/** * This file is part of ORB-SLAM3 * * Copyright (C) 2017-2020 Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M.M. Montiel and Juan D. Tardós, University of Zaragoza. * Copyright (C) 2014-2016 Raúl Mur-Artal, José M.M. Montiel and Juan D. Tardós, University of Zaragoza. * * ORB-SLAM3 is free software: you can redistribute it and/or modify it under the terms of the GNU General Public * License as published by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * ORB-SLAM3 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even * the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with ORB-SLAM3. * If not, see . */ #include "KeyFrameDatabase.h" #include "KeyFrame.h" #include "Thirdparty/DBoW2/DBoW2/BowVector.h" #include using namespace std; namespace ORB_SLAM3 { // 构造函数 KeyFrameDatabase::KeyFrameDatabase (const ORBVocabulary &voc): mpVoc(&voc) { mvInvertedFile.resize(voc.size()); } // 根据关键帧的BoW,更新数据库的倒排索引 void KeyFrameDatabase::add(KeyFrame *pKF) { unique_lock lock(mMutex); // 为每一个word添加该KeyFrame for(DBoW2::BowVector::const_iterator vit= pKF->mBowVec.begin(), vend=pKF->mBowVec.end(); vit!=vend; vit++) mvInvertedFile[vit->first].push_back(pKF); } // 关键帧被删除后,更新数据库的倒排索引 void KeyFrameDatabase::erase(KeyFrame* pKF) { unique_lock lock(mMutex); // Erase elements in the Inverse File for the entry // 每一个KeyFrame包含多个words,遍历mvInvertedFile中的这些words,然后在word中删除该KeyFrame for(DBoW2::BowVector::const_iterator vit=pKF->mBowVec.begin(), vend=pKF->mBowVec.end(); vit!=vend; vit++) { // List of keyframes that share the word list &lKFs = mvInvertedFile[vit->first]; for(list::iterator lit=lKFs.begin(), lend= lKFs.end(); lit!=lend; lit++) { if(pKF==*lit) { lKFs.erase(lit); break; } } } } // 清空关键帧数据库 void KeyFrameDatabase::clear() { mvInvertedFile.clear(); mvInvertedFile.resize(mpVoc->size()); } void KeyFrameDatabase::clearMap(Map* pMap) { unique_lock lock(mMutex); // Erase elements in the Inverse File for the entry for(std::vector >::iterator vit=mvInvertedFile.begin(), vend=mvInvertedFile.end(); vit!=vend; vit++) { // List of keyframes that share the word list &lKFs = *vit; for(list::iterator lit=lKFs.begin(), lend= lKFs.end(); lit!=lend;) { KeyFrame* pKFi = *lit; if(pMap == pKFi->GetMap()) { lit = lKFs.erase(lit); // Dont delete the KF because the class Map clean all the KF when it is destroyed } else { ++lit; } } } } /** * @brief 在闭环检测中找到与该关键帧可能闭环的关键帧(注意不和当前帧连接) * Step 1:找出和当前帧具有公共单词的所有关键帧,不包括与当前帧连接(也就是共视)的关键帧 * Step 2:只和具有共同单词较多的(最大数目的80%以上)关键帧进行相似度计算 * Step 3:计算上述候选帧对应的共视关键帧组的总得分,只取最高组得分75%以上的组 * Step 4:得到上述组中分数最高的关键帧作为闭环候选关键帧 * @param[in] pKF 需要闭环检测的关键帧 * @param[in] minScore 候选闭环关键帧帧和当前关键帧的BoW相似度至少要大于minScore * @return vector 闭环候选关键帧 */ vector KeyFrameDatabase::DetectLoopCandidates(KeyFrame* pKF, float minScore) { // 取出与当前关键帧相连(>15个共视地图点)的所有关键帧,这些相连关键帧都是局部相连,在闭环检测的时候将被剔除 // 相连关键帧定义见 KeyFrame::UpdateConnections() set spConnectedKeyFrames = pKF->GetConnectedKeyFrames(); // 用于保存可能与当前关键帧形成闭环的候选帧(只要有相同的word,且不属于局部相连(共视)帧) list lKFsSharingWords; // Search all keyframes that share a word with current keyframes // Discard keyframes connected to the query keyframe // Step 1:找出和当前帧具有公共单词的所有关键帧,不包括与当前帧连接(也就是共视)的关键帧 { unique_lock lock(mMutex); // words是检测图像是否匹配的枢纽,遍历该pKF的每一个word // mBowVec 内部实际存储的是std::map // WordId 和 WordValue 表示Word在叶子中的id 和权重 for(DBoW2::BowVector::const_iterator vit=pKF->mBowVec.begin(), vend=pKF->mBowVec.end(); vit != vend; vit++) { // 提取所有包含该word的KeyFrame list &lKFs = mvInvertedFile[vit->first]; // 然后对这些关键帧展开遍历 for(list::iterator lit=lKFs.begin(), lend= lKFs.end(); lit!=lend; lit++) { KeyFrame* pKFi=*lit; if(pKFi->GetMap()==pKF->GetMap()) // For consider a loop candidate it a candidate it must be in the same map { if(pKFi->mnLoopQuery!=pKF->mnId) { // 还没有标记为pKF的闭环候选帧 pKFi->mnLoopWords=0; // 和当前关键帧共视的话不作为闭环候选帧 if(!spConnectedKeyFrames.count(pKFi)) { // 没有共视就标记作为闭环候选关键帧,放到lKFsSharingWords里 pKFi->mnLoopQuery=pKF->mnId; lKFsSharingWords.push_back(pKFi); } } pKFi->mnLoopWords++;// 记录pKFi与pKF具有相同word的个数 } } } } // 如果没有关键帧和这个关键帧具有相同的单词,那么就返回空 if(lKFsSharingWords.empty()) return vector(); list > lScoreAndMatch; // Only compare against those keyframes that share enough words // Step 2:统计上述所有闭环候选帧中与当前帧具有共同单词最多的单词数,用来决定相对阈值 int maxCommonWords=0; for(list::iterator lit=lKFsSharingWords.begin(), lend= lKFsSharingWords.end(); lit!=lend; lit++) { if((*lit)->mnLoopWords>maxCommonWords) maxCommonWords=(*lit)->mnLoopWords; } // 确定最小公共单词数为最大公共单词数目的0.8倍 int minCommonWords = maxCommonWords*0.8f; int nscores=0; // Compute similarity score. Retain the matches whose score is higher than minScore // Step 3:遍历上述所有闭环候选帧,挑选出共有单词数大于minCommonWords且单词匹配度大于minScore存入lScoreAndMatch for(list::iterator lit=lKFsSharingWords.begin(), lend= lKFsSharingWords.end(); lit!=lend; lit++) { KeyFrame* pKFi = *lit; // pKF只和具有共同单词较多(大于minCommonWords)的关键帧进行比较 if(pKFi->mnLoopWords>minCommonWords) { nscores++; // 用mBowVec来计算两者的相似度得分 float si = mpVoc->score(pKF->mBowVec,pKFi->mBowVec); pKFi->mLoopScore = si; if(si>=minScore) lScoreAndMatch.push_back(make_pair(si,pKFi)); } } // 如果没有超过指定相似度阈值的,那么也就直接跳过去 if(lScoreAndMatch.empty()) return vector(); list > lAccScoreAndMatch; float bestAccScore = minScore; // Lets now accumulate score by covisibility // 单单计算当前帧和某一关键帧的相似性是不够的,这里将与关键帧相连(权值最高,共视程度最高)的前十个关键帧归为一组,计算累计得分 // Step 4:计算上述候选帧对应的共视关键帧组的总得分,得到最高组得分bestAccScore,并以此决定阈值minScoreToRetain for(list >::iterator it=lScoreAndMatch.begin(), itend=lScoreAndMatch.end(); it!=itend; it++) { KeyFrame* pKFi = it->second; vector vpNeighs = pKFi->GetBestCovisibilityKeyFrames(10); float bestScore = it->first; // 该组最高分数 float accScore = it->first; // 该组累计得分 KeyFrame* pBestKF = pKFi; // 该组最高分数对应的关键帧 for(vector::iterator vit=vpNeighs.begin(), vend=vpNeighs.end(); vit!=vend; vit++) { KeyFrame* pKF2 = *vit; // 只有pKF2也在闭环候选帧中,且公共单词数超过最小要求,才能贡献分数 if(pKF2->mnLoopQuery==pKF->mnId && pKF2->mnLoopWords>minCommonWords) { accScore+=pKF2->mLoopScore; // 统计得到组里分数最高的关键帧 if(pKF2->mLoopScore>bestScore) { pBestKF=pKF2; bestScore = pKF2->mLoopScore; } } } lAccScoreAndMatch.push_back(make_pair(accScore,pBestKF)); // 记录所有组中组得分最高的组,用于确定相对阈值 if(accScore>bestAccScore) bestAccScore=accScore; } // Return all those keyframes with a score higher than 0.75*bestScore // 所有组中最高得分的0.75倍,作为最低阈值 float minScoreToRetain = 0.75f*bestAccScore; set spAlreadyAddedKF; vector vpLoopCandidates; vpLoopCandidates.reserve(lAccScoreAndMatch.size()); // Step 5:只取组得分大于阈值的组,得到组中分数最高的关键帧作为闭环候选关键帧 for(list >::iterator it=lAccScoreAndMatch.begin(), itend=lAccScoreAndMatch.end(); it!=itend; it++) { if(it->first>minScoreToRetain) { KeyFrame* pKFi = it->second; // spAlreadyAddedKF 是为了防止重复添加 if(!spAlreadyAddedKF.count(pKFi)) { vpLoopCandidates.push_back(pKFi); spAlreadyAddedKF.insert(pKFi); } } } return vpLoopCandidates; } void KeyFrameDatabase::DetectCandidates(KeyFrame* pKF, float minScore,vector& vpLoopCand, vector& vpMergeCand) { set spConnectedKeyFrames = pKF->GetConnectedKeyFrames(); list lKFsSharingWordsLoop,lKFsSharingWordsMerge; // Search all keyframes that share a word with current keyframes // Discard keyframes connected to the query keyframe { unique_lock lock(mMutex); for(DBoW2::BowVector::const_iterator vit=pKF->mBowVec.begin(), vend=pKF->mBowVec.end(); vit != vend; vit++) { list &lKFs = mvInvertedFile[vit->first]; for(list::iterator lit=lKFs.begin(), lend= lKFs.end(); lit!=lend; lit++) { KeyFrame* pKFi=*lit; if(pKFi->GetMap()==pKF->GetMap()) // For consider a loop candidate it a candidate it must be in the same map { if(pKFi->mnLoopQuery!=pKF->mnId) { pKFi->mnLoopWords=0; if(!spConnectedKeyFrames.count(pKFi)) { pKFi->mnLoopQuery=pKF->mnId; lKFsSharingWordsLoop.push_back(pKFi); } } pKFi->mnLoopWords++; } else if(!pKFi->GetMap()->IsBad()) { if(pKFi->mnMergeQuery!=pKF->mnId) { pKFi->mnMergeWords=0; if(!spConnectedKeyFrames.count(pKFi)) { pKFi->mnMergeQuery=pKF->mnId; lKFsSharingWordsMerge.push_back(pKFi); } } pKFi->mnMergeWords++; } } } } if(lKFsSharingWordsLoop.empty() && lKFsSharingWordsMerge.empty()) return; if(!lKFsSharingWordsLoop.empty()) { list > lScoreAndMatch; // Only compare against those keyframes that share enough words int maxCommonWords=0; for(list::iterator lit=lKFsSharingWordsLoop.begin(), lend= lKFsSharingWordsLoop.end(); lit!=lend; lit++) { if((*lit)->mnLoopWords>maxCommonWords) maxCommonWords=(*lit)->mnLoopWords; } int minCommonWords = maxCommonWords*0.8f; int nscores=0; // Compute similarity score. Retain the matches whose score is higher than minScore for(list::iterator lit=lKFsSharingWordsLoop.begin(), lend= lKFsSharingWordsLoop.end(); lit!=lend; lit++) { KeyFrame* pKFi = *lit; if(pKFi->mnLoopWords>minCommonWords) { nscores++; float si = mpVoc->score(pKF->mBowVec,pKFi->mBowVec); pKFi->mLoopScore = si; if(si>=minScore) lScoreAndMatch.push_back(make_pair(si,pKFi)); } } if(!lScoreAndMatch.empty()) { list > lAccScoreAndMatch; float bestAccScore = minScore; // Lets now accumulate score by covisibility for(list >::iterator it=lScoreAndMatch.begin(), itend=lScoreAndMatch.end(); it!=itend; it++) { KeyFrame* pKFi = it->second; vector vpNeighs = pKFi->GetBestCovisibilityKeyFrames(10); float bestScore = it->first; float accScore = it->first; KeyFrame* pBestKF = pKFi; for(vector::iterator vit=vpNeighs.begin(), vend=vpNeighs.end(); vit!=vend; vit++) { KeyFrame* pKF2 = *vit; if(pKF2->mnLoopQuery==pKF->mnId && pKF2->mnLoopWords>minCommonWords) { accScore+=pKF2->mLoopScore; if(pKF2->mLoopScore>bestScore) { pBestKF=pKF2; bestScore = pKF2->mLoopScore; } } } lAccScoreAndMatch.push_back(make_pair(accScore,pBestKF)); if(accScore>bestAccScore) bestAccScore=accScore; } // Return all those keyframes with a score higher than 0.75*bestScore float minScoreToRetain = 0.75f*bestAccScore; set spAlreadyAddedKF; vpLoopCand.reserve(lAccScoreAndMatch.size()); for(list >::iterator it=lAccScoreAndMatch.begin(), itend=lAccScoreAndMatch.end(); it!=itend; it++) { if(it->first>minScoreToRetain) { KeyFrame* pKFi = it->second; if(!spAlreadyAddedKF.count(pKFi)) { vpLoopCand.push_back(pKFi); spAlreadyAddedKF.insert(pKFi); } } } } } if(!lKFsSharingWordsMerge.empty()) { //cout << "BoW candidates: " << lKFsSharingWordsMerge.size() << endl; list > lScoreAndMatch; // Only compare against those keyframes that share enough words int maxCommonWords=0; for(list::iterator lit=lKFsSharingWordsMerge.begin(), lend=lKFsSharingWordsMerge.end(); lit!=lend; lit++) { if((*lit)->mnMergeWords>maxCommonWords) maxCommonWords=(*lit)->mnMergeWords; } //cout << "Max common words: " << maxCommonWords << endl; int minCommonWords = maxCommonWords*0.8f; int nscores=0; // Compute similarity score. Retain the matches whose score is higher than minScore for(list::iterator lit=lKFsSharingWordsMerge.begin(), lend=lKFsSharingWordsMerge.end(); lit!=lend; lit++) { KeyFrame* pKFi = *lit; if(pKFi->mnMergeWords>minCommonWords) { nscores++; float si = mpVoc->score(pKF->mBowVec,pKFi->mBowVec); //cout << "KF score: " << si << endl; pKFi->mMergeScore = si; if(si>=minScore) lScoreAndMatch.push_back(make_pair(si,pKFi)); } } //cout << "BoW candidates2: " << lScoreAndMatch.size() << endl; if(!lScoreAndMatch.empty()) { list > lAccScoreAndMatch; float bestAccScore = minScore; // Lets now accumulate score by covisibility for(list >::iterator it=lScoreAndMatch.begin(), itend=lScoreAndMatch.end(); it!=itend; it++) { KeyFrame* pKFi = it->second; vector vpNeighs = pKFi->GetBestCovisibilityKeyFrames(10); float bestScore = it->first; float accScore = it->first; KeyFrame* pBestKF = pKFi; for(vector::iterator vit=vpNeighs.begin(), vend=vpNeighs.end(); vit!=vend; vit++) { KeyFrame* pKF2 = *vit; if(pKF2->mnMergeQuery==pKF->mnId && pKF2->mnMergeWords>minCommonWords) { accScore+=pKF2->mMergeScore; if(pKF2->mMergeScore>bestScore) { pBestKF=pKF2; bestScore = pKF2->mMergeScore; } } } lAccScoreAndMatch.push_back(make_pair(accScore,pBestKF)); if(accScore>bestAccScore) bestAccScore=accScore; } // Return all those keyframes with a score higher than 0.75*bestScore float minScoreToRetain = 0.75f*bestAccScore; //cout << "Min score to retain: " << minScoreToRetain << endl; set spAlreadyAddedKF; vpMergeCand.reserve(lAccScoreAndMatch.size()); for(list >::iterator it=lAccScoreAndMatch.begin(), itend=lAccScoreAndMatch.end(); it!=itend; it++) { if(it->first>minScoreToRetain) { KeyFrame* pKFi = it->second; if(!spAlreadyAddedKF.count(pKFi)) { vpMergeCand.push_back(pKFi); spAlreadyAddedKF.insert(pKFi); } } } //cout << "Candidates: " << vpMergeCand.size() << endl; } } //---- for(DBoW2::BowVector::const_iterator vit=pKF->mBowVec.begin(), vend=pKF->mBowVec.end(); vit != vend; vit++) { list &lKFs = mvInvertedFile[vit->first]; for(list::iterator lit=lKFs.begin(), lend= lKFs.end(); lit!=lend; lit++) { KeyFrame* pKFi=*lit; pKFi->mnLoopQuery=-1; pKFi->mnMergeQuery=-1; } } } void KeyFrameDatabase::DetectBestCandidates(KeyFrame *pKF, vector &vpLoopCand, vector &vpMergeCand, int nMinWords) { list lKFsSharingWords; set spConnectedKF; // Search all keyframes that share a word with current frame { unique_lock lock(mMutex); spConnectedKF = pKF->GetConnectedKeyFrames(); for(DBoW2::BowVector::const_iterator vit=pKF->mBowVec.begin(), vend=pKF->mBowVec.end(); vit != vend; vit++) { list &lKFs = mvInvertedFile[vit->first]; for(list::iterator lit=lKFs.begin(), lend= lKFs.end(); lit!=lend; lit++) { KeyFrame* pKFi=*lit; if(spConnectedKF.find(pKFi) != spConnectedKF.end()) { continue; } if(pKFi->mnPlaceRecognitionQuery!=pKF->mnId) { pKFi->mnPlaceRecognitionWords=0; pKFi->mnPlaceRecognitionQuery=pKF->mnId; lKFsSharingWords.push_back(pKFi); } pKFi->mnPlaceRecognitionWords++; } } } if(lKFsSharingWords.empty()) return; // Only compare against those keyframes that share enough words int maxCommonWords=0; for(list::iterator lit=lKFsSharingWords.begin(), lend= lKFsSharingWords.end(); lit!=lend; lit++) { if((*lit)->mnPlaceRecognitionWords>maxCommonWords) maxCommonWords=(*lit)->mnPlaceRecognitionWords; } int minCommonWords = maxCommonWords*0.8f; if(minCommonWords < nMinWords) { minCommonWords = nMinWords; } list > lScoreAndMatch; int nscores=0; // Compute similarity score. for(list::iterator lit=lKFsSharingWords.begin(), lend= lKFsSharingWords.end(); lit!=lend; lit++) { KeyFrame* pKFi = *lit; if(pKFi->mnPlaceRecognitionWords>minCommonWords) { nscores++; float si = mpVoc->score(pKF->mBowVec,pKFi->mBowVec); pKFi->mPlaceRecognitionScore=si; lScoreAndMatch.push_back(make_pair(si,pKFi)); } } if(lScoreAndMatch.empty()) return; list > lAccScoreAndMatch; float bestAccScore = 0; // Lets now accumulate score by covisibility for(list >::iterator it=lScoreAndMatch.begin(), itend=lScoreAndMatch.end(); it!=itend; it++) { KeyFrame* pKFi = it->second; vector vpNeighs = pKFi->GetBestCovisibilityKeyFrames(10); float bestScore = it->first; float accScore = bestScore; KeyFrame* pBestKF = pKFi; for(vector::iterator vit=vpNeighs.begin(), vend=vpNeighs.end(); vit!=vend; vit++) { KeyFrame* pKF2 = *vit; if(pKF2->mnPlaceRecognitionQuery!=pKF->mnId) continue; accScore+=pKF2->mPlaceRecognitionScore; if(pKF2->mPlaceRecognitionScore>bestScore) { pBestKF=pKF2; bestScore = pKF2->mPlaceRecognitionScore; } } lAccScoreAndMatch.push_back(make_pair(accScore,pBestKF)); if(accScore>bestAccScore) bestAccScore=accScore; } // Return all those keyframes with a score higher than 0.75*bestScore float minScoreToRetain = 0.75f*bestAccScore; set spAlreadyAddedKF; vpLoopCand.reserve(lAccScoreAndMatch.size()); vpMergeCand.reserve(lAccScoreAndMatch.size()); for(list >::iterator it=lAccScoreAndMatch.begin(), itend=lAccScoreAndMatch.end(); it!=itend; it++) { const float &si = it->first; if(si>minScoreToRetain) { KeyFrame* pKFi = it->second; if(!spAlreadyAddedKF.count(pKFi)) { if(pKF->GetMap() == pKFi->GetMap()) { vpLoopCand.push_back(pKFi); } else { vpMergeCand.push_back(pKFi); } spAlreadyAddedKF.insert(pKFi); } } } } bool compFirst(const pair & a, const pair & b) { return a.first > b.first; } void KeyFrameDatabase::DetectNBestCandidates(KeyFrame *pKF, vector &vpLoopCand, vector &vpMergeCand, int nNumCandidates) { list lKFsSharingWords; //set spInsertedKFsSharing; set spConnectedKF; // Search all keyframes that share a word with current frame { unique_lock lock(mMutex); spConnectedKF = pKF->GetConnectedKeyFrames(); for(DBoW2::BowVector::const_iterator vit=pKF->mBowVec.begin(), vend=pKF->mBowVec.end(); vit != vend; vit++) { list &lKFs = mvInvertedFile[vit->first]; for(list::iterator lit=lKFs.begin(), lend= lKFs.end(); lit!=lend; lit++) { KeyFrame* pKFi=*lit; /*if(spConnectedKF.find(pKFi) != spConnectedKF.end()) { continue; }*/ if(pKFi->mnPlaceRecognitionQuery!=pKF->mnId) { pKFi->mnPlaceRecognitionWords=0; if(!spConnectedKF.count(pKFi)) { pKFi->mnPlaceRecognitionQuery=pKF->mnId; lKFsSharingWords.push_back(pKFi); } } pKFi->mnPlaceRecognitionWords++; /*if(spInsertedKFsSharing.find(pKFi) == spInsertedKFsSharing.end()) { lKFsSharingWords.push_back(pKFi); spInsertedKFsSharing.insert(pKFi); }*/ } } } if(lKFsSharingWords.empty()) return; // Only compare against those keyframes that share enough words int maxCommonWords=0; for(list::iterator lit=lKFsSharingWords.begin(), lend= lKFsSharingWords.end(); lit!=lend; lit++) { if((*lit)->mnPlaceRecognitionWords>maxCommonWords) maxCommonWords=(*lit)->mnPlaceRecognitionWords; } int minCommonWords = maxCommonWords*0.8f; list > lScoreAndMatch; int nscores=0; // Compute similarity score. for(list::iterator lit=lKFsSharingWords.begin(), lend= lKFsSharingWords.end(); lit!=lend; lit++) { KeyFrame* pKFi = *lit; if(pKFi->mnPlaceRecognitionWords>minCommonWords) { nscores++; float si = mpVoc->score(pKF->mBowVec,pKFi->mBowVec); pKFi->mPlaceRecognitionScore=si; lScoreAndMatch.push_back(make_pair(si,pKFi)); } } if(lScoreAndMatch.empty()) return; list > lAccScoreAndMatch; float bestAccScore = 0; // Lets now accumulate score by covisibility for(list >::iterator it=lScoreAndMatch.begin(), itend=lScoreAndMatch.end(); it!=itend; it++) { KeyFrame* pKFi = it->second; vector vpNeighs = pKFi->GetBestCovisibilityKeyFrames(10); float bestScore = it->first; float accScore = bestScore; KeyFrame* pBestKF = pKFi; for(vector::iterator vit=vpNeighs.begin(), vend=vpNeighs.end(); vit!=vend; vit++) { KeyFrame* pKF2 = *vit; if(pKF2->mnPlaceRecognitionQuery!=pKF->mnId) continue; accScore+=pKF2->mPlaceRecognitionScore; if(pKF2->mPlaceRecognitionScore>bestScore) { pBestKF=pKF2; bestScore = pKF2->mPlaceRecognitionScore; } } lAccScoreAndMatch.push_back(make_pair(accScore,pBestKF)); if(accScore>bestAccScore) bestAccScore=accScore; } //cout << "Amount of candidates: " << lAccScoreAndMatch.size() << endl; lAccScoreAndMatch.sort(compFirst); vpLoopCand.reserve(nNumCandidates); vpMergeCand.reserve(nNumCandidates); set spAlreadyAddedKF; //cout << "Candidates in score order " << endl; //for(list >::iterator it=lAccScoreAndMatch.begin(), itend=lAccScoreAndMatch.end(); it!=itend; it++) int i = 0; list >::iterator it=lAccScoreAndMatch.begin(); while(i < lAccScoreAndMatch.size() && (vpLoopCand.size() < nNumCandidates || vpMergeCand.size() < nNumCandidates)) { //cout << "Accum score: " << it->first << endl; KeyFrame* pKFi = it->second; if(pKFi->isBad()) continue; if(!spAlreadyAddedKF.count(pKFi)) { if(pKF->GetMap() == pKFi->GetMap() && vpLoopCand.size() < nNumCandidates) { vpLoopCand.push_back(pKFi); } else if(pKF->GetMap() != pKFi->GetMap() && vpMergeCand.size() < nNumCandidates && !pKFi->GetMap()->IsBad()) { vpMergeCand.push_back(pKFi); } spAlreadyAddedKF.insert(pKFi); } i++; it++; } //------- // Return all those keyframes with a score higher than 0.75*bestScore /*float minScoreToRetain = 0.75f*bestAccScore; set spAlreadyAddedKF; vpLoopCand.reserve(lAccScoreAndMatch.size()); vpMergeCand.reserve(lAccScoreAndMatch.size()); for(list >::iterator it=lAccScoreAndMatch.begin(), itend=lAccScoreAndMatch.end(); it!=itend; it++) { const float &si = it->first; if(si>minScoreToRetain) { KeyFrame* pKFi = it->second; if(!spAlreadyAddedKF.count(pKFi)) { if(pKF->GetMap() == pKFi->GetMap()) { vpLoopCand.push_back(pKFi); } else { vpMergeCand.push_back(pKFi); } spAlreadyAddedKF.insert(pKFi); } } }*/ } vector KeyFrameDatabase::DetectRelocalizationCandidates(Frame *F, Map* pMap) { list lKFsSharingWords; // Search all keyframes that share a word with current frame { unique_lock lock(mMutex); for(DBoW2::BowVector::const_iterator vit=F->mBowVec.begin(), vend=F->mBowVec.end(); vit != vend; vit++) { list &lKFs = mvInvertedFile[vit->first]; for(list::iterator lit=lKFs.begin(), lend= lKFs.end(); lit!=lend; lit++) { KeyFrame* pKFi=*lit; if(pKFi->mnRelocQuery!=F->mnId) { pKFi->mnRelocWords=0; pKFi->mnRelocQuery=F->mnId; lKFsSharingWords.push_back(pKFi); } pKFi->mnRelocWords++; } } } if(lKFsSharingWords.empty()) return vector(); // Only compare against those keyframes that share enough words int maxCommonWords=0; for(list::iterator lit=lKFsSharingWords.begin(), lend= lKFsSharingWords.end(); lit!=lend; lit++) { if((*lit)->mnRelocWords>maxCommonWords) maxCommonWords=(*lit)->mnRelocWords; } int minCommonWords = maxCommonWords*0.8f; list > lScoreAndMatch; int nscores=0; // Compute similarity score. for(list::iterator lit=lKFsSharingWords.begin(), lend= lKFsSharingWords.end(); lit!=lend; lit++) { KeyFrame* pKFi = *lit; if(pKFi->mnRelocWords>minCommonWords) { nscores++; float si = mpVoc->score(F->mBowVec,pKFi->mBowVec); pKFi->mRelocScore=si; lScoreAndMatch.push_back(make_pair(si,pKFi)); } } if(lScoreAndMatch.empty()) return vector(); list > lAccScoreAndMatch; float bestAccScore = 0; // Lets now accumulate score by covisibility for(list >::iterator it=lScoreAndMatch.begin(), itend=lScoreAndMatch.end(); it!=itend; it++) { KeyFrame* pKFi = it->second; vector vpNeighs = pKFi->GetBestCovisibilityKeyFrames(10); float bestScore = it->first; float accScore = bestScore; KeyFrame* pBestKF = pKFi; for(vector::iterator vit=vpNeighs.begin(), vend=vpNeighs.end(); vit!=vend; vit++) { KeyFrame* pKF2 = *vit; if(pKF2->mnRelocQuery!=F->mnId) continue; accScore+=pKF2->mRelocScore; if(pKF2->mRelocScore>bestScore) { pBestKF=pKF2; bestScore = pKF2->mRelocScore; } } lAccScoreAndMatch.push_back(make_pair(accScore,pBestKF)); if(accScore>bestAccScore) bestAccScore=accScore; } // Return all those keyframes with a score higher than 0.75*bestScore float minScoreToRetain = 0.75f*bestAccScore; set spAlreadyAddedKF; vector vpRelocCandidates; vpRelocCandidates.reserve(lAccScoreAndMatch.size()); for(list >::iterator it=lAccScoreAndMatch.begin(), itend=lAccScoreAndMatch.end(); it!=itend; it++) { const float &si = it->first; if(si>minScoreToRetain) { KeyFrame* pKFi = it->second; if (pKFi->GetMap() != pMap) continue; if(!spAlreadyAddedKF.count(pKFi)) { vpRelocCandidates.push_back(pKFi); spAlreadyAddedKF.insert(pKFi); } } } return vpRelocCandidates; } void KeyFrameDatabase::SetORBVocabulary(ORBVocabulary* pORBVoc) { ORBVocabulary** ptr; ptr = (ORBVocabulary**)( &mpVoc ); *ptr = pORBVoc; mvInvertedFile.clear(); mvInvertedFile.resize(mpVoc->size()); } } //namespace ORB_SLAM