的转换关系是 pi = R^T*v-R^Tt // Ts[s].block<3, 3>(0, 0) * points3v[p] = Rout = R^T*v // Ts[s].block<3, 1>(0, 3) = tout = -R^Tt bearingVector_t v = Ts[s].block<3, 3>(0, 0) * points3v[p] + Ts[s].block<3, 1>(0, 3); // 变成单位向量 v = v / v.norm(); // 计算重投影向量(观测)和当前空间点向量(实际)的偏差 error[s] += (1.0 - v.transpose() * f[indices[p]]); } } // 选择残差最小的解作为最终解 if (error[0] < error[1]) tout = Ts[0].block<3, 1>(0, 3); else tout = Ts[1].block<3, 1>(0, 3); Rout = Ts[0].block<3, 3>(0, 0); } // Step 8: 利用高斯牛顿法对位姿进行精确求解,提高位姿解的精度 ////////////////////////////////////// // 5. gauss newton ////////////////////////////////////// // 求解非线性方程之前,需要得到罗德里格斯参数,来表达李群(SO3) -> 李代数(so3)的对数映射 rodrigues_t omega = rot2rodrigues(Rout); // |r1| // |r2| // minx = |r3| // |t1| // |t2| // |t3| Eigen::VectorXd minx(6); minx[0] = omega[0]; minx[1] = omega[1]; minx[2] = omega[2]; minx[3] = tout[0]; minx[4] = tout[1]; minx[5] = tout[2]; // 利用高斯牛顿迭代法来提炼相机位姿 pose mlpnp_gn(minx, points3v, nullspaces, P, use_cov); // 最终输出的结果 Rout = rodrigues2rot(rodrigues_t(minx[0], minx[1], minx[2])); tout = translation_t(minx[3], minx[4], minx[5]); // result inverse as opengv uses this convention // 这里是用来计算世界坐标系到相机坐标系的转换,所以是Pc=R^T*Pw-R^T*t,反变换 result.block<3, 3>(0, 0) = Rout;//Rout.transpose(); result.block<3, 1>(0, 3) = tout;//-result.block<3, 3>(0, 0) * tout; } Eigen::Matrix3d MLPnPsolver::rodrigues2rot(const Eigen::Vector3d &omega) { rotation_t R = Eigen::Matrix3d::Identity(); Eigen::Matrix3d skewW; skewW << 0.0, -omega(2), omega(1), omega(2), 0.0, -omega(0), -omega(1), omega(0), 0.0; double omega_norm = omega.norm(); if (omega_norm > std::numeric_limits::epsilon()) R = R + sin(omega_norm) / omega_norm * skewW + (1 - cos(omega_norm)) / (omega_norm * omega_norm) * (skewW * skewW); return R; } Eigen::Vector3d MLPnPsolver::rot2rodrigues(const Eigen::Matrix3d &R) { rodrigues_t omega; omega << 0.0, 0.0, 0.0; double trace = R.trace() - 1.0; double wnorm = acos(trace / 2.0); if (wnorm > std::numeric_limits::epsilon()) { omega[0] = (R(2, 1) - R(1, 2)); omega[1] = (R(0, 2) - R(2, 0)); omega[2] = (R(1, 0) - R(0, 1)); double sc = wnorm / (2.0*sin(wnorm)); omega *= sc; } return omega; } /** * @brief MLPnP的高斯牛顿解法 * @param[in] x 未知量矩阵 * @param[in] pts 3D点矩阵 * @param[in] nullspaces 零空间向量 * @param[in] Kll 协方差矩阵 * @param[in] use_cov 协方差方法使用标记位 */ void MLPnPsolver::mlpnp_gn(Eigen::VectorXd &x, const points_t &pts, const std::vector &nullspaces, const Eigen::SparseMatrix Kll, bool use_cov) { // 计算观测值数量 const int numObservations = pts.size(); // 未知量是旋转向量和平移向量,即R和t,总共6个未知参数 const int numUnknowns = 6; // check redundancy // 检查观测数量是否满足计算条件,因为每个观测值都提供了2个约束,即r和s,所以这里乘以2 assert((2 * numObservations - numUnknowns) > 0); // ============= // set all matrices up // ============= Eigen::VectorXd r(2 * numObservations); Eigen::VectorXd rd(2 * numObservations); Eigen::MatrixXd Jac(2 * numObservations, numUnknowns); Eigen::VectorXd g(numUnknowns, 1); Eigen::VectorXd dx(numUnknowns, 1); // result vector Jac.setZero(); r.setZero(); dx.setZero(); g.setZero(); int it_cnt = 0; bool stop = false; const int maxIt = 5; double epsP = 1e-5; Eigen::MatrixXd JacTSKll; Eigen::MatrixXd A; // solve simple gradient descent while (it_cnt < maxIt && !stop) { mlpnp_residuals_and_jacs(x, pts, nullspaces, r, Jac, true); if (use_cov) JacTSKll = Jac.transpose() * Kll; else JacTSKll = Jac.transpose(); A = JacTSKll * Jac; // get system matrix g = JacTSKll * r; // solve Eigen::LDLT chol(A); dx = chol.solve(g); //dx = A.jacobiSvd(Eigen::ComputeThinU | Eigen::ComputeThinV).solve(g); // this is to prevent the solution from falling into a wrong minimum // if the linear estimate is spurious if (dx.array().abs().maxCoeff() > 5.0 || dx.array().abs().minCoeff() > 1.0) break; // observation update Eigen::MatrixXd dl = Jac * dx; if (dl.array().abs().maxCoeff() < epsP) { stop = true; x = x - dx; break; } else x = x - dx; ++it_cnt; }//while // result } /** * @brief 计算Jacobian矩阵和残差 * @param[in] x 未知量矩阵 * @param[in] pts 3D点矩阵 * @param[in] nullspaces 零空间向量 * @param[in] r f(x)函数 * @param[out] fjac f(x)函数的Jacobian矩阵 * @param[in] getJacs 是否可以得到Jacobian矩阵标记位 */ void MLPnPsolver::mlpnp_residuals_and_jacs(const Eigen::VectorXd &x, const points_t &pts, const std::vector &nullspaces, Eigen::VectorXd &r, Eigen::MatrixXd &fjac, bool getJacs) { rodrigues_t w(x[0], x[1], x[2]); translation_t T(x[3], x[4], x[5]); //rotation_t R = math::cayley2rot(c); rotation_t R = rodrigues2rot(w); int ii = 0; Eigen::MatrixXd jacs(2, 6); for (int i = 0; i < pts.size(); ++i) { Eigen::Vector3d ptCam = R*pts[i] + T; ptCam /= ptCam.norm(); r[ii] = nullspaces[i].col(0).transpose()*ptCam; r[ii + 1] = nullspaces[i].col(1).transpose()*ptCam; if (getJacs) { // jacs mlpnpJacs(pts[i], nullspaces[i].col(0), nullspaces[i].col(1), w, T, jacs); // r fjac(ii, 0) = jacs(0, 0); fjac(ii, 1) = jacs(0, 1); fjac(ii, 2) = jacs(0, 2); fjac(ii, 3) = jacs(0, 3); fjac(ii, 4) = jacs(0, 4); fjac(ii, 5) = jacs(0, 5); // s fjac(ii + 1, 0) = jacs(1, 0); fjac(ii + 1, 1) = jacs(1, 1); fjac(ii + 1, 2) = jacs(1, 2); fjac(ii + 1, 3) = jacs(1, 3); fjac(ii + 1, 4) = jacs(1, 4); fjac(ii + 1, 5) = jacs(1, 5); } ii += 2; } } /** * @brief 计算Jacobian矩阵 * @param[in] pt 3D点矩阵 * @param[in] nullspace_r 零空间向量r * @param[in] nullspace_r 零空间向量s * @param[in] w 旋转向量w * @param[in] t 平移向量t * @param[out] jacs Jacobian矩阵 */ void MLPnPsolver::mlpnpJacs(const point_t& pt, const Eigen::Vector3d& nullspace_r, const Eigen::Vector3d& nullspace_s, const rodrigues_t& w, const translation_t& t, Eigen::MatrixXd& jacs){ double r1 = nullspace_r[0]; double r2 = nullspace_r[1]; double r3 = nullspace_r[2]; double s1 = nullspace_s[0]; double s2 = nullspace_s[1]; double s3 = nullspace_s[2]; double X1 = pt[0]; double Y1 = pt[1]; double Z1 = pt[2]; double w1 = w[0]; double w2 = w[1]; double w3 = w[2]; double t1 = t[0]; double t2 = t[1]; double t3 = t[2]; double t5 = w1*w1; double t6 = w2*w2; double t7 = w3*w3; double t8 = t5+t6+t7; double t9 = sqrt(t8); double t10 = sin(t9); double t11 = 1.0/sqrt(t8); double t12 = cos(t9); double t13 = t12-1.0; double t14 = 1.0/t8; double t16 = t10*t11*w3; double t17 = t13*t14*w1*w2; double t19 = t10*t11*w2; double t20 = t13*t14*w1*w3; double t24 = t6+t7; double t27 = t16+t17; double t28 = Y1*t27; double t29 = t19-t20; double t30 = Z1*t29; double t31 = t13*t14*t24; double t32 = t31+1.0; double t33 = X1*t32; double t15 = t1-t28+t30+t33; double t21 = t10*t11*w1; double t22 = t13*t14*w2*w3; double t45 = t5+t7; double t53 = t16-t17; double t54 = X1*t53; double t55 = t21+t22; double t56 = Z1*t55; double t57 = t13*t14*t45; double t58 = t57+1.0; double t59 = Y1*t58; double t18 = t2+t54-t56+t59; double t34 = t5+t6; double t38 = t19+t20; double t39 = X1*t38; double t40 = t21-t22; double t41 = Y1*t40; double t42 = t13*t14*t34; double t43 = t42+1.0; double t44 = Z1*t43; double t23 = t3-t39+t41+t44; double t25 = 1.0/pow(t8,3.0/2.0); double t26 = 1.0/(t8*t8); double t35 = t12*t14*w1*w2; double t36 = t5*t10*t25*w3; double t37 = t5*t13*t26*w3*2.0; double t46 = t10*t25*w1*w3; double t47 = t5*t10*t25*w2; double t48 = t5*t13*t26*w2*2.0; double t49 = t10*t11; double t50 = t5*t12*t14; double t51 = t13*t26*w1*w2*w3*2.0; double t52 = t10*t25*w1*w2*w3; double t60 = t15*t15; double t61 = t18*t18; double t62 = t23*t23; double t63 = t60+t61+t62; double t64 = t5*t10*t25; double t65 = 1.0/sqrt(t63); double t66 = Y1*r2*t6; double t67 = Z1*r3*t7; double t68 = r1*t1*t5; double t69 = r1*t1*t6; double t70 = r1*t1*t7; double t71 = r2*t2*t5; double t72 = r2*t2*t6; double t73 = r2*t2*t7; double t74 = r3*t3*t5; double t75 = r3*t3*t6; double t76 = r3*t3*t7; double t77 = X1*r1*t5; double t78 = X1*r2*w1*w2; double t79 = X1*r3*w1*w3; double t80 = Y1*r1*w1*w2; double t81 = Y1*r3*w2*w3; double t82 = Z1*r1*w1*w3; double t83 = Z1*r2*w2*w3; double t84 = X1*r1*t6*t12; double t85 = X1*r1*t7*t12; double t86 = Y1*r2*t5*t12; double t87 = Y1*r2*t7*t12; double t88 = Z1*r3*t5*t12; double t89 = Z1*r3*t6*t12; double t90 = X1*r2*t9*t10*w3; double t91 = Y1*r3*t9*t10*w1; double t92 = Z1*r1*t9*t10*w2; double t102 = X1*r3*t9*t10*w2; double t103 = Y1*r1*t9*t10*w3; double t104 = Z1*r2*t9*t10*w1; double t105 = X1*r2*t12*w1*w2; double t106 = X1*r3*t12*w1*w3; double t107 = Y1*r1*t12*w1*w2; double t108 = Y1*r3*t12*w2*w3; double t109 = Z1*r1*t12*w1*w3; double t110 = Z1*r2*t12*w2*w3; double t93 = t66+t67+t68+t69+t70+t71+t72+t73+t74+t75+t76+t77+t78+t79+t80+t81+t82+t83+t84+t85+t86+t87+t88+t89+t90+t91+t92-t102-t103-t104-t105-t106-t107-t108-t109-t110; double t94 = t10*t25*w1*w2; double t95 = t6*t10*t25*w3; double t96 = t6*t13*t26*w3*2.0; double t97 = t12*t14*w2*w3; double t98 = t6*t10*t25*w1; double t99 = t6*t13*t26*w1*2.0; double t100 = t6*t10*t25; double t101 = 1.0/pow(t63,3.0/2.0); double t111 = t6*t12*t14; double t112 = t10*t25*w2*w3; double t113 = t12*t14*w1*w3; double t114 = t7*t10*t25*w2; double t115 = t7*t13*t26*w2*2.0; double t116 = t7*t10*t25*w1; double t117 = t7*t13*t26*w1*2.0; double t118 = t7*t12*t14; double t119 = t13*t24*t26*w1*2.0; double t120 = t10*t24*t25*w1; double t121 = t119+t120; double t122 = t13*t26*t34*w1*2.0; double t123 = t10*t25*t34*w1; double t131 = t13*t14*w1*2.0; double t124 = t122+t123-t131; double t139 = t13*t14*w3; double t125 = -t35+t36+t37+t94-t139; double t126 = X1*t125; double t127 = t49+t50+t51+t52-t64; double t128 = Y1*t127; double t129 = t126+t128-Z1*t124; double t130 = t23*t129*2.0; double t132 = t13*t26*t45*w1*2.0; double t133 = t10*t25*t45*w1; double t138 = t13*t14*w2; double t134 = -t46+t47+t48+t113-t138; double t135 = X1*t134; double t136 = -t49-t50+t51+t52+t64; double t137 = Z1*t136; double t140 = X1*s1*t5; double t141 = Y1*s2*t6; double t142 = Z1*s3*t7; double t143 = s1*t1*t5; double t144 = s1*t1*t6; double t145 = s1*t1*t7; double t146 = s2*t2*t5; double t147 = s2*t2*t6; double t148 = s2*t2*t7; double t149 = s3*t3*t5; double t150 = s3*t3*t6; double t151 = s3*t3*t7; double t152 = X1*s2*w1*w2; double t153 = X1*s3*w1*w3; double t154 = Y1*s1*w1*w2; double t155 = Y1*s3*w2*w3; double t156 = Z1*s1*w1*w3; double t157 = Z1*s2*w2*w3; double t158 = X1*s1*t6*t12; double t159 = X1*s1*t7*t12; double t160 = Y1*s2*t5*t12; double t161 = Y1*s2*t7*t12; double t162 = Z1*s3*t5*t12; double t163 = Z1*s3*t6*t12; double t164 = X1*s2*t9*t10*w3; double t165 = Y1*s3*t9*t10*w1; double t166 = Z1*s1*t9*t10*w2; double t183 = X1*s3*t9*t10*w2; double t184 = Y1*s1*t9*t10*w3; double t185 = Z1*s2*t9*t10*w1; double t186 = X1*s2*t12*w1*w2; double t187 = X1*s3*t12*w1*w3; double t188 = Y1*s1*t12*w1*w2; double t189 = Y1*s3*t12*w2*w3; double t190 = Z1*s1*t12*w1*w3; double t191 = Z1*s2*t12*w2*w3; double t167 = t140+t141+t142+t143+t144+t145+t146+t147+t148+t149+t150+t151+t152+t153+t154+t155+t156+t157+t158+t159+t160+t161+t162+t163+t164+t165+t166-t183-t184-t185-t186-t187-t188-t189-t190-t191; double t168 = t13*t26*t45*w2*2.0; double t169 = t10*t25*t45*w2; double t170 = t168+t169; double t171 = t13*t26*t34*w2*2.0; double t172 = t10*t25*t34*w2; double t176 = t13*t14*w2*2.0; double t173 = t171+t172-t176; double t174 = -t49+t51+t52+t100-t111; double t175 = X1*t174; double t177 = t13*t24*t26*w2*2.0; double t178 = t10*t24*t25*w2; double t192 = t13*t14*w1; double t179 = -t97+t98+t99+t112-t192; double t180 = Y1*t179; double t181 = t49+t51+t52-t100+t111; double t182 = Z1*t181; double t193 = t13*t26*t34*w3*2.0; double t194 = t10*t25*t34*w3; double t195 = t193+t194; double t196 = t13*t26*t45*w3*2.0; double t197 = t10*t25*t45*w3; double t200 = t13*t14*w3*2.0; double t198 = t196+t197-t200; double t199 = t7*t10*t25; double t201 = t13*t24*t26*w3*2.0; double t202 = t10*t24*t25*w3; double t203 = -t49+t51+t52-t118+t199; double t204 = Y1*t203; double t205 = t1*2.0; double t206 = Z1*t29*2.0; double t207 = X1*t32*2.0; double t208 = t205+t206+t207-Y1*t27*2.0; double t209 = t2*2.0; double t210 = X1*t53*2.0; double t211 = Y1*t58*2.0; double t212 = t209+t210+t211-Z1*t55*2.0; double t213 = t3*2.0; double t214 = Y1*t40*2.0; double t215 = Z1*t43*2.0; double t216 = t213+t214+t215-X1*t38*2.0; jacs(0, 0) = t14*t65*(X1*r1*w1*2.0+X1*r2*w2+X1*r3*w3+Y1*r1*w2+Z1*r1*w3+r1*t1*w1*2.0+r2*t2*w1*2.0+r3*t3*w1*2.0+Y1*r3*t5*t12+Y1*r3*t9*t10-Z1*r2*t5*t12-Z1*r2*t9*t10-X1*r2*t12*w2-X1*r3*t12*w3-Y1*r1*t12*w2+Y1*r2*t12*w1*2.0-Z1*r1*t12*w3+Z1*r3*t12*w1*2.0+Y1*r3*t5*t10*t11-Z1*r2*t5*t10*t11+X1*r2*t12*w1*w3-X1*r3*t12*w1*w2-Y1*r1*t12*w1*w3+Z1*r1*t12*w1*w2-Y1*r1*t10*t11*w1*w3+Z1*r1*t10*t11*w1*w2-X1*r1*t6*t10*t11*w1-X1*r1*t7*t10*t11*w1+X1*r2*t5*t10*t11*w2+X1*r3*t5*t10*t11*w3+Y1*r1*t5*t10*t11*w2-Y1*r2*t5*t10*t11*w1-Y1*r2*t7*t10*t11*w1+Z1*r1*t5*t10*t11*w3-Z1*r3*t5*t10*t11*w1-Z1*r3*t6*t10*t11*w1+X1*r2*t10*t11*w1*w3-X1*r3*t10*t11*w1*w2+Y1*r3*t10*t11*w1*w2*w3+Z1*r2*t10*t11*w1*w2*w3)-t26*t65*t93*w1*2.0-t14*t93*t101*(t130+t15*(-X1*t121+Y1*(t46+t47+t48-t13*t14*w2-t12*t14*w1*w3)+Z1*(t35+t36+t37-t13*t14*w3-t10*t25*w1*w2))*2.0+t18*(t135+t137-Y1*(t132+t133-t13*t14*w1*2.0))*2.0)*(1.0/2.0); jacs(0, 1) = t14*t65*(X1*r2*w1+Y1*r1*w1+Y1*r2*w2*2.0+Y1*r3*w3+Z1*r2*w3+r1*t1*w2*2.0+r2*t2*w2*2.0+r3*t3*w2*2.0-X1*r3*t6*t12-X1*r3*t9*t10+Z1*r1*t6*t12+Z1*r1*t9*t10+X1*r1*t12*w2*2.0-X1*r2*t12*w1-Y1*r1*t12*w1-Y1*r3*t12*w3-Z1*r2*t12*w3+Z1*r3*t12*w2*2.0-X1*r3*t6*t10*t11+Z1*r1*t6*t10*t11+X1*r2*t12*w2*w3-Y1*r1*t12*w2*w3+Y1*r3*t12*w1*w2-Z1*r2*t12*w1*w2-Y1*r1*t10*t11*w2*w3+Y1*r3*t10*t11*w1*w2-Z1*r2*t10*t11*w1*w2-X1*r1*t6*t10*t11*w2+X1*r2*t6*t10*t11*w1-X1*r1*t7*t10*t11*w2+Y1*r1*t6*t10*t11*w1-Y1*r2*t5*t10*t11*w2-Y1*r2*t7*t10*t11*w2+Y1*r3*t6*t10*t11*w3-Z1*r3*t5*t10*t11*w2+Z1*r2*t6*t10*t11*w3-Z1*r3*t6*t10*t11*w2+X1*r2*t10*t11*w2*w3+X1*r3*t10*t11*w1*w2*w3+Z1*r1*t10*t11*w1*w2*w3)-t26*t65*t93*w2*2.0-t14*t93*t101*(t18*(Z1*(-t35+t94+t95+t96-t13*t14*w3)-Y1*t170+X1*(t97+t98+t99-t13*t14*w1-t10*t25*w2*w3))*2.0+t15*(t180+t182-X1*(t177+t178-t13*t14*w2*2.0))*2.0+t23*(t175+Y1*(t35-t94+t95+t96-t13*t14*w3)-Z1*t173)*2.0)*(1.0/2.0); jacs(0, 2) = t14*t65*(X1*r3*w1+Y1*r3*w2+Z1*r1*w1+Z1*r2*w2+Z1*r3*w3*2.0+r1*t1*w3*2.0+r2*t2*w3*2.0+r3*t3*w3*2.0+X1*r2*t7*t12+X1*r2*t9*t10-Y1*r1*t7*t12-Y1*r1*t9*t10+X1*r1*t12*w3*2.0-X1*r3*t12*w1+Y1*r2*t12*w3*2.0-Y1*r3*t12*w2-Z1*r1*t12*w1-Z1*r2*t12*w2+X1*r2*t7*t10*t11-Y1*r1*t7*t10*t11-X1*r3*t12*w2*w3+Y1*r3*t12*w1*w3+Z1*r1*t12*w2*w3-Z1*r2*t12*w1*w3+Y1*r3*t10*t11*w1*w3+Z1*r1*t10*t11*w2*w3-Z1*r2*t10*t11*w1*w3-X1*r1*t6*t10*t11*w3-X1*r1*t7*t10*t11*w3+X1*r3*t7*t10*t11*w1-Y1*r2*t5*t10*t11*w3-Y1*r2*t7*t10*t11*w3+Y1*r3*t7*t10*t11*w2+Z1*r1*t7*t10*t11*w1+Z1*r2*t7*t10*t11*w2-Z1*r3*t5*t10*t11*w3-Z1*r3*t6*t10*t11*w3-X1*r3*t10*t11*w2*w3+X1*r2*t10*t11*w1*w2*w3+Y1*r1*t10*t11*w1*w2*w3)-t26*t65*t93*w3*2.0-t14*t93*t101*(t18*(Z1*(t46-t113+t114+t115-t13*t14*w2)-Y1*t198+X1*(t49+t51+t52+t118-t7*t10*t25))*2.0+t23*(X1*(-t97+t112+t116+t117-t13*t14*w1)+Y1*(-t46+t113+t114+t115-t13*t14*w2)-Z1*t195)*2.0+t15*(t204+Z1*(t97-t112+t116+t117-t13*t14*w1)-X1*(t201+t202-t13*t14*w3*2.0))*2.0)*(1.0/2.0); jacs(0, 3) = r1*t65-t14*t93*t101*t208*(1.0/2.0); jacs(0, 4) = r2*t65-t14*t93*t101*t212*(1.0/2.0); jacs(0, 5) = r3*t65-t14*t93*t101*t216*(1.0/2.0); jacs(1, 0) = t14*t65*(X1*s1*w1*2.0+X1*s2*w2+X1*s3*w3+Y1*s1*w2+Z1*s1*w3+s1*t1*w1*2.0+s2*t2*w1*2.0+s3*t3*w1*2.0+Y1*s3*t5*t12+Y1*s3*t9*t10-Z1*s2*t5*t12-Z1*s2*t9*t10-X1*s2*t12*w2-X1*s3*t12*w3-Y1*s1*t12*w2+Y1*s2*t12*w1*2.0-Z1*s1*t12*w3+Z1*s3*t12*w1*2.0+Y1*s3*t5*t10*t11-Z1*s2*t5*t10*t11+X1*s2*t12*w1*w3-X1*s3*t12*w1*w2-Y1*s1*t12*w1*w3+Z1*s1*t12*w1*w2+X1*s2*t10*t11*w1*w3-X1*s3*t10*t11*w1*w2-Y1*s1*t10*t11*w1*w3+Z1*s1*t10*t11*w1*w2-X1*s1*t6*t10*t11*w1-X1*s1*t7*t10*t11*w1+X1*s2*t5*t10*t11*w2+X1*s3*t5*t10*t11*w3+Y1*s1*t5*t10*t11*w2-Y1*s2*t5*t10*t11*w1-Y1*s2*t7*t10*t11*w1+Z1*s1*t5*t10*t11*w3-Z1*s3*t5*t10*t11*w1-Z1*s3*t6*t10*t11*w1+Y1*s3*t10*t11*w1*w2*w3+Z1*s2*t10*t11*w1*w2*w3)-t14*t101*t167*(t130+t15*(Y1*(t46+t47+t48-t113-t138)+Z1*(t35+t36+t37-t94-t139)-X1*t121)*2.0+t18*(t135+t137-Y1*(-t131+t132+t133))*2.0)*(1.0/2.0)-t26*t65*t167*w1*2.0; jacs(1, 1) = t14*t65*(X1*s2*w1+Y1*s1*w1+Y1*s2*w2*2.0+Y1*s3*w3+Z1*s2*w3+s1*t1*w2*2.0+s2*t2*w2*2.0+s3*t3*w2*2.0-X1*s3*t6*t12-X1*s3*t9*t10+Z1*s1*t6*t12+Z1*s1*t9*t10+X1*s1*t12*w2*2.0-X1*s2*t12*w1-Y1*s1*t12*w1-Y1*s3*t12*w3-Z1*s2*t12*w3+Z1*s3*t12*w2*2.0-X1*s3*t6*t10*t11+Z1*s1*t6*t10*t11+X1*s2*t12*w2*w3-Y1*s1*t12*w2*w3+Y1*s3*t12*w1*w2-Z1*s2*t12*w1*w2+X1*s2*t10*t11*w2*w3-Y1*s1*t10*t11*w2*w3+Y1*s3*t10*t11*w1*w2-Z1*s2*t10*t11*w1*w2-X1*s1*t6*t10*t11*w2+X1*s2*t6*t10*t11*w1-X1*s1*t7*t10*t11*w2+Y1*s1*t6*t10*t11*w1-Y1*s2*t5*t10*t11*w2-Y1*s2*t7*t10*t11*w2+Y1*s3*t6*t10*t11*w3-Z1*s3*t5*t10*t11*w2+Z1*s2*t6*t10*t11*w3-Z1*s3*t6*t10*t11*w2+X1*s3*t10*t11*w1*w2*w3+Z1*s1*t10*t11*w1*w2*w3)-t26*t65*t167*w2*2.0-t14*t101*t167*(t18*(X1*(t97+t98+t99-t112-t192)+Z1*(-t35+t94+t95+t96-t139)-Y1*t170)*2.0+t15*(t180+t182-X1*(-t176+t177+t178))*2.0+t23*(t175+Y1*(t35-t94+t95+t96-t139)-Z1*t173)*2.0)*(1.0/2.0); jacs(1, 2) = t14*t65*(X1*s3*w1+Y1*s3*w2+Z1*s1*w1+Z1*s2*w2+Z1*s3*w3*2.0+s1*t1*w3*2.0+s2*t2*w3*2.0+s3*t3*w3*2.0+X1*s2*t7*t12+X1*s2*t9*t10-Y1*s1*t7*t12-Y1*s1*t9*t10+X1*s1*t12*w3*2.0-X1*s3*t12*w1+Y1*s2*t12*w3*2.0-Y1*s3*t12*w2-Z1*s1*t12*w1-Z1*s2*t12*w2+X1*s2*t7*t10*t11-Y1*s1*t7*t10*t11-X1*s3*t12*w2*w3+Y1*s3*t12*w1*w3+Z1*s1*t12*w2*w3-Z1*s2*t12*w1*w3-X1*s3*t10*t11*w2*w3+Y1*s3*t10*t11*w1*w3+Z1*s1*t10*t11*w2*w3-Z1*s2*t10*t11*w1*w3-X1*s1*t6*t10*t11*w3-X1*s1*t7*t10*t11*w3+X1*s3*t7*t10*t11*w1-Y1*s2*t5*t10*t11*w3-Y1*s2*t7*t10*t11*w3+Y1*s3*t7*t10*t11*w2+Z1*s1*t7*t10*t11*w1+Z1*s2*t7*t10*t11*w2-Z1*s3*t5*t10*t11*w3-Z1*s3*t6*t10*t11*w3+X1*s2*t10*t11*w1*w2*w3+Y1*s1*t10*t11*w1*w2*w3)-t26*t65*t167*w3*2.0-t14*t101*t167*(t18*(Z1*(t46-t113+t114+t115-t138)-Y1*t198+X1*(t49+t51+t52+t118-t199))*2.0+t23*(X1*(-t97+t112+t116+t117-t192)+Y1*(-t46+t113+t114+t115-t138)-Z1*t195)*2.0+t15*(t204+Z1*(t97-t112+t116+t117-t192)-X1*(-t200+t201+t202))*2.0)*(1.0/2.0); jacs(1, 3) = s1*t65-t14*t101*t167*t208*(1.0/2.0); jacs(1, 4) = s2*t65-t14*t101*t167*t212*(1.0/2.0); jacs(1, 5) = s3*t65-t14*t101*t167*t216*(1.0/2.0); } }//End namespace ORB_SLAM2