/** * This file is part of ORB-SLAM3 * * Copyright (C) 2017-2021 Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M.M. Montiel and Juan D. Tardós, University of Zaragoza. * Copyright (C) 2014-2016 Raúl Mur-Artal, José M.M. Montiel and Juan D. Tardós, University of Zaragoza. * * ORB-SLAM3 is free software: you can redistribute it and/or modify it under the terms of the GNU General Public * License as published by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * ORB-SLAM3 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even * the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with ORB-SLAM3. * If not, see . */ #include "GeometricTools.h" #include "KeyFrame.h" namespace ORB_SLAM3 { /** * @brief 计算两个关键帧间的基础矩阵 * @param pKF1 关键帧1 * @param pKF2 关键帧2 */ Eigen::Matrix3f GeometricTools::ComputeF12(KeyFrame* &pKF1, KeyFrame* &pKF2) { // 获取关键帧1的旋转平移 Sophus::SE3 Tc1w = pKF1->GetPose(); Sophus::Matrix3 Rc1w = Tc1w.rotationMatrix(); Sophus::SE3::TranslationMember tc1w = Tc1w.translation(); // 获取关键帧2的旋转平移 Sophus::SE3 Tc2w = pKF2->GetPose(); Sophus::Matrix3 Rc2w = Tc2w.rotationMatrix(); Sophus::SE3::TranslationMember tc2w = Tc2w.translation(); // 计算2->1的旋转平移 Sophus::Matrix3 Rc1c2 = Rc1w * Rc2w.transpose(); Eigen::Vector3f tc1c2 = -Rc1c2 * tc2w + tc1w; Eigen::Matrix3f tc1c2x = Sophus::SO3f::hat(tc1c2); const Eigen::Matrix3f K1 = pKF1->mpCamera->toK_(); const Eigen::Matrix3f K2 = pKF2->mpCamera->toK_(); return K1.transpose().inverse() * tc1c2x * Rc1c2 * K2.inverse(); } /** * @brief 三角化获得三维点 * @param x_c1 点在关键帧1下的归一化坐标 * @param x_c2 点在关键帧2下的归一化坐标 * @param Tc1w 关键帧1投影矩阵 [K*R | K*t] * @param Tc2w 关键帧2投影矩阵 [K*R | K*t] * @param x3D 三维点坐标,作为结果输出 */ bool GeometricTools::Triangulate( Eigen::Vector3f &x_c1, Eigen::Vector3f &x_c2, Eigen::Matrix &Tc1w, Eigen::Matrix &Tc2w, Eigen::Vector3f &x3D) { Eigen::Matrix4f A; // x = a*P*X, 左右两面乘Pc的反对称矩阵 a*[x]^ * P *X = 0 构成了A矩阵,中间涉及一个尺度a,因为都是归一化平面,但右面是0所以直接可以约掉不影响最后的尺度 // 0 -1 v P(0) -P.row(1) + v*P.row(2) // 1 0 -u * P(1) = P.row(0) - u*P.row(2) // -v u 0 P(2) u*P.row(1) - v*P.row(0) // 发现上述矩阵线性相关,所以取前两维,两个点构成了4行的矩阵,就是如下的操作,求出的是4维的结果[X,Y,Z,A],所以需要除以最后一维使之为1,就成了[X,Y,Z,1]这种齐次形式 A.block<1,4>(0,0) = x_c1(0) * Tc1w.block<1,4>(2,0) - Tc1w.block<1,4>(0,0); A.block<1,4>(1,0) = x_c1(1) * Tc1w.block<1,4>(2,0) - Tc1w.block<1,4>(1,0); A.block<1,4>(2,0) = x_c2(0) * Tc2w.block<1,4>(2,0) - Tc2w.block<1,4>(0,0); A.block<1,4>(3,0) = x_c2(1) * Tc2w.block<1,4>(2,0) - Tc2w.block<1,4>(1,0); // 解方程 AX=0 Eigen::JacobiSVD svd(A, Eigen::ComputeFullV); Eigen::Vector4f x3Dh = svd.matrixV().col(3); if(x3Dh(3)==0) return false; // Euclidean coordinates x3D = x3Dh.head(3)/x3Dh(3); return true; } } //namespace ORB_SLAM