/** * This file is part of ORB-SLAM3 * * Copyright (C) 2017-2021 Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M.M. Montiel and Juan D. Tardós, University of Zaragoza. * Copyright (C) 2014-2016 Raúl Mur-Artal, José M.M. Montiel and Juan D. Tardós, University of Zaragoza. * * ORB-SLAM3 is free software: you can redistribute it and/or modify it under the terms of the GNU General Public * License as published by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * ORB-SLAM3 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even * the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with ORB-SLAM3. * If not, see . */ #include "Pinhole.h" #include // BOOST_CLASS_EXPORT_IMPLEMENT(ORB_SLAM3::Pinhole) namespace ORB_SLAM3 { // BOOST_CLASS_EXPORT_GUID(Pinhole, "Pinhole") long unsigned int GeometricCamera::nNextId = 0; /** * @brief 相机坐标系下的三维点投影到无畸变像素平面 * @param p3D 三维点 * @return 像素坐标 */ cv::Point2f Pinhole::project(const cv::Point3f &p3D) { return cv::Point2f(mvParameters[0] * p3D.x / p3D.z + mvParameters[2], mvParameters[1] * p3D.y / p3D.z + mvParameters[3]); } /** * @brief 相机坐标系下的三维点投影到无畸变像素平面 * @param v3D 三维点 * @return 像素坐标 */ Eigen::Vector2d Pinhole::project(const Eigen::Vector3d &v3D) { Eigen::Vector2d res; res[0] = mvParameters[0] * v3D[0] / v3D[2] + mvParameters[2]; res[1] = mvParameters[1] * v3D[1] / v3D[2] + mvParameters[3]; return res; } /** * @brief 相机坐标系下的三维点投影到无畸变像素平面 * @param v3D 三维点 * @return 像素坐标 */ Eigen::Vector2f Pinhole::project(const Eigen::Vector3f &v3D) { Eigen::Vector2f res; res[0] = mvParameters[0] * v3D[0] / v3D[2] + mvParameters[2]; res[1] = mvParameters[1] * v3D[1] / v3D[2] + mvParameters[3]; return res; } /** * @brief 相机坐标系下的三维点投影到无畸变像素平面 * @param p3D 三维点 * @return 像素坐标 */ Eigen::Vector2f Pinhole::projectMat(const cv::Point3f &p3D) { cv::Point2f point = this->project(p3D); return Eigen::Vector2f(point.x, point.y); } /** * @brief 貌似是调试遗留的产物 */ float Pinhole::uncertainty2(const Eigen::Matrix &p2D) { return 1.0; } /** * @brief 反投影 * @param p2D 特征点 * @return 归一化坐标 */ Eigen::Vector3f Pinhole::unprojectEig(const cv::Point2f &p2D) { return Eigen::Vector3f( (p2D.x - mvParameters[2]) / mvParameters[0], (p2D.y - mvParameters[3]) / mvParameters[1], 1.f); } /** * @brief 反投影 * @param p2D 特征点 * @return 归一化坐标 */ cv::Point3f Pinhole::unproject(const cv::Point2f &p2D) { return cv::Point3f( (p2D.x - mvParameters[2]) / mvParameters[0], (p2D.y - mvParameters[3]) / mvParameters[1], 1.f); } /** * @brief 求解二维像素坐标关于三维点坐标的雅克比矩阵 * @param v3D 三维点 * @return */ Eigen::Matrix Pinhole::projectJac(const Eigen::Vector3d &v3D) { Eigen::Matrix Jac; Jac(0, 0) = mvParameters[0] / v3D[2]; Jac(0, 1) = 0.f; Jac(0, 2) = -mvParameters[0] * v3D[0] / (v3D[2] * v3D[2]); Jac(1, 0) = 0.f; Jac(1, 1) = mvParameters[1] / v3D[2]; Jac(1, 2) = -mvParameters[1] * v3D[1] / (v3D[2] * v3D[2]); return Jac; } /** 三角化恢复三维点 单目初始化时使用 * @param vKeys1 第一帧的关键点 * @param vKeys2 第二帧的关键点 * @param vMatches12 匹配关系,长度与vKeys1一样,对应位置存放vKeys2中关键点的下标 * @param R21 顾名思义 * @param t21 顾名思义 * @param vP3D 恢复出的三维点 * @param vbTriangulated 是否三角化成功,用于统计匹配点数量 */ bool Pinhole::ReconstructWithTwoViews(const std::vector &vKeys1, const std::vector &vKeys2, const std::vector &vMatches12, Sophus::SE3f &T21, std::vector &vP3D, std::vector &vbTriangulated) { if (!tvr) { Eigen::Matrix3f K = this->toK_(); tvr = new TwoViewReconstruction(K); } return tvr->Reconstruct(vKeys1, vKeys2, vMatches12, T21, vP3D, vbTriangulated); } /** * @brief 返回内参矩阵 * @return K */ cv::Mat Pinhole::toK() { cv::Mat K = (cv::Mat_(3, 3) << mvParameters[0], 0.f, mvParameters[2], 0.f, mvParameters[1], mvParameters[3], 0.f, 0.f, 1.f); return K; } /** * @brief 返回内参矩阵 * @return K */ Eigen::Matrix3f Pinhole::toK_() { Eigen::Matrix3f K; K << mvParameters[0], 0.f, mvParameters[2], 0.f, mvParameters[1], mvParameters[3], 0.f, 0.f, 1.f; return K; } /** * @brief 极线约束 * @param pCamera2 右相机 * @param kp1 左相机特征点 * @param kp2 右相机特征点 * @param R12 2->1的旋转 * @param t12 2->1的平移 * @param sigmaLevel 特征点1的尺度的平方 * @param unc 特征点2的尺度的平方,1.2^2n * @return 三维点恢复的成功与否 */ bool Pinhole::epipolarConstrain( GeometricCamera *pCamera2, const cv::KeyPoint &kp1, const cv::KeyPoint &kp2, const Eigen::Matrix3f &R12, const Eigen::Vector3f &t12, const float sigmaLevel, const float unc) { // Compute Fundamental Matrix Eigen::Matrix3f t12x = Sophus::SO3f::hat(t12); Eigen::Matrix3f K1 = this->toK_(); Eigen::Matrix3f K2 = pCamera2->toK_(); Eigen::Matrix3f F12 = K1.transpose().inverse() * t12x * R12 * K2.inverse(); // Epipolar line in second image l = x1'F12 = [a b c] // u2, // (u1, v1, 1) * F12 * (v2,) = 0 --> (a, b, c) * (u2, v2, 1)^t = 0 --> a*u2 + b*v2 + c = 0 // 1 const float a = kp1.pt.x * F12(0, 0) + kp1.pt.y * F12(1, 0) + F12(2, 0); const float b = kp1.pt.x * F12(0, 1) + kp1.pt.y * F12(1, 1) + F12(2, 1); const float c = kp1.pt.x * F12(0, 2) + kp1.pt.y * F12(1, 2) + F12(2, 2); // 点到直线距离的公式 // d = |a*u2 + b*v2 + c| / sqrt(a^2 + b^2) const float num = a * kp2.pt.x + b * kp2.pt.y + c; const float den = a * a + b * b; if (den == 0) return false; const float dsqr = num * num / den; return dsqr < 3.84 * unc; } std::ostream &operator<<(std::ostream &os, const Pinhole &ph) { os << ph.mvParameters[0] << " " << ph.mvParameters[1] << " " << ph.mvParameters[2] << " " << ph.mvParameters[3]; return os; } std::istream & operator>>(std::istream &is, Pinhole &ph) { float nextParam; for(size_t i = 0; i < 4; i++){ assert(is.good()); //Make sure the input stream is good is >> nextParam; ph.mvParameters[i] = nextParam; } return is; } bool Pinhole::IsEqual(GeometricCamera *pCam) { if (pCam->GetType() != GeometricCamera::CAM_PINHOLE) return false; Pinhole *pPinholeCam = (Pinhole *)pCam; if (size() != pPinholeCam->size()) return false; bool is_same_camera = true; for (size_t i = 0; i < size(); ++i) { if (abs(mvParameters[i] - pPinholeCam->getParameter(i)) > 1e-6) { is_same_camera = false; break; } } return is_same_camera; } }