
Calibration Tutorial for ORB-SLAM3 v1.0

Juan J. Gómez Rodríguez, Carlos Campos, Juan D. Tardós

December 22, 2021

1 Introduction

This document contains a brief explanation of visual and visual-inertial calibration for
ORB-SLAM3 v1.0. In this version we introduce a new calibration file format whose main
novelties are:

• Improved readability with consistent naming.

• Option for internal rectification of stereo images.

• Option for internal resizing of the input images.

Some examples of use of the new calibration fromat can be found at directory Examples.
Although we recommend using the new file format, for the user convenience, we main-
tain compatibility with the file format used in previous versions, whose examples are in
directory Examples_old.

2 Reference systems and extrinsic parameters

Extrinsic calibration consists of the set of parameters which define how different sensors
are geometrically related. The most complex case is the stereo-inertial configuration,
shown in figure 1, where we define the following reference frames:

• World (W): Defines a fixed reference system, whose zW axis points in opposite
direction of the gravity vector g. Translation and yaw are freely set by the SLAM
system and remain fixed once initialized. In the pure visual case, the world reference
is set to the first camera pose.

• Body (B): This is the optimizable reference and is attached to the IMU. We assume
the gyroscope and the accelerometer share the same reference system. Body pose
TWB and velocity vB expressed in W are the optimizable variables.

• Cameras (C1 and C2): These are coincident with the optical center of the cameras,
with zC pointing forward along the optical axis, yC pointing down and xC pointing
to the right, both aligned with image directions u and v.

1



Figure 1: Reference systems defined for ORB-SLAM3 stereo-inertial.

Cameras and body poses relate as:

TWC1 = TWBTBC1 (1)
TWC2 = TWBTBC1TC1C2 (2)

where, for example, TWC1 ∈ SE(3) is the homogeneous transformation that passes points
expressed in camera one reference to the world reference:

xW = TWC1xC1 (3)

The extrinsic parameters that the calibration file needs to provide are:

• Stereo-inertial: TBC1 and TC1C2

• Monocular-inertial: TBC1

• Stereo: only TC1C2 , ORB-SLAM3 estimates the pose of the left camera (B = C1)

• Monocular: No parameters needed, ORB-SLAM3 estimates the camera pose.

If your camera or dataset provides rectified stereo images, the calibration file only
needs to specify the baseline, instead of the full TC1C2 transformation.

All the extrinsic parameters can be obtained using calibration software such as Kalibr
[3], as explained in section 4.

3 Intrinsic parameters

Those are calibration parameters which only depend on each sensor itself. Here, we
distinguish inertial and visual sensors.

2



3.1 Camera intrinsic parameters

Depending on camera set-up we will need to provide different calibration parameters.
Those can be calibrated using OpenCV or Kalibr [3]. At ORB-SLAM3 we distinguish
three camera types:

• Pinhole. The intrinsic parameters to provide are the camera focal length and central
point in pixel (fx, fy, cx, cy), together with the parameters for a radial-tangential
distortion model [4] with two or three radial distortion parameters (k1, k2, k3) and
two tangential distortion coefficients (p1, p2).

• KannalaBrandt8. The Kannala-Brandt model [2] is appropriate for cameras with
wide-angle and fisheye lenses. The camera parameters to provide are the focal length
and central point in pixels (fx, fy, cx, cy) and four coefficients for the equidistant
distortion model (k1, k2, k3, k4).

• Rectified. This camera type is to be used for camera or dataset that provide rectified
stereo images. In this case the calibration file only needs to provide (fx, fy, cx, cy)
for the rectified images and the stereo baseline b in meters.

In the case of stereo pinhole cameras, ORB-SLAM3 internally rectifies the left and
right images using OpenCV’s stereorectify function. To avoid losing resolution and
field-of-view, cameras of type KannalaBrandt8 are not rectified.

Examples of calibration files for the three camera types can be found at directory
Examples/Stereo-Inertial in files Euroc.yaml (Pinhole), TUM_VI_512.yaml (Kannal-
aBrandt8) and Realsense_D435i.yaml (Rectified).

3.2 IMU intrinsic parameters

IMU readings (linear acceleration ã and angular velocity ω̃) are affected by measurement
noise (ηa,ηg) and bias (ba,bg), such as:

ã =a+ ηa + ba (4)
ω̃ =ω + ηg + bg (5)

where a and ω are the true acceleration (gravity not subtracted) and angular velocity
at the body reference B. Measurement noises are assumed to follow centered normal
distributions, such that:

ηa ∼ N (0, σ2
aI3) (6)

ηg ∼ N (0, σ2
gI3) (7)

where σa and σg are both noise densities, which are characterized in the IMU data-sheet.
They need to be provided at the calibration file, with m/s2/

√
Hz and rad/s/

√
Hz units,

as shown in listing 1.
1 IMU.NoiseAcc: 0.0028 # m/s^1.5
2 IMU.NoiseGyro: 0.00016 # rad/s^0.5
3 IMU.Frequency: 200 # s^-1

Listing 1: Noise densities for IMU. Values are from TUM-VI dataset

3



When integrating the IMU measurements and estimating their covariances, the used
noise densities σa,f will depend on the IMU sampling frequency f , which must be provided
in the calibration file. This is internally managed by ORB-SLAM3, which computes
σa,f = σa/

√
f

Regarding biases, they are assumed to evolve according to a Brownian motion. Given
two consecutive instants i and i+ 1, this is characterized by:

ba
i+1 = ba

i + η
a
rw with ηa

rw ∼ N (0, σ2
a,rwI3) (8)

bg
i+1 = bg

i + η
g
rw with ηg

rw ∼ N (0, σ2
g,rwI3) (9)

where σa,rw and σg,rw need to be supplied in the calibration file, as shown in listing 2.

1 IMU.AccWalk: 0.00086 # m/s^2.5
2 IMU.GyroWalk: 0.000022 # rad/s^1.5

Listing 2: Random walk standard deviations for IMU biases. Values are from TUM-VI
dataset.

It is common practice to increase the random walk standard deviations provided by
the IMU manufacturer (say multiplying them by 10) to account for unmodelled effects
and improving the IMU initialization convergence.

4 Calibration example of Realsense D435i with Kalibr

Here we show an example of visual-inertial calibration for a Realsense D435i device in
monocular-inertial configuration. We will assume the realsense library (https://github.
com/IntelRealSense/librealsense) has been previously installed. For the calibration,
we will use the well-established Kalibr open source software [1, 3], which can be found at
https://github.com/ethz-asl/kalibr. We will follow the next steps:

• First, for simplicity, we will use Kalibr CDE. Just download it from https://
github.com/ethz-asl/kalibr/wiki/downloads

• As calibration pattern, we will adopt the the proposed April tag. You will find
templates for this pattern in the previous download page. You need to print it
and make sure pattern is just scaled and proportions are not modified. Update the
configuration .yaml file for this pattern. You can find a template corresponding to
the A0 size in the same download page.

• For recording the calibration sequences, you can use the SDK from realsense or our
provided recorder, simply running:

1 ./ Examples/Calibration/recorder_realsense_D435i ./ Examples/
Calibration/recorder

Listing 3: Run visual-inertial recorder

Make sure recorder directory exists and contains empty folders cam0 and IMU.

• Use python script to process IMU data and interpolate accelerometer measurements
to synchronize it with the gyroscope.

4

https://github.com/IntelRealSense/librealsense
https://github.com/IntelRealSense/librealsense
https://github.com/ethz-asl/kalibr
https://github.com/ethz-asl/kalibr/wiki/downloads
https://github.com/ethz-asl/kalibr/wiki/downloads


1 python3 ./ Examples/Calibration/python_scripts/process_imu.py ./
Examples/Calibration/recorder/

Listing 4: Run visual-inertial recorder

• Nest, you will need to convert this dataset to a rosbag with rosbag creater from
Kalibr. Run the next command from Kalibr CDE repository:

1 ./ kalibr_bagcreater --folder /path_to_ORB_SLAM3/Examples/
Calibration/recorder /. --output -bag /path_to_ORB_SLAM3/Examples/
Calibration/recorder.bag

Listing 5: Run visual-inertial recorder

4.1 Visual calibration

This step solves for the intrinsic camera parameters as well as relative camera transfor-
mation for stereo sensors. We will go through the next steps:

• Following previous section steps, record a dataset with slow motion to avoid image
blur, as well as good lighting to have a low exposure time. It could be even possible
to move the pattern instead of the camera, but make sure it is not deformed. An
example calibration sequence can be found at https://youtu.be/R_K9-O4ool8.

• Use a pattern as big as possible, so you can fill the whole image with the pattern
as far as possible, easing the camera focus. There not exists a minimum size for
this dataset, just try to have different points of view and make sure all pixels see
the pattern multiple times.

• You could decrease the frame rate for this calibration, to make Kalibr solution
faster, but this is not a requirement.

• Finally run the calibration from the Kalibr CDE repository:

1 ./ kalibr_calibrate_cameras --bag /path_to_ORB_SLAM3/Examples/
Calibration/recorder.bag --topics /cam0/image_raw --models
pinhole -radtan --target /path_to_ORB_SLAM3/Examples/Calibration/
april_to_be_updated.yaml

Listing 6: Run visual calibration

For our monocular Realsense D435i, we compare Kalibr and factory calibration at
table 1. Typical values of reprojection error for a successful visual calibration are
those whose mean is close to zero pixels (|µ| < 10−4) and its standard deviation
σ < 0.3.

4.2 Inertial calibration

Once calibrated visual parameters, we will continue with the inertial calibration:

• First, record a new dataset with fast motion, trying to excite accelerometer and
gyroscope along all their axes. Try to keep always most of the pattern visible in the
image, so Kalibr can accurately estimate its relative pose. Pattern should remain

5

https://youtu.be/R_K9-O4ool8


Table 1: Comparative factory/Kalibr calibration for Realsense D435i.

Factory Kalibr
fx 382.613 381.69830045 ± 0.47867208
fy 382.613 381.6587096 ± 0.48696699
cx 320.183 321.58237544 ± 0.40096812
cy 236.455 236.20193592 ± 0.38600065
k1 0 -0.00469988 ± 0.00171615
k2 0 0.00110469 ± 0.00196003
r1 0 -0.00029279 ± 0.00028587
r2 0 0.00066225 ± 0.00034486

fixed during this calibration. A suitable sequence for visual-inertial calibration can
be found at hhttps://youtu.be/4XkivVLw5k4

• You will need to provide the noise density and bias random walk for the IMU sensor.
You can find these values from IMU datasheet (BMI055 for Realsense D435i) or
estimate them using data acquired while keeping the IMU steady for a long period
of time.

• Finally run the calibration from the Kalibr CDE repository:

1 ./ kalibr_calibrate_imu_camera --bag /path_to_ORB_SLAM3/Examples/
Calibration/recorder.bag --cam /path_to_ORB_SLAM3/Examples/
Calibration/camera_calibration.yaml --imu /path_to_ORB_SLAM3/
Examples/Calibration/imu_intrinsics.yaml --target /
path_to_ORB_SLAM3/Examples/Calibration/april_to_be_updated.yaml

Listing 7: Run visual calibration

For our monocular Realsense D435i, we compare Kalibr and factory calibration at
table 2.

Table 2: Comparative factory/Kalibr calibration for Realsense D435i.

Factory Kalibr

TBC


1 0 0 −0.005
0 1 0 −0.005
0 0 1 0.0117
0 0 0 1




0.9999 0.0003 −0.0135 −0.0015
−0.0002 0.9999 0.0054 0.0004
0.0135 −0.0054 0.9999 0.0201

0 0 0 1



4.3 Launch ORB-SLAM3

With all these calibration parameters, you can finally create your .yaml file to be used
along with ORB-SLAM3. Finally, run ORB-SLAM launcher as:

1 ./ Examples/Monocular -Inertial/mono_inertial_realsense_D435i
Vocabulary/ORBvoc.txt Examples/Monocular -Inertial/RealSense_D435i.
yaml

Listing 8: Run real-time monocular-inertial SLAM

6

hhttps://youtu.be/4XkivVLw5k4


5 Reference for the new calibration files

This section summarizes all parameters that are required by ORB-SLAM3 in any of its
stages, including intrinsic and extrinsic calibration parameters, ORB extraction param-
eters and visualization settings. All this configuration parameters must be passed to
ORB-SLAM3 in a yaml file. In this type of files, data is stored as a <Key, value> pair,
encoding the parameter name and its value respectively. We now define all parameters
that ORB-SLAM3 accepts, their types and whether they are required or optional.

5.1 General calibration parameters

These are general calibration parameters:

• File.version = "1.0" [REQUIRED]: specifies that the new calibration file format
is being used.

• Camera.type (string) [REQUIRED]: specifies the camera type beeing used. Must
take one of the following values:

– PinHole when using pinhole cameras.

– KannalaBrandt8 when using fish-eye cameras with a Kannala-Bradt calibra-
tion model.

– Rectified when using a stereo rectified pinhole camera.

• Camera.height, Camera.width (int) [REQUIRED]: input image height and width.

• Camera.newHeight, Camera.newWidth (int) [OPTIONAL]: If defined, ORB-SLAM3
resizes the input images to the new resolution specified, recomputing the calibration
parameters as needed.

• Camera.fps (int) [REQUIRED]: frames per second of the video sequence.

• Camera.RGB (int) [REQUIRED]: specifies if the images are: BGR (0) or RGB
(1). It is ignored if the images are grayscale.

• System.thFarPoints (float) [OPTIONAL]: if defined, specifies the maximum depth
in meters allowed for a point. Points farther than this are ignored.

5.2 Camera intrinsic parameters

We define the Camera1 as the monocular camera (in monocular SLAM) or the left camera
(in stereo SLAM). Its intrinsic parameters correspond to:

• Camera1.fx, Camera1.fy, Camera1.cx, Camera1.cy (float) [REQUIRED]: corre-
sponds with the intrinsic calibration parameters of the camera 1.

If Camera.type is set to PinHole, you should specify:

• Camera1.k1, Camera1.k2 (float) [REQUIRED]: corresponds to the radial distor-
tion coefficients.

7



• Camera1.p1, Camera1.p2 (float) [REQUIRED]: corresponds to the tangential
distortion coefficients.

• Camera1.k3 (float) [OPTIONAL]: sometimes a third radial distortion parameter is
used. You can specify it with this parameter.

If Camera.type is set to KannalaBrandt8, you should specify:

• Camera1.k1, Camera1.k2, Camera1.k3, Camera1.k4 (float) [REQUIRED]: Kannala-
Brandt distortion coefficients.

If using a stereo camera, specify also the parameters for Camera2 (right camera),
unless Camera.type is set to Rectified in which case both cameras are assumed to have
the same parameters.

5.3 Stereo parameters

The following parameter is required for stereo configurations:

• Stereo.ThDepth (float) [REQUIRED]: it is the number of the stereo baselines we
use to classify a point as close or far. Close and far points are treated differently in
several parts of the stereo SLAM algorithm.

If Camera.type is set to Rectified, you need to add the following parameter:

• Stereo.b (float) [REQUIRED]: stereo baseline in meters.

If you are using a non-rectified stereo, you need to provide:

• Stereo.T_c1_c2 (cv::Mat) [REQUIRED]: relative pose between stereo cameras.

If you are using stereo fish-eye cameras (i.e. Camera.type is set to KannalaBrandt8 ),
you also need to specify the overlapping area between both images:

• Camera1.overlappingBegin, Camera2.overlappingBegin (int) [REQUIRED]: start
column of the overlapping area.

• Camera1.overlappingEnd, Camera2.overlappingEnd (int) [REQUIRED]: end col-
umn of the overlapping area.

5.4 Inertial parameters

When using a inertial sensor, the user must define the following parameters:

• IMU.NoiseGyro (float) [REQUIRED]: measurement noise density of the gyro-
scope.

• IMU.NoiseAcc (float) [REQUIRED]: measurement noise density of the accelerom-
eter.

• IMU.GyroWalk (float) [REQUIRED]: Random walk variance of the gyroscope.

8



• IMU.AccWalk (float) [REQUIRED]: Random walk variance of the accelerometer.

• IMU.Frequency (float) [REQUIRED]: IMU frequency.

• IMU.T_b_c1 (cv::Mat) [REQUIRED]: Relative pose between IMU and Camera1
(i.e. the transformation that takes a point from Camera1 to IMU ).

• IMU.InsertKFsWhenLost (int) [OPTIONAL]: Specifies if the system inserts KeyFrames
when the visual tracking is lost but the inertial tracking is alive.

5.5 RGB-D parameters

The following parameter is required for RGB-D cameras:

• RGBD.DepthMapFactor (float) [REQUIRED]: factor to transform the depth map
to real units.

5.6 ORB parameters

The following parameters are related with the ORB feature extraction:

• ORBextractor.nFeatures (int) [REQUIRED]: number of features to extract per
image.

• ORBextractor.scaleFactor (float) [REQUIRED]: scale factor between levels in the
image pyramid.

• ORBextractor.nLevels (int) [REQUIRED]: number of levels in the image pyramid.

• ORBextractor.iniThFAST (int) [REQUIRED]: initial threshold to detect FAST
corners.

• ORBextractor.minThFAST (int) [REQUIRED]: if no features are found with the
initial threshold, the system tries a second time with this threshold value.

5.7 Atlas parameters

These parameters define if we load/save a map from/to a file:

• System.LoadAtlasFromFile (string) [OPTIONAL]: file path where the map to load
is located.

• System.SaveAtlasToFile (string) [OPTIONAL]: destination file to save the map
generated.

9



5.8 Viewer parameters

These are some parameters related to the ORB-SLAM3 user interface:

• Viewer.KeyFrameSize (float) [REQUIRED]: size in which the KeyFrames are
drawn in the map viewer.

• Viewer.KeyFrameLineWidth (float) [REQUIRED]: line width of the KeyFrame
drawing.

• Viewer.GraphLineWidth (float) [REQUIRED]: line width of the covisibility graph.

• Viewer.PointSize (float) [REQUIRED]: size of the MapPoint drawing.

• Viewer.CameraSize (float) [REQUIRED]: size in which the current camera is
drawn in the map viewer.

• Viewer.CameraLineWidth (float) [REQUIRED]: line width of the current camera
drawing.

• Viewer.ViewpointX, Viewer.ViewpointY, Viewer.ViewpointZ, Viewer.ViewpointF
(float) [REQUIRED]: starting view point of the map viewer.

• Viewer.imageViewScale (float) OPTIONAL: resize factor for the image visualiza-
tion (only for visualization, not used in the SLAM pipeline).

References

[1] Paul Furgale, Joern Rehder, and Roland Siegwart. Unified temporal and spatial
calibration for multi-sensor systems. In IROS, pages 1280–1286. IEEE, 2013.

[2] Juho Kannala and Sami S Brandt. A generic camera model and calibration method
for conventional, wide-angle, and fish-eye lenses. IEEE Trans. Pattern Analysis and
Machine Intelligence, 28(8):1335–1340, 2006.

[3] Joern Rehder, Janosch Nikolic, Thomas Schneider, Timo Hinzmann, and Roland Sieg-
wart. Extending kalibr: Calibrating the extrinsics of multiple IMUs and of individual
axes. In Proc. IEEE Int. Conf. Robotics and Automation (ICRA), pages 4304–4311,
2016.

[4] Richard Szeliski. Computer vision: algorithms and applications. Springer Verlag,
London, 2011.

10


	Introduction
	Reference systems and extrinsic parameters
	Intrinsic parameters
	Camera intrinsic parameters
	IMU intrinsic parameters

	Calibration example of Realsense D435i with Kalibr
	Visual calibration
	Inertial calibration
	Launch ORB-SLAM3

	Reference for the new calibration files
	General calibration parameters
	Camera intrinsic parameters
	Stereo parameters
	Inertial parameters
	RGB-D parameters
	ORB parameters
	Atlas parameters
	Viewer parameters


