orb_slam3_details/src/Optimizer.cc

5595 lines
189 KiB
C++
Raw Normal View History

2020-12-01 11:58:17 +08:00
/**
* This file is part of ORB-SLAM3
*
2022-03-28 21:20:28 +08:00
* Copyright (C) 2017-2021 Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
2020-12-01 11:58:17 +08:00
* Copyright (C) 2014-2016 Raúl Mur-Artal, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
*
* ORB-SLAM3 is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* ORB-SLAM3 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
* the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with ORB-SLAM3.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "Optimizer.h"
#include <complex>
#include <Eigen/StdVector>
#include <Eigen/Dense>
#include <unsupported/Eigen/MatrixFunctions>
#include "Thirdparty/g2o/g2o/core/sparse_block_matrix.h"
#include "Thirdparty/g2o/g2o/core/block_solver.h"
#include "Thirdparty/g2o/g2o/core/optimization_algorithm_levenberg.h"
#include "Thirdparty/g2o/g2o/core/optimization_algorithm_gauss_newton.h"
#include "Thirdparty/g2o/g2o/solvers/linear_solver_eigen.h"
#include "Thirdparty/g2o/g2o/types/types_six_dof_expmap.h"
#include "Thirdparty/g2o/g2o/core/robust_kernel_impl.h"
#include "Thirdparty/g2o/g2o/solvers/linear_solver_dense.h"
#include "G2oTypes.h"
#include "Converter.h"
#include<mutex>
#include "OptimizableTypes.h"
namespace ORB_SLAM3
{
bool sortByVal(const pair<MapPoint*, int> &a, const pair<MapPoint*, int> &b)
{
return (a.second < b.second);
}
void Optimizer::GlobalBundleAdjustemnt(Map* pMap, int nIterations, bool* pbStopFlag, const unsigned long nLoopKF, const bool bRobust)
{
vector<KeyFrame*> vpKFs = pMap->GetAllKeyFrames();
vector<MapPoint*> vpMP = pMap->GetAllMapPoints();
BundleAdjustment(vpKFs,vpMP,nIterations,pbStopFlag, nLoopKF, bRobust);
}
2022-03-28 21:20:28 +08:00
2020-12-01 11:58:17 +08:00
void Optimizer::BundleAdjustment(const vector<KeyFrame *> &vpKFs, const vector<MapPoint *> &vpMP,
int nIterations, bool* pbStopFlag, const unsigned long nLoopKF, const bool bRobust)
{
vector<bool> vbNotIncludedMP;
vbNotIncludedMP.resize(vpMP.size());
Map* pMap = vpKFs[0]->GetMap();
g2o::SparseOptimizer optimizer;
g2o::BlockSolver_6_3::LinearSolverType * linearSolver;
linearSolver = new g2o::LinearSolverEigen<g2o::BlockSolver_6_3::PoseMatrixType>();
g2o::BlockSolver_6_3 * solver_ptr = new g2o::BlockSolver_6_3(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
optimizer.setAlgorithm(solver);
optimizer.setVerbose(false);
if(pbStopFlag)
optimizer.setForceStopFlag(pbStopFlag);
long unsigned int maxKFid = 0;
const int nExpectedSize = (vpKFs.size())*vpMP.size();
vector<ORB_SLAM3::EdgeSE3ProjectXYZ*> vpEdgesMono;
vpEdgesMono.reserve(nExpectedSize);
vector<ORB_SLAM3::EdgeSE3ProjectXYZToBody*> vpEdgesBody;
vpEdgesBody.reserve(nExpectedSize);
vector<KeyFrame*> vpEdgeKFMono;
vpEdgeKFMono.reserve(nExpectedSize);
vector<KeyFrame*> vpEdgeKFBody;
vpEdgeKFBody.reserve(nExpectedSize);
vector<MapPoint*> vpMapPointEdgeMono;
vpMapPointEdgeMono.reserve(nExpectedSize);
vector<MapPoint*> vpMapPointEdgeBody;
vpMapPointEdgeBody.reserve(nExpectedSize);
vector<g2o::EdgeStereoSE3ProjectXYZ*> vpEdgesStereo;
vpEdgesStereo.reserve(nExpectedSize);
vector<KeyFrame*> vpEdgeKFStereo;
vpEdgeKFStereo.reserve(nExpectedSize);
vector<MapPoint*> vpMapPointEdgeStereo;
vpMapPointEdgeStereo.reserve(nExpectedSize);
// Set KeyFrame vertices
for(size_t i=0; i<vpKFs.size(); i++)
{
KeyFrame* pKF = vpKFs[i];
if(pKF->isBad())
continue;
g2o::VertexSE3Expmap * vSE3 = new g2o::VertexSE3Expmap();
2022-03-28 21:20:28 +08:00
Sophus::SE3<float> Tcw = pKF->GetPose();
vSE3->setEstimate(g2o::SE3Quat(Tcw.unit_quaternion().cast<double>(),Tcw.translation().cast<double>()));
2020-12-01 11:58:17 +08:00
vSE3->setId(pKF->mnId);
vSE3->setFixed(pKF->mnId==pMap->GetInitKFid());
optimizer.addVertex(vSE3);
if(pKF->mnId>maxKFid)
maxKFid=pKF->mnId;
}
2022-03-28 21:20:28 +08:00
const float thHuber2D = sqrt(5.99);
const float thHuber3D = sqrt(7.815);
2020-12-01 11:58:17 +08:00
// Set MapPoint vertices
for(size_t i=0; i<vpMP.size(); i++)
{
MapPoint* pMP = vpMP[i];
if(pMP->isBad())
continue;
g2o::VertexSBAPointXYZ* vPoint = new g2o::VertexSBAPointXYZ();
2022-03-28 21:20:28 +08:00
vPoint->setEstimate(pMP->GetWorldPos().cast<double>());
2020-12-01 11:58:17 +08:00
const int id = pMP->mnId+maxKFid+1;
vPoint->setId(id);
vPoint->setMarginalized(true);
optimizer.addVertex(vPoint);
const map<KeyFrame*,tuple<int,int>> observations = pMP->GetObservations();
int nEdges = 0;
//SET EDGES
for(map<KeyFrame*,tuple<int,int>>::const_iterator mit=observations.begin(); mit!=observations.end(); mit++)
{
KeyFrame* pKF = mit->first;
if(pKF->isBad() || pKF->mnId>maxKFid)
continue;
if(optimizer.vertex(id) == NULL || optimizer.vertex(pKF->mnId) == NULL)
continue;
nEdges++;
const int leftIndex = get<0>(mit->second);
if(leftIndex != -1 && pKF->mvuRight[get<0>(mit->second)]<0)
{
const cv::KeyPoint &kpUn = pKF->mvKeysUn[leftIndex];
Eigen::Matrix<double,2,1> obs;
obs << kpUn.pt.x, kpUn.pt.y;
ORB_SLAM3::EdgeSE3ProjectXYZ* e = new ORB_SLAM3::EdgeSE3ProjectXYZ();
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKF->mnId)));
e->setMeasurement(obs);
const float &invSigma2 = pKF->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
if(bRobust)
{
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuber2D);
}
e->pCamera = pKF->mpCamera;
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vpEdgeKFMono.push_back(pKF);
vpMapPointEdgeMono.push_back(pMP);
}
else if(leftIndex != -1 && pKF->mvuRight[leftIndex] >= 0) //Stereo observation
{
const cv::KeyPoint &kpUn = pKF->mvKeysUn[leftIndex];
Eigen::Matrix<double,3,1> obs;
const float kp_ur = pKF->mvuRight[get<0>(mit->second)];
obs << kpUn.pt.x, kpUn.pt.y, kp_ur;
g2o::EdgeStereoSE3ProjectXYZ* e = new g2o::EdgeStereoSE3ProjectXYZ();
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKF->mnId)));
e->setMeasurement(obs);
const float &invSigma2 = pKF->mvInvLevelSigma2[kpUn.octave];
Eigen::Matrix3d Info = Eigen::Matrix3d::Identity()*invSigma2;
e->setInformation(Info);
if(bRobust)
{
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuber3D);
}
e->fx = pKF->fx;
e->fy = pKF->fy;
e->cx = pKF->cx;
e->cy = pKF->cy;
e->bf = pKF->mbf;
optimizer.addEdge(e);
vpEdgesStereo.push_back(e);
vpEdgeKFStereo.push_back(pKF);
vpMapPointEdgeStereo.push_back(pMP);
}
if(pKF->mpCamera2){
int rightIndex = get<1>(mit->second);
if(rightIndex != -1 && rightIndex < pKF->mvKeysRight.size()){
rightIndex -= pKF->NLeft;
Eigen::Matrix<double,2,1> obs;
cv::KeyPoint kp = pKF->mvKeysRight[rightIndex];
obs << kp.pt.x, kp.pt.y;
ORB_SLAM3::EdgeSE3ProjectXYZToBody *e = new ORB_SLAM3::EdgeSE3ProjectXYZToBody();
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKF->mnId)));
e->setMeasurement(obs);
const float &invSigma2 = pKF->mvInvLevelSigma2[kp.octave];
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuber2D);
2022-03-28 21:20:28 +08:00
Sophus::SE3f Trl = pKF-> GetRelativePoseTrl();
e->mTrl = g2o::SE3Quat(Trl.unit_quaternion().cast<double>(), Trl.translation().cast<double>());
2020-12-01 11:58:17 +08:00
e->pCamera = pKF->mpCamera2;
optimizer.addEdge(e);
vpEdgesBody.push_back(e);
vpEdgeKFBody.push_back(pKF);
vpMapPointEdgeBody.push_back(pMP);
}
}
}
if(nEdges==0)
{
optimizer.removeVertex(vPoint);
vbNotIncludedMP[i]=true;
}
else
{
vbNotIncludedMP[i]=false;
}
}
// Optimize!
optimizer.setVerbose(false);
optimizer.initializeOptimization();
optimizer.optimize(nIterations);
Verbose::PrintMess("BA: End of the optimization", Verbose::VERBOSITY_NORMAL);
// Recover optimized data
2022-03-28 21:20:28 +08:00
//Keyframes
2020-12-01 11:58:17 +08:00
for(size_t i=0; i<vpKFs.size(); i++)
{
KeyFrame* pKF = vpKFs[i];
if(pKF->isBad())
continue;
g2o::VertexSE3Expmap* vSE3 = static_cast<g2o::VertexSE3Expmap*>(optimizer.vertex(pKF->mnId));
g2o::SE3Quat SE3quat = vSE3->estimate();
if(nLoopKF==pMap->GetOriginKF()->mnId)
{
2022-03-28 21:20:28 +08:00
pKF->SetPose(Sophus::SE3f(SE3quat.rotation().cast<float>(), SE3quat.translation().cast<float>()));
2020-12-01 11:58:17 +08:00
}
else
{
2022-03-28 21:20:28 +08:00
pKF->mTcwGBA = Sophus::SE3d(SE3quat.rotation(),SE3quat.translation()).cast<float>();
2020-12-01 11:58:17 +08:00
pKF->mnBAGlobalForKF = nLoopKF;
2022-03-28 21:20:28 +08:00
Sophus::SE3f mTwc = pKF->GetPoseInverse();
Sophus::SE3f mTcGBA_c = pKF->mTcwGBA * mTwc;
Eigen::Vector3f vector_dist = mTcGBA_c.translation();
double dist = vector_dist.norm();
2020-12-01 11:58:17 +08:00
if(dist > 1)
{
int numMonoBadPoints = 0, numMonoOptPoints = 0;
int numStereoBadPoints = 0, numStereoOptPoints = 0;
vector<MapPoint*> vpMonoMPsOpt, vpStereoMPsOpt;
2022-03-28 21:20:28 +08:00
for(size_t i2=0, iend=vpEdgesMono.size(); i2<iend;i2++)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
ORB_SLAM3::EdgeSE3ProjectXYZ* e = vpEdgesMono[i2];
MapPoint* pMP = vpMapPointEdgeMono[i2];
KeyFrame* pKFedge = vpEdgeKFMono[i2];
2020-12-01 11:58:17 +08:00
if(pKF != pKFedge)
{
continue;
}
if(pMP->isBad())
continue;
if(e->chi2()>5.991 || !e->isDepthPositive())
{
numMonoBadPoints++;
}
else
{
numMonoOptPoints++;
vpMonoMPsOpt.push_back(pMP);
}
}
2022-03-28 21:20:28 +08:00
for(size_t i2=0, iend=vpEdgesStereo.size(); i2<iend;i2++)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
g2o::EdgeStereoSE3ProjectXYZ* e = vpEdgesStereo[i2];
MapPoint* pMP = vpMapPointEdgeStereo[i2];
KeyFrame* pKFedge = vpEdgeKFMono[i2];
2020-12-01 11:58:17 +08:00
if(pKF != pKFedge)
{
continue;
}
if(pMP->isBad())
continue;
if(e->chi2()>7.815 || !e->isDepthPositive())
{
numStereoBadPoints++;
}
else
{
numStereoOptPoints++;
vpStereoMPsOpt.push_back(pMP);
}
}
}
}
}
2022-03-28 21:20:28 +08:00
//Points
2020-12-01 11:58:17 +08:00
for(size_t i=0; i<vpMP.size(); i++)
{
if(vbNotIncludedMP[i])
continue;
MapPoint* pMP = vpMP[i];
if(pMP->isBad())
continue;
g2o::VertexSBAPointXYZ* vPoint = static_cast<g2o::VertexSBAPointXYZ*>(optimizer.vertex(pMP->mnId+maxKFid+1));
if(nLoopKF==pMap->GetOriginKF()->mnId)
{
2022-03-28 21:20:28 +08:00
pMP->SetWorldPos(vPoint->estimate().cast<float>());
2020-12-01 11:58:17 +08:00
pMP->UpdateNormalAndDepth();
}
else
{
2022-03-28 21:20:28 +08:00
pMP->mPosGBA = vPoint->estimate().cast<float>();
2020-12-01 11:58:17 +08:00
pMP->mnBAGlobalForKF = nLoopKF;
}
}
}
void Optimizer::FullInertialBA(Map *pMap, int its, const bool bFixLocal, const long unsigned int nLoopId, bool *pbStopFlag, bool bInit, float priorG, float priorA, Eigen::VectorXd *vSingVal, bool *bHess)
{
long unsigned int maxKFid = pMap->GetMaxKFid();
const vector<KeyFrame*> vpKFs = pMap->GetAllKeyFrames();
const vector<MapPoint*> vpMPs = pMap->GetAllMapPoints();
// Setup optimizer
g2o::SparseOptimizer optimizer;
g2o::BlockSolverX::LinearSolverType * linearSolver;
linearSolver = new g2o::LinearSolverEigen<g2o::BlockSolverX::PoseMatrixType>();
g2o::BlockSolverX * solver_ptr = new g2o::BlockSolverX(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
solver->setUserLambdaInit(1e-5);
optimizer.setAlgorithm(solver);
optimizer.setVerbose(false);
if(pbStopFlag)
optimizer.setForceStopFlag(pbStopFlag);
int nNonFixed = 0;
// Set KeyFrame vertices
2022-03-28 21:20:28 +08:00
KeyFrame* pIncKF;
2020-12-01 11:58:17 +08:00
for(size_t i=0; i<vpKFs.size(); i++)
{
KeyFrame* pKFi = vpKFs[i];
if(pKFi->mnId>maxKFid)
continue;
VertexPose * VP = new VertexPose(pKFi);
VP->setId(pKFi->mnId);
pIncKF=pKFi;
bool bFixed = false;
if(bFixLocal)
{
bFixed = (pKFi->mnBALocalForKF>=(maxKFid-1)) || (pKFi->mnBAFixedForKF>=(maxKFid-1));
if(!bFixed)
nNonFixed++;
2022-03-28 21:20:28 +08:00
VP->setFixed(bFixed);
2020-12-01 11:58:17 +08:00
}
optimizer.addVertex(VP);
2022-03-28 21:20:28 +08:00
2020-12-01 11:58:17 +08:00
if(pKFi->bImu)
{
VertexVelocity* VV = new VertexVelocity(pKFi);
VV->setId(maxKFid+3*(pKFi->mnId)+1);
VV->setFixed(bFixed);
optimizer.addVertex(VV);
if (!bInit)
{
VertexGyroBias* VG = new VertexGyroBias(pKFi);
VG->setId(maxKFid+3*(pKFi->mnId)+2);
VG->setFixed(bFixed);
optimizer.addVertex(VG);
VertexAccBias* VA = new VertexAccBias(pKFi);
VA->setId(maxKFid+3*(pKFi->mnId)+3);
VA->setFixed(bFixed);
optimizer.addVertex(VA);
}
}
}
2022-03-28 21:20:28 +08:00
2020-12-01 11:58:17 +08:00
if (bInit)
{
VertexGyroBias* VG = new VertexGyroBias(pIncKF);
VG->setId(4*maxKFid+2);
VG->setFixed(false);
optimizer.addVertex(VG);
VertexAccBias* VA = new VertexAccBias(pIncKF);
VA->setId(4*maxKFid+3);
VA->setFixed(false);
optimizer.addVertex(VA);
}
2022-03-28 21:20:28 +08:00
2020-12-01 11:58:17 +08:00
if(bFixLocal)
{
if(nNonFixed<3)
return;
}
// IMU links
for(size_t i=0;i<vpKFs.size();i++)
{
KeyFrame* pKFi = vpKFs[i];
2022-03-28 21:20:28 +08:00
2020-12-01 11:58:17 +08:00
if(!pKFi->mPrevKF)
{
Verbose::PrintMess("NOT INERTIAL LINK TO PREVIOUS FRAME!", Verbose::VERBOSITY_NORMAL);
continue;
}
if(pKFi->mPrevKF && pKFi->mnId<=maxKFid)
{
if(pKFi->isBad() || pKFi->mPrevKF->mnId>maxKFid)
continue;
if(pKFi->bImu && pKFi->mPrevKF->bImu)
{
pKFi->mpImuPreintegrated->SetNewBias(pKFi->mPrevKF->GetImuBias());
g2o::HyperGraph::Vertex* VP1 = optimizer.vertex(pKFi->mPrevKF->mnId);
g2o::HyperGraph::Vertex* VV1 = optimizer.vertex(maxKFid+3*(pKFi->mPrevKF->mnId)+1);
g2o::HyperGraph::Vertex* VG1;
g2o::HyperGraph::Vertex* VA1;
g2o::HyperGraph::Vertex* VG2;
g2o::HyperGraph::Vertex* VA2;
if (!bInit)
{
VG1 = optimizer.vertex(maxKFid+3*(pKFi->mPrevKF->mnId)+2);
VA1 = optimizer.vertex(maxKFid+3*(pKFi->mPrevKF->mnId)+3);
VG2 = optimizer.vertex(maxKFid+3*(pKFi->mnId)+2);
VA2 = optimizer.vertex(maxKFid+3*(pKFi->mnId)+3);
}
else
{
VG1 = optimizer.vertex(4*maxKFid+2);
VA1 = optimizer.vertex(4*maxKFid+3);
}
g2o::HyperGraph::Vertex* VP2 = optimizer.vertex(pKFi->mnId);
g2o::HyperGraph::Vertex* VV2 = optimizer.vertex(maxKFid+3*(pKFi->mnId)+1);
if (!bInit)
{
if(!VP1 || !VV1 || !VG1 || !VA1 || !VP2 || !VV2 || !VG2 || !VA2)
{
cout << "Error" << VP1 << ", "<< VV1 << ", "<< VG1 << ", "<< VA1 << ", " << VP2 << ", " << VV2 << ", "<< VG2 << ", "<< VA2 <<endl;
continue;
}
}
else
{
if(!VP1 || !VV1 || !VG1 || !VA1 || !VP2 || !VV2)
{
cout << "Error" << VP1 << ", "<< VV1 << ", "<< VG1 << ", "<< VA1 << ", " << VP2 << ", " << VV2 <<endl;
continue;
}
}
2022-03-28 21:20:28 +08:00
2020-12-01 11:58:17 +08:00
EdgeInertial* ei = new EdgeInertial(pKFi->mpImuPreintegrated);
ei->setVertex(0,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VP1));
ei->setVertex(1,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VV1));
ei->setVertex(2,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VG1));
ei->setVertex(3,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VA1));
ei->setVertex(4,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VP2));
ei->setVertex(5,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VV2));
g2o::RobustKernelHuber* rki = new g2o::RobustKernelHuber;
ei->setRobustKernel(rki);
rki->setDelta(sqrt(16.92));
optimizer.addEdge(ei);
2022-03-28 21:20:28 +08:00
2020-12-01 11:58:17 +08:00
if (!bInit)
{
EdgeGyroRW* egr= new EdgeGyroRW();
egr->setVertex(0,VG1);
egr->setVertex(1,VG2);
2022-03-28 21:20:28 +08:00
Eigen::Matrix3d InfoG = pKFi->mpImuPreintegrated->C.block<3,3>(9,9).cast<double>().inverse();
2020-12-01 11:58:17 +08:00
egr->setInformation(InfoG);
egr->computeError();
optimizer.addEdge(egr);
EdgeAccRW* ear = new EdgeAccRW();
ear->setVertex(0,VA1);
ear->setVertex(1,VA2);
2022-03-28 21:20:28 +08:00
Eigen::Matrix3d InfoA = pKFi->mpImuPreintegrated->C.block<3,3>(12,12).cast<double>().inverse();
2020-12-01 11:58:17 +08:00
ear->setInformation(InfoA);
ear->computeError();
optimizer.addEdge(ear);
}
}
else
cout << pKFi->mnId << " or " << pKFi->mPrevKF->mnId << " no imu" << endl;
}
}
2022-03-28 21:20:28 +08:00
2020-12-01 11:58:17 +08:00
if (bInit)
{
g2o::HyperGraph::Vertex* VG = optimizer.vertex(4*maxKFid+2);
g2o::HyperGraph::Vertex* VA = optimizer.vertex(4*maxKFid+3);
// Add prior to comon biases
2022-03-28 21:20:28 +08:00
Eigen::Vector3f bprior;
bprior.setZero();
EdgePriorAcc* epa = new EdgePriorAcc(bprior);
2020-12-01 11:58:17 +08:00
epa->setVertex(0,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VA));
double infoPriorA = priorA; //
epa->setInformation(infoPriorA*Eigen::Matrix3d::Identity());
optimizer.addEdge(epa);
2022-03-28 21:20:28 +08:00
EdgePriorGyro* epg = new EdgePriorGyro(bprior);
2020-12-01 11:58:17 +08:00
epg->setVertex(0,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VG));
double infoPriorG = priorG; //
epg->setInformation(infoPriorG*Eigen::Matrix3d::Identity());
optimizer.addEdge(epg);
}
const float thHuberMono = sqrt(5.991);
const float thHuberStereo = sqrt(7.815);
const unsigned long iniMPid = maxKFid*5;
vector<bool> vbNotIncludedMP(vpMPs.size(),false);
for(size_t i=0; i<vpMPs.size(); i++)
{
MapPoint* pMP = vpMPs[i];
g2o::VertexSBAPointXYZ* vPoint = new g2o::VertexSBAPointXYZ();
2022-03-28 21:20:28 +08:00
vPoint->setEstimate(pMP->GetWorldPos().cast<double>());
2020-12-01 11:58:17 +08:00
unsigned long id = pMP->mnId+iniMPid+1;
vPoint->setId(id);
vPoint->setMarginalized(true);
optimizer.addVertex(vPoint);
const map<KeyFrame*,tuple<int,int>> observations = pMP->GetObservations();
bool bAllFixed = true;
//Set edges
for(map<KeyFrame*,tuple<int,int>>::const_iterator mit=observations.begin(), mend=observations.end(); mit!=mend; mit++)
{
KeyFrame* pKFi = mit->first;
if(pKFi->mnId>maxKFid)
continue;
if(!pKFi->isBad())
{
const int leftIndex = get<0>(mit->second);
cv::KeyPoint kpUn;
2022-03-28 21:20:28 +08:00
2020-12-01 11:58:17 +08:00
if(leftIndex != -1 && pKFi->mvuRight[get<0>(mit->second)]<0) // Monocular observation
{
kpUn = pKFi->mvKeysUn[leftIndex];
Eigen::Matrix<double,2,1> obs;
obs << kpUn.pt.x, kpUn.pt.y;
EdgeMono* e = new EdgeMono(0);
g2o::OptimizableGraph::Vertex* VP = dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFi->mnId));
if(bAllFixed)
if(!VP->fixed())
bAllFixed=false;
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, VP);
e->setMeasurement(obs);
const float invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberMono);
optimizer.addEdge(e);
}
else if(leftIndex != -1 && pKFi->mvuRight[leftIndex] >= 0) // stereo observation
{
kpUn = pKFi->mvKeysUn[leftIndex];
const float kp_ur = pKFi->mvuRight[leftIndex];
Eigen::Matrix<double,3,1> obs;
obs << kpUn.pt.x, kpUn.pt.y, kp_ur;
EdgeStereo* e = new EdgeStereo(0);
g2o::OptimizableGraph::Vertex* VP = dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFi->mnId));
if(bAllFixed)
if(!VP->fixed())
bAllFixed=false;
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, VP);
e->setMeasurement(obs);
const float invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix3d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberStereo);
optimizer.addEdge(e);
}
if(pKFi->mpCamera2){ // Monocular right observation
int rightIndex = get<1>(mit->second);
if(rightIndex != -1 && rightIndex < pKFi->mvKeysRight.size()){
rightIndex -= pKFi->NLeft;
Eigen::Matrix<double,2,1> obs;
kpUn = pKFi->mvKeysRight[rightIndex];
obs << kpUn.pt.x, kpUn.pt.y;
EdgeMono *e = new EdgeMono(1);
g2o::OptimizableGraph::Vertex* VP = dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFi->mnId));
if(bAllFixed)
if(!VP->fixed())
bAllFixed=false;
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, VP);
e->setMeasurement(obs);
const float invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberMono);
optimizer.addEdge(e);
}
}
}
}
if(bAllFixed)
{
optimizer.removeVertex(vPoint);
vbNotIncludedMP[i]=true;
}
}
if(pbStopFlag)
if(*pbStopFlag)
return;
optimizer.initializeOptimization();
optimizer.optimize(its);
2022-03-28 21:20:28 +08:00
2020-12-01 11:58:17 +08:00
// Recover optimized data
//Keyframes
for(size_t i=0; i<vpKFs.size(); i++)
{
KeyFrame* pKFi = vpKFs[i];
if(pKFi->mnId>maxKFid)
continue;
VertexPose* VP = static_cast<VertexPose*>(optimizer.vertex(pKFi->mnId));
if(nLoopId==0)
{
2022-03-28 21:20:28 +08:00
Sophus::SE3f Tcw(VP->estimate().Rcw[0].cast<float>(), VP->estimate().tcw[0].cast<float>());
2020-12-01 11:58:17 +08:00
pKFi->SetPose(Tcw);
}
else
{
2022-03-28 21:20:28 +08:00
pKFi->mTcwGBA = Sophus::SE3f(VP->estimate().Rcw[0].cast<float>(),VP->estimate().tcw[0].cast<float>());
2020-12-01 11:58:17 +08:00
pKFi->mnBAGlobalForKF = nLoopId;
}
if(pKFi->bImu)
{
VertexVelocity* VV = static_cast<VertexVelocity*>(optimizer.vertex(maxKFid+3*(pKFi->mnId)+1));
if(nLoopId==0)
{
2022-03-28 21:20:28 +08:00
pKFi->SetVelocity(VV->estimate().cast<float>());
2020-12-01 11:58:17 +08:00
}
else
{
2022-03-28 21:20:28 +08:00
pKFi->mVwbGBA = VV->estimate().cast<float>();
2020-12-01 11:58:17 +08:00
}
VertexGyroBias* VG;
VertexAccBias* VA;
if (!bInit)
{
VG = static_cast<VertexGyroBias*>(optimizer.vertex(maxKFid+3*(pKFi->mnId)+2));
VA = static_cast<VertexAccBias*>(optimizer.vertex(maxKFid+3*(pKFi->mnId)+3));
}
else
{
VG = static_cast<VertexGyroBias*>(optimizer.vertex(4*maxKFid+2));
VA = static_cast<VertexAccBias*>(optimizer.vertex(4*maxKFid+3));
}
Vector6d vb;
vb << VG->estimate(), VA->estimate();
IMU::Bias b (vb[3],vb[4],vb[5],vb[0],vb[1],vb[2]);
if(nLoopId==0)
{
pKFi->SetNewBias(b);
}
else
{
pKFi->mBiasGBA = b;
}
}
}
//Points
for(size_t i=0; i<vpMPs.size(); i++)
{
if(vbNotIncludedMP[i])
continue;
MapPoint* pMP = vpMPs[i];
g2o::VertexSBAPointXYZ* vPoint = static_cast<g2o::VertexSBAPointXYZ*>(optimizer.vertex(pMP->mnId+iniMPid+1));
if(nLoopId==0)
{
2022-03-28 21:20:28 +08:00
pMP->SetWorldPos(vPoint->estimate().cast<float>());
2020-12-01 11:58:17 +08:00
pMP->UpdateNormalAndDepth();
}
else
{
2022-03-28 21:20:28 +08:00
pMP->mPosGBA = vPoint->estimate().cast<float>();
2020-12-01 11:58:17 +08:00
pMP->mnBAGlobalForKF = nLoopId;
}
}
pMap->IncreaseChangeIndex();
}
2021-12-08 22:09:39 +08:00
2020-12-01 11:58:17 +08:00
int Optimizer::PoseOptimization(Frame *pFrame)
{
g2o::SparseOptimizer optimizer;
g2o::BlockSolver_6_3::LinearSolverType * linearSolver;
linearSolver = new g2o::LinearSolverDense<g2o::BlockSolver_6_3::PoseMatrixType>();
g2o::BlockSolver_6_3 * solver_ptr = new g2o::BlockSolver_6_3(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
optimizer.setAlgorithm(solver);
int nInitialCorrespondences=0;
// Set Frame vertex
g2o::VertexSE3Expmap * vSE3 = new g2o::VertexSE3Expmap();
2022-03-28 21:20:28 +08:00
Sophus::SE3<float> Tcw = pFrame->GetPose();
vSE3->setEstimate(g2o::SE3Quat(Tcw.unit_quaternion().cast<double>(),Tcw.translation().cast<double>()));
vSE3->setId(0);
2020-12-01 11:58:17 +08:00
vSE3->setFixed(false);
optimizer.addVertex(vSE3);
// Set MapPoint vertices
const int N = pFrame->N;
vector<ORB_SLAM3::EdgeSE3ProjectXYZOnlyPose*> vpEdgesMono;
vector<ORB_SLAM3::EdgeSE3ProjectXYZOnlyPoseToBody *> vpEdgesMono_FHR;
vector<size_t> vnIndexEdgeMono, vnIndexEdgeRight;
vpEdgesMono.reserve(N);
vpEdgesMono_FHR.reserve(N);
vnIndexEdgeMono.reserve(N);
vnIndexEdgeRight.reserve(N);
vector<g2o::EdgeStereoSE3ProjectXYZOnlyPose*> vpEdgesStereo;
vector<size_t> vnIndexEdgeStereo;
vpEdgesStereo.reserve(N);
vnIndexEdgeStereo.reserve(N);
2022-03-28 21:20:28 +08:00
const float deltaMono = sqrt(5.991);
const float deltaStereo = sqrt(7.815);
2020-12-01 11:58:17 +08:00
{
unique_lock<mutex> lock(MapPoint::mGlobalMutex);
for(int i=0; i<N; i++)
{
MapPoint* pMP = pFrame->mvpMapPoints[i];
if(pMP)
{
//Conventional SLAM
if(!pFrame->mpCamera2){
// Monocular observation
if(pFrame->mvuRight[i]<0)
{
nInitialCorrespondences++;
pFrame->mvbOutlier[i] = false;
Eigen::Matrix<double,2,1> obs;
const cv::KeyPoint &kpUn = pFrame->mvKeysUn[i];
obs << kpUn.pt.x, kpUn.pt.y;
ORB_SLAM3::EdgeSE3ProjectXYZOnlyPose* e = new ORB_SLAM3::EdgeSE3ProjectXYZOnlyPose();
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(0)));
e->setMeasurement(obs);
const float invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(deltaMono);
e->pCamera = pFrame->mpCamera;
2022-03-28 21:20:28 +08:00
e->Xw = pMP->GetWorldPos().cast<double>();
2020-12-01 11:58:17 +08:00
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vnIndexEdgeMono.push_back(i);
}
else // Stereo observation
{
nInitialCorrespondences++;
pFrame->mvbOutlier[i] = false;
Eigen::Matrix<double,3,1> obs;
const cv::KeyPoint &kpUn = pFrame->mvKeysUn[i];
const float &kp_ur = pFrame->mvuRight[i];
obs << kpUn.pt.x, kpUn.pt.y, kp_ur;
2022-03-28 21:20:28 +08:00
2020-12-01 11:58:17 +08:00
g2o::EdgeStereoSE3ProjectXYZOnlyPose* e = new g2o::EdgeStereoSE3ProjectXYZOnlyPose();
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(0)));
e->setMeasurement(obs);
const float invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave];
Eigen::Matrix3d Info = Eigen::Matrix3d::Identity()*invSigma2;
e->setInformation(Info);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(deltaStereo);
e->fx = pFrame->fx;
e->fy = pFrame->fy;
e->cx = pFrame->cx;
e->cy = pFrame->cy;
e->bf = pFrame->mbf;
2022-03-28 21:20:28 +08:00
e->Xw = pMP->GetWorldPos().cast<double>();
2020-12-01 11:58:17 +08:00
optimizer.addEdge(e);
vpEdgesStereo.push_back(e);
vnIndexEdgeStereo.push_back(i);
}
}
//SLAM with respect a rigid body
else{
nInitialCorrespondences++;
cv::KeyPoint kpUn;
if (i < pFrame->Nleft) { //Left camera observation
kpUn = pFrame->mvKeys[i];
pFrame->mvbOutlier[i] = false;
Eigen::Matrix<double, 2, 1> obs;
obs << kpUn.pt.x, kpUn.pt.y;
ORB_SLAM3::EdgeSE3ProjectXYZOnlyPose *e = new ORB_SLAM3::EdgeSE3ProjectXYZOnlyPose();
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex *>(optimizer.vertex(0)));
e->setMeasurement(obs);
const float invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix2d::Identity() * invSigma2);
g2o::RobustKernelHuber *rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(deltaMono);
e->pCamera = pFrame->mpCamera;
2022-03-28 21:20:28 +08:00
e->Xw = pMP->GetWorldPos().cast<double>();
2020-12-01 11:58:17 +08:00
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vnIndexEdgeMono.push_back(i);
}
2022-03-28 21:20:28 +08:00
else {
2020-12-01 11:58:17 +08:00
kpUn = pFrame->mvKeysRight[i - pFrame->Nleft];
Eigen::Matrix<double, 2, 1> obs;
obs << kpUn.pt.x, kpUn.pt.y;
pFrame->mvbOutlier[i] = false;
ORB_SLAM3::EdgeSE3ProjectXYZOnlyPoseToBody *e = new ORB_SLAM3::EdgeSE3ProjectXYZOnlyPoseToBody();
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex *>(optimizer.vertex(0)));
e->setMeasurement(obs);
const float invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix2d::Identity() * invSigma2);
g2o::RobustKernelHuber *rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(deltaMono);
e->pCamera = pFrame->mpCamera2;
2022-03-28 21:20:28 +08:00
e->Xw = pMP->GetWorldPos().cast<double>();
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
e->mTrl = g2o::SE3Quat(pFrame->GetRelativePoseTrl().unit_quaternion().cast<double>(), pFrame->GetRelativePoseTrl().translation().cast<double>());
2020-12-01 11:58:17 +08:00
optimizer.addEdge(e);
vpEdgesMono_FHR.push_back(e);
vnIndexEdgeRight.push_back(i);
}
}
}
}
}
if(nInitialCorrespondences<3)
return 0;
// We perform 4 optimizations, after each optimization we classify observation as inlier/outlier
// At the next optimization, outliers are not included, but at the end they can be classified as inliers again.
2022-03-28 21:20:28 +08:00
const float chi2Mono[4]={5.991,5.991,5.991,5.991};
const float chi2Stereo[4]={7.815,7.815,7.815, 7.815};
const int its[4]={10,10,10,10};
2020-12-01 11:58:17 +08:00
int nBad=0;
for(size_t it=0; it<4; it++)
{
2022-03-28 21:20:28 +08:00
Tcw = pFrame->GetPose();
vSE3->setEstimate(g2o::SE3Quat(Tcw.unit_quaternion().cast<double>(),Tcw.translation().cast<double>()));
2020-12-01 11:58:17 +08:00
optimizer.initializeOptimization(0);
optimizer.optimize(its[it]);
nBad=0;
for(size_t i=0, iend=vpEdgesMono.size(); i<iend; i++)
{
ORB_SLAM3::EdgeSE3ProjectXYZOnlyPose* e = vpEdgesMono[i];
const size_t idx = vnIndexEdgeMono[i];
if(pFrame->mvbOutlier[idx])
{
e->computeError();
}
const float chi2 = e->chi2();
if(chi2>chi2Mono[it])
{
pFrame->mvbOutlier[idx]=true;
2022-03-28 21:20:28 +08:00
e->setLevel(1);
2020-12-01 11:58:17 +08:00
nBad++;
}
else
{
pFrame->mvbOutlier[idx]=false;
2022-03-28 21:20:28 +08:00
e->setLevel(0);
2020-12-01 11:58:17 +08:00
}
if(it==2)
2022-03-28 21:20:28 +08:00
e->setRobustKernel(0);
2020-12-01 11:58:17 +08:00
}
for(size_t i=0, iend=vpEdgesMono_FHR.size(); i<iend; i++)
{
ORB_SLAM3::EdgeSE3ProjectXYZOnlyPoseToBody* e = vpEdgesMono_FHR[i];
const size_t idx = vnIndexEdgeRight[i];
if(pFrame->mvbOutlier[idx])
{
e->computeError();
}
const float chi2 = e->chi2();
if(chi2>chi2Mono[it])
{
pFrame->mvbOutlier[idx]=true;
e->setLevel(1);
nBad++;
}
else
{
pFrame->mvbOutlier[idx]=false;
e->setLevel(0);
}
if(it==2)
e->setRobustKernel(0);
}
for(size_t i=0, iend=vpEdgesStereo.size(); i<iend; i++)
{
g2o::EdgeStereoSE3ProjectXYZOnlyPose* e = vpEdgesStereo[i];
const size_t idx = vnIndexEdgeStereo[i];
if(pFrame->mvbOutlier[idx])
{
e->computeError();
}
const float chi2 = e->chi2();
if(chi2>chi2Stereo[it])
{
pFrame->mvbOutlier[idx]=true;
e->setLevel(1);
nBad++;
}
else
{
e->setLevel(0);
pFrame->mvbOutlier[idx]=false;
}
if(it==2)
e->setRobustKernel(0);
}
if(optimizer.edges().size()<10)
break;
}
// Recover optimized pose and return number of inliers
g2o::VertexSE3Expmap* vSE3_recov = static_cast<g2o::VertexSE3Expmap*>(optimizer.vertex(0));
g2o::SE3Quat SE3quat_recov = vSE3_recov->estimate();
2022-03-28 21:20:28 +08:00
Sophus::SE3<float> pose(SE3quat_recov.rotation().cast<float>(),
SE3quat_recov.translation().cast<float>());
2020-12-01 11:58:17 +08:00
pFrame->SetPose(pose);
return nInitialCorrespondences-nBad;
}
2022-03-28 21:20:28 +08:00
void Optimizer::LocalBundleAdjustment(KeyFrame *pKF, bool* pbStopFlag, Map* pMap, int& num_fixedKF, int& num_OptKF, int& num_MPs, int& num_edges)
2020-12-01 11:58:17 +08:00
{
// Local KeyFrames: First Breath Search from Current Keyframe
list<KeyFrame*> lLocalKeyFrames;
lLocalKeyFrames.push_back(pKF);
pKF->mnBALocalForKF = pKF->mnId;
Map* pCurrentMap = pKF->GetMap();
const vector<KeyFrame*> vNeighKFs = pKF->GetVectorCovisibleKeyFrames();
for(int i=0, iend=vNeighKFs.size(); i<iend; i++)
{
KeyFrame* pKFi = vNeighKFs[i];
pKFi->mnBALocalForKF = pKF->mnId;
if(!pKFi->isBad() && pKFi->GetMap() == pCurrentMap)
lLocalKeyFrames.push_back(pKFi);
}
// Local MapPoints seen in Local KeyFrames
2022-03-28 21:20:28 +08:00
num_fixedKF = 0;
2020-12-01 11:58:17 +08:00
list<MapPoint*> lLocalMapPoints;
set<MapPoint*> sNumObsMP;
for(list<KeyFrame*>::iterator lit=lLocalKeyFrames.begin() , lend=lLocalKeyFrames.end(); lit!=lend; lit++)
{
KeyFrame* pKFi = *lit;
2022-03-28 21:20:28 +08:00
if(pKFi->mnId==pMap->GetInitKFid())
2020-12-01 11:58:17 +08:00
{
num_fixedKF = 1;
}
vector<MapPoint*> vpMPs = pKFi->GetMapPointMatches();
for(vector<MapPoint*>::iterator vit=vpMPs.begin(), vend=vpMPs.end(); vit!=vend; vit++)
{
MapPoint* pMP = *vit;
if(pMP)
if(!pMP->isBad() && pMP->GetMap() == pCurrentMap)
{
if(pMP->mnBALocalForKF!=pKF->mnId)
{
lLocalMapPoints.push_back(pMP);
pMP->mnBALocalForKF=pKF->mnId;
}
}
}
}
// Fixed Keyframes. Keyframes that see Local MapPoints but that are not Local Keyframes
list<KeyFrame*> lFixedCameras;
for(list<MapPoint*>::iterator lit=lLocalMapPoints.begin(), lend=lLocalMapPoints.end(); lit!=lend; lit++)
{
map<KeyFrame*,tuple<int,int>> observations = (*lit)->GetObservations();
for(map<KeyFrame*,tuple<int,int>>::iterator mit=observations.begin(), mend=observations.end(); mit!=mend; mit++)
{
KeyFrame* pKFi = mit->first;
if(pKFi->mnBALocalForKF!=pKF->mnId && pKFi->mnBAFixedForKF!=pKF->mnId )
2022-03-28 21:20:28 +08:00
{
2020-12-01 11:58:17 +08:00
pKFi->mnBAFixedForKF=pKF->mnId;
if(!pKFi->isBad() && pKFi->GetMap() == pCurrentMap)
lFixedCameras.push_back(pKFi);
}
}
}
num_fixedKF = lFixedCameras.size() + num_fixedKF;
if(num_fixedKF == 0)
{
2022-03-28 21:20:28 +08:00
Verbose::PrintMess("LM-LBA: There are 0 fixed KF in the optimizations, LBA aborted", Verbose::VERBOSITY_NORMAL);
2021-08-09 19:34:51 +08:00
return;
2020-12-01 11:58:17 +08:00
}
// Setup optimizer
g2o::SparseOptimizer optimizer;
g2o::BlockSolver_6_3::LinearSolverType * linearSolver;
linearSolver = new g2o::LinearSolverEigen<g2o::BlockSolver_6_3::PoseMatrixType>();
g2o::BlockSolver_6_3 * solver_ptr = new g2o::BlockSolver_6_3(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
2022-03-28 21:20:28 +08:00
if (pMap->IsInertial())
solver->setUserLambdaInit(100.0);
2020-12-01 11:58:17 +08:00
optimizer.setAlgorithm(solver);
optimizer.setVerbose(false);
if(pbStopFlag)
optimizer.setForceStopFlag(pbStopFlag);
unsigned long maxKFid = 0;
2022-03-28 21:20:28 +08:00
// DEBUG LBA
pCurrentMap->msOptKFs.clear();
pCurrentMap->msFixedKFs.clear();
2020-12-01 11:58:17 +08:00
// Set Local KeyFrame vertices
for(list<KeyFrame*>::iterator lit=lLocalKeyFrames.begin(), lend=lLocalKeyFrames.end(); lit!=lend; lit++)
{
KeyFrame* pKFi = *lit;
g2o::VertexSE3Expmap * vSE3 = new g2o::VertexSE3Expmap();
2022-03-28 21:20:28 +08:00
Sophus::SE3<float> Tcw = pKFi->GetPose();
vSE3->setEstimate(g2o::SE3Quat(Tcw.unit_quaternion().cast<double>(), Tcw.translation().cast<double>()));
2020-12-01 11:58:17 +08:00
vSE3->setId(pKFi->mnId);
2022-03-28 21:20:28 +08:00
vSE3->setFixed(pKFi->mnId==pMap->GetInitKFid());
2020-12-01 11:58:17 +08:00
optimizer.addVertex(vSE3);
if(pKFi->mnId>maxKFid)
maxKFid=pKFi->mnId;
2022-03-28 21:20:28 +08:00
// DEBUG LBA
pCurrentMap->msOptKFs.insert(pKFi->mnId);
2020-12-01 11:58:17 +08:00
}
2022-03-28 21:20:28 +08:00
num_OptKF = lLocalKeyFrames.size();
2020-12-01 11:58:17 +08:00
// Set Fixed KeyFrame vertices
for(list<KeyFrame*>::iterator lit=lFixedCameras.begin(), lend=lFixedCameras.end(); lit!=lend; lit++)
{
KeyFrame* pKFi = *lit;
g2o::VertexSE3Expmap * vSE3 = new g2o::VertexSE3Expmap();
2022-03-28 21:20:28 +08:00
Sophus::SE3<float> Tcw = pKFi->GetPose();
vSE3->setEstimate(g2o::SE3Quat(Tcw.unit_quaternion().cast<double>(),Tcw.translation().cast<double>()));
2020-12-01 11:58:17 +08:00
vSE3->setId(pKFi->mnId);
vSE3->setFixed(true);
optimizer.addVertex(vSE3);
if(pKFi->mnId>maxKFid)
maxKFid=pKFi->mnId;
2022-03-28 21:20:28 +08:00
// DEBUG LBA
pCurrentMap->msFixedKFs.insert(pKFi->mnId);
2020-12-01 11:58:17 +08:00
}
// Set MapPoint vertices
const int nExpectedSize = (lLocalKeyFrames.size()+lFixedCameras.size())*lLocalMapPoints.size();
vector<ORB_SLAM3::EdgeSE3ProjectXYZ*> vpEdgesMono;
vpEdgesMono.reserve(nExpectedSize);
vector<ORB_SLAM3::EdgeSE3ProjectXYZToBody*> vpEdgesBody;
vpEdgesBody.reserve(nExpectedSize);
vector<KeyFrame*> vpEdgeKFMono;
vpEdgeKFMono.reserve(nExpectedSize);
vector<KeyFrame*> vpEdgeKFBody;
vpEdgeKFBody.reserve(nExpectedSize);
vector<MapPoint*> vpMapPointEdgeMono;
vpMapPointEdgeMono.reserve(nExpectedSize);
vector<MapPoint*> vpMapPointEdgeBody;
vpMapPointEdgeBody.reserve(nExpectedSize);
vector<g2o::EdgeStereoSE3ProjectXYZ*> vpEdgesStereo;
vpEdgesStereo.reserve(nExpectedSize);
vector<KeyFrame*> vpEdgeKFStereo;
vpEdgeKFStereo.reserve(nExpectedSize);
vector<MapPoint*> vpMapPointEdgeStereo;
vpMapPointEdgeStereo.reserve(nExpectedSize);
const float thHuberMono = sqrt(5.991);
const float thHuberStereo = sqrt(7.815);
int nPoints = 0;
2022-03-28 21:20:28 +08:00
int nEdges = 0;
2020-12-01 11:58:17 +08:00
for(list<MapPoint*>::iterator lit=lLocalMapPoints.begin(), lend=lLocalMapPoints.end(); lit!=lend; lit++)
{
MapPoint* pMP = *lit;
g2o::VertexSBAPointXYZ* vPoint = new g2o::VertexSBAPointXYZ();
2022-03-28 21:20:28 +08:00
vPoint->setEstimate(pMP->GetWorldPos().cast<double>());
2020-12-01 11:58:17 +08:00
int id = pMP->mnId+maxKFid+1;
vPoint->setId(id);
vPoint->setMarginalized(true);
optimizer.addVertex(vPoint);
nPoints++;
const map<KeyFrame*,tuple<int,int>> observations = pMP->GetObservations();
//Set edges
for(map<KeyFrame*,tuple<int,int>>::const_iterator mit=observations.begin(), mend=observations.end(); mit!=mend; mit++)
{
KeyFrame* pKFi = mit->first;
if(!pKFi->isBad() && pKFi->GetMap() == pCurrentMap)
{
2022-03-28 21:20:28 +08:00
const int leftIndex = get<0>(mit->second);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Monocular observation
if(leftIndex != -1 && pKFi->mvuRight[get<0>(mit->second)]<0)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
const cv::KeyPoint &kpUn = pKFi->mvKeysUn[leftIndex];
2020-12-01 11:58:17 +08:00
Eigen::Matrix<double,2,1> obs;
obs << kpUn.pt.x, kpUn.pt.y;
ORB_SLAM3::EdgeSE3ProjectXYZ* e = new ORB_SLAM3::EdgeSE3ProjectXYZ();
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFi->mnId)));
e->setMeasurement(obs);
const float &invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberMono);
e->pCamera = pKFi->mpCamera;
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vpEdgeKFMono.push_back(pKFi);
vpMapPointEdgeMono.push_back(pMP);
nEdges++;
}
2022-03-28 21:20:28 +08:00
else if(leftIndex != -1 && pKFi->mvuRight[get<0>(mit->second)]>=0)// Stereo observation
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
const cv::KeyPoint &kpUn = pKFi->mvKeysUn[leftIndex];
2020-12-01 11:58:17 +08:00
Eigen::Matrix<double,3,1> obs;
2022-03-28 21:20:28 +08:00
const float kp_ur = pKFi->mvuRight[get<0>(mit->second)];
2020-12-01 11:58:17 +08:00
obs << kpUn.pt.x, kpUn.pt.y, kp_ur;
g2o::EdgeStereoSE3ProjectXYZ* e = new g2o::EdgeStereoSE3ProjectXYZ();
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFi->mnId)));
e->setMeasurement(obs);
const float &invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave];
Eigen::Matrix3d Info = Eigen::Matrix3d::Identity()*invSigma2;
e->setInformation(Info);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberStereo);
e->fx = pKFi->fx;
e->fy = pKFi->fy;
e->cx = pKFi->cx;
e->cy = pKFi->cy;
e->bf = pKFi->mbf;
optimizer.addEdge(e);
vpEdgesStereo.push_back(e);
vpEdgeKFStereo.push_back(pKFi);
vpMapPointEdgeStereo.push_back(pMP);
nEdges++;
}
if(pKFi->mpCamera2){
int rightIndex = get<1>(mit->second);
if(rightIndex != -1 ){
rightIndex -= pKFi->NLeft;
Eigen::Matrix<double,2,1> obs;
cv::KeyPoint kp = pKFi->mvKeysRight[rightIndex];
obs << kp.pt.x, kp.pt.y;
ORB_SLAM3::EdgeSE3ProjectXYZToBody *e = new ORB_SLAM3::EdgeSE3ProjectXYZToBody();
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFi->mnId)));
e->setMeasurement(obs);
const float &invSigma2 = pKFi->mvInvLevelSigma2[kp.octave];
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberMono);
2022-03-28 21:20:28 +08:00
Sophus::SE3f Trl = pKFi-> GetRelativePoseTrl();
e->mTrl = g2o::SE3Quat(Trl.unit_quaternion().cast<double>(), Trl.translation().cast<double>());
2020-12-01 11:58:17 +08:00
e->pCamera = pKFi->mpCamera2;
optimizer.addEdge(e);
vpEdgesBody.push_back(e);
vpEdgeKFBody.push_back(pKFi);
vpMapPointEdgeBody.push_back(pMP);
nEdges++;
}
}
}
}
}
2022-03-28 21:20:28 +08:00
num_edges = nEdges;
2020-12-01 11:58:17 +08:00
if(pbStopFlag)
if(*pbStopFlag)
2022-03-28 21:20:28 +08:00
return;
2020-12-01 11:58:17 +08:00
optimizer.initializeOptimization();
2022-03-28 21:20:28 +08:00
optimizer.optimize(10);
2020-12-01 11:58:17 +08:00
vector<pair<KeyFrame*,MapPoint*> > vToErase;
vToErase.reserve(vpEdgesMono.size()+vpEdgesBody.size()+vpEdgesStereo.size());
2022-03-28 21:20:28 +08:00
// Check inlier observations
2020-12-01 11:58:17 +08:00
for(size_t i=0, iend=vpEdgesMono.size(); i<iend;i++)
{
ORB_SLAM3::EdgeSE3ProjectXYZ* e = vpEdgesMono[i];
MapPoint* pMP = vpMapPointEdgeMono[i];
if(pMP->isBad())
continue;
if(e->chi2()>5.991 || !e->isDepthPositive())
{
KeyFrame* pKFi = vpEdgeKFMono[i];
vToErase.push_back(make_pair(pKFi,pMP));
}
}
for(size_t i=0, iend=vpEdgesBody.size(); i<iend;i++)
{
ORB_SLAM3::EdgeSE3ProjectXYZToBody* e = vpEdgesBody[i];
MapPoint* pMP = vpMapPointEdgeBody[i];
if(pMP->isBad())
continue;
if(e->chi2()>5.991 || !e->isDepthPositive())
{
KeyFrame* pKFi = vpEdgeKFBody[i];
vToErase.push_back(make_pair(pKFi,pMP));
}
}
for(size_t i=0, iend=vpEdgesStereo.size(); i<iend;i++)
{
g2o::EdgeStereoSE3ProjectXYZ* e = vpEdgesStereo[i];
MapPoint* pMP = vpMapPointEdgeStereo[i];
if(pMP->isBad())
continue;
if(e->chi2()>7.815 || !e->isDepthPositive())
{
KeyFrame* pKFi = vpEdgeKFStereo[i];
vToErase.push_back(make_pair(pKFi,pMP));
}
}
// Get Map Mutex
2022-03-28 21:20:28 +08:00
unique_lock<mutex> lock(pMap->mMutexMapUpdate);
2020-12-01 11:58:17 +08:00
if(!vToErase.empty())
{
for(size_t i=0;i<vToErase.size();i++)
{
KeyFrame* pKFi = vToErase[i].first;
MapPoint* pMPi = vToErase[i].second;
pKFi->EraseMapPointMatch(pMPi);
pMPi->EraseObservation(pKFi);
}
}
// Recover optimized data
//Keyframes
for(list<KeyFrame*>::iterator lit=lLocalKeyFrames.begin(), lend=lLocalKeyFrames.end(); lit!=lend; lit++)
{
KeyFrame* pKFi = *lit;
g2o::VertexSE3Expmap* vSE3 = static_cast<g2o::VertexSE3Expmap*>(optimizer.vertex(pKFi->mnId));
g2o::SE3Quat SE3quat = vSE3->estimate();
2022-03-28 21:20:28 +08:00
Sophus::SE3f Tiw(SE3quat.rotation().cast<float>(), SE3quat.translation().cast<float>());
pKFi->SetPose(Tiw);
2020-12-01 11:58:17 +08:00
}
//Points
for(list<MapPoint*>::iterator lit=lLocalMapPoints.begin(), lend=lLocalMapPoints.end(); lit!=lend; lit++)
{
MapPoint* pMP = *lit;
g2o::VertexSBAPointXYZ* vPoint = static_cast<g2o::VertexSBAPointXYZ*>(optimizer.vertex(pMP->mnId+maxKFid+1));
2022-03-28 21:20:28 +08:00
pMP->SetWorldPos(vPoint->estimate().cast<float>());
2020-12-01 11:58:17 +08:00
pMP->UpdateNormalAndDepth();
}
2022-03-28 21:20:28 +08:00
pMap->IncreaseChangeIndex();
2020-12-01 11:58:17 +08:00
}
2022-03-28 21:20:28 +08:00
void Optimizer::OptimizeEssentialGraph(Map* pMap, KeyFrame* pLoopKF, KeyFrame* pCurKF,
const LoopClosing::KeyFrameAndPose &NonCorrectedSim3,
const LoopClosing::KeyFrameAndPose &CorrectedSim3,
const map<KeyFrame *, set<KeyFrame *> > &LoopConnections, const bool &bFixScale)
{
2021-12-08 22:09:39 +08:00
// Setup optimizer
2020-12-01 11:58:17 +08:00
g2o::SparseOptimizer optimizer;
2021-12-08 22:09:39 +08:00
optimizer.setVerbose(false);
2022-03-28 21:20:28 +08:00
g2o::BlockSolver_7_3::LinearSolverType * linearSolver =
new g2o::LinearSolverEigen<g2o::BlockSolver_7_3::PoseMatrixType>();
g2o::BlockSolver_7_3 * solver_ptr= new g2o::BlockSolver_7_3(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
2020-12-01 11:58:17 +08:00
2021-12-08 22:09:39 +08:00
solver->setUserLambdaInit(1e-16);
2020-12-01 11:58:17 +08:00
optimizer.setAlgorithm(solver);
2022-03-28 21:20:28 +08:00
const vector<KeyFrame*> vpKFs = pMap->GetAllKeyFrames();
const vector<MapPoint*> vpMPs = pMap->GetAllMapPoints();
2020-12-01 11:58:17 +08:00
2021-12-08 22:09:39 +08:00
const unsigned int nMaxKFid = pMap->GetMaxKFid();
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
vector<g2o::Sim3,Eigen::aligned_allocator<g2o::Sim3> > vScw(nMaxKFid+1);
vector<g2o::Sim3,Eigen::aligned_allocator<g2o::Sim3> > vCorrectedSwc(nMaxKFid+1);
vector<g2o::VertexSim3Expmap*> vpVertices(nMaxKFid+1);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
vector<Eigen::Vector3d> vZvectors(nMaxKFid+1); // For debugging
2021-12-08 22:09:39 +08:00
Eigen::Vector3d z_vec;
z_vec << 0.0, 0.0, 1.0;
2022-03-28 21:20:28 +08:00
const int minFeat = 100;
2020-12-01 11:58:17 +08:00
2021-12-08 22:09:39 +08:00
// Set KeyFrame vertices
2022-03-28 21:20:28 +08:00
for(size_t i=0, iend=vpKFs.size(); i<iend;i++)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
KeyFrame* pKF = vpKFs[i];
if(pKF->isBad())
2020-12-01 11:58:17 +08:00
continue;
2022-03-28 21:20:28 +08:00
g2o::VertexSim3Expmap* VSim3 = new g2o::VertexSim3Expmap();
2020-12-01 11:58:17 +08:00
2021-12-08 22:09:39 +08:00
const int nIDi = pKF->mnId;
2020-12-01 11:58:17 +08:00
2021-12-08 22:09:39 +08:00
LoopClosing::KeyFrameAndPose::const_iterator it = CorrectedSim3.find(pKF);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(it!=CorrectedSim3.end())
2020-12-01 11:58:17 +08:00
{
2021-12-08 22:09:39 +08:00
vScw[nIDi] = it->second;
VSim3->setEstimate(it->second);
2020-12-01 11:58:17 +08:00
}
else
{
2022-03-28 21:20:28 +08:00
Sophus::SE3d Tcw = pKF->GetPose().cast<double>();
g2o::Sim3 Siw(Tcw.unit_quaternion(),Tcw.translation(),1.0);
2021-12-08 22:09:39 +08:00
vScw[nIDi] = Siw;
VSim3->setEstimate(Siw);
2020-12-01 11:58:17 +08:00
}
2022-03-28 21:20:28 +08:00
if(pKF->mnId==pMap->GetInitKFid())
2021-12-08 22:09:39 +08:00
VSim3->setFixed(true);
2020-12-01 11:58:17 +08:00
2021-12-08 22:09:39 +08:00
VSim3->setId(nIDi);
VSim3->setMarginalized(false);
VSim3->_fix_scale = bFixScale;
2020-12-01 11:58:17 +08:00
2021-12-08 22:09:39 +08:00
optimizer.addVertex(VSim3);
2022-03-28 21:20:28 +08:00
vZvectors[nIDi]=vScw[nIDi].rotation()*z_vec; // For debugging
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
vpVertices[nIDi]=VSim3;
2021-12-08 22:09:39 +08:00
}
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
set<pair<long unsigned int,long unsigned int> > sInsertedEdges;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
const Eigen::Matrix<double,7,7> matLambda = Eigen::Matrix<double,7,7>::Identity();
2020-12-01 11:58:17 +08:00
2021-12-08 22:09:39 +08:00
// Set Loop edges
int count_loop = 0;
2022-03-28 21:20:28 +08:00
for(map<KeyFrame *, set<KeyFrame *> >::const_iterator mit = LoopConnections.begin(), mend=LoopConnections.end(); mit!=mend; mit++)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
KeyFrame* pKF = mit->first;
2021-12-08 22:09:39 +08:00
const long unsigned int nIDi = pKF->mnId;
2022-03-28 21:20:28 +08:00
const set<KeyFrame*> &spConnections = mit->second;
const g2o::Sim3 Siw = vScw[nIDi];
2021-12-08 22:09:39 +08:00
const g2o::Sim3 Swi = Siw.inverse();
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
for(set<KeyFrame*>::const_iterator sit=spConnections.begin(), send=spConnections.end(); sit!=send; sit++)
2020-12-01 11:58:17 +08:00
{
2021-12-08 22:09:39 +08:00
const long unsigned int nIDj = (*sit)->mnId;
2022-03-28 21:20:28 +08:00
if((nIDi!=pCurKF->mnId || nIDj!=pLoopKF->mnId) && pKF->GetWeight(*sit)<minFeat)
2021-12-08 22:09:39 +08:00
continue;
2020-12-01 11:58:17 +08:00
2021-12-08 22:09:39 +08:00
const g2o::Sim3 Sjw = vScw[nIDj];
2022-03-28 21:20:28 +08:00
const g2o::Sim3 Sji = Sjw * Swi;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
g2o::EdgeSim3* e = new g2o::EdgeSim3();
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDj)));
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
2021-12-08 22:09:39 +08:00
e->setMeasurement(Sji);
2020-12-01 11:58:17 +08:00
2021-12-08 22:09:39 +08:00
e->information() = matLambda;
2020-12-01 11:58:17 +08:00
2021-12-08 22:09:39 +08:00
optimizer.addEdge(e);
count_loop++;
2022-03-28 21:20:28 +08:00
sInsertedEdges.insert(make_pair(min(nIDi,nIDj),max(nIDi,nIDj)));
2021-12-08 22:09:39 +08:00
}
}
2020-12-01 11:58:17 +08:00
2021-12-08 22:09:39 +08:00
// Set normal edges
2022-03-28 21:20:28 +08:00
for(size_t i=0, iend=vpKFs.size(); i<iend; i++)
2021-12-08 22:09:39 +08:00
{
2022-03-28 21:20:28 +08:00
KeyFrame* pKF = vpKFs[i];
2020-12-01 11:58:17 +08:00
2021-12-08 22:09:39 +08:00
const int nIDi = pKF->mnId;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
g2o::Sim3 Swi;
2020-12-01 11:58:17 +08:00
2021-12-08 22:09:39 +08:00
LoopClosing::KeyFrameAndPose::const_iterator iti = NonCorrectedSim3.find(pKF);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(iti!=NonCorrectedSim3.end())
2021-12-08 22:09:39 +08:00
Swi = (iti->second).inverse();
else
Swi = vScw[nIDi].inverse();
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
KeyFrame* pParentKF = pKF->GetParent();
2020-12-01 11:58:17 +08:00
2021-12-08 22:09:39 +08:00
// Spanning tree edge
2022-03-28 21:20:28 +08:00
if(pParentKF)
2020-12-01 11:58:17 +08:00
{
2021-12-08 22:09:39 +08:00
int nIDj = pParentKF->mnId;
2020-12-01 11:58:17 +08:00
2021-12-08 22:09:39 +08:00
g2o::Sim3 Sjw;
2020-12-01 11:58:17 +08:00
2021-12-08 22:09:39 +08:00
LoopClosing::KeyFrameAndPose::const_iterator itj = NonCorrectedSim3.find(pParentKF);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(itj!=NonCorrectedSim3.end())
2021-12-08 22:09:39 +08:00
Sjw = itj->second;
else
Sjw = vScw[nIDj];
2020-12-01 11:58:17 +08:00
2021-12-08 22:09:39 +08:00
g2o::Sim3 Sji = Sjw * Swi;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
g2o::EdgeSim3* e = new g2o::EdgeSim3();
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDj)));
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
2021-12-08 22:09:39 +08:00
e->setMeasurement(Sji);
e->information() = matLambda;
optimizer.addEdge(e);
}
2020-12-01 11:58:17 +08:00
2021-12-08 22:09:39 +08:00
// Loop edges
2022-03-28 21:20:28 +08:00
const set<KeyFrame*> sLoopEdges = pKF->GetLoopEdges();
for(set<KeyFrame*>::const_iterator sit=sLoopEdges.begin(), send=sLoopEdges.end(); sit!=send; sit++)
2021-12-08 22:09:39 +08:00
{
2022-03-28 21:20:28 +08:00
KeyFrame* pLKF = *sit;
if(pLKF->mnId<pKF->mnId)
2021-12-08 22:09:39 +08:00
{
g2o::Sim3 Slw;
2020-12-01 11:58:17 +08:00
2021-12-08 22:09:39 +08:00
LoopClosing::KeyFrameAndPose::const_iterator itl = NonCorrectedSim3.find(pLKF);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(itl!=NonCorrectedSim3.end())
2021-12-08 22:09:39 +08:00
Slw = itl->second;
else
Slw = vScw[pLKF->mnId];
2020-12-01 11:58:17 +08:00
2021-12-08 22:09:39 +08:00
g2o::Sim3 Sli = Slw * Swi;
2022-03-28 21:20:28 +08:00
g2o::EdgeSim3* el = new g2o::EdgeSim3();
el->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pLKF->mnId)));
el->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
2021-12-08 22:09:39 +08:00
el->setMeasurement(Sli);
el->information() = matLambda;
optimizer.addEdge(el);
}
2020-12-01 11:58:17 +08:00
}
2021-12-08 22:09:39 +08:00
// Covisibility graph edges
2022-03-28 21:20:28 +08:00
const vector<KeyFrame*> vpConnectedKFs = pKF->GetCovisiblesByWeight(minFeat);
for(vector<KeyFrame*>::const_iterator vit=vpConnectedKFs.begin(); vit!=vpConnectedKFs.end(); vit++)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
KeyFrame* pKFn = *vit;
if(pKFn && pKFn!=pParentKF && !pKF->hasChild(pKFn) /*&& !sLoopEdges.count(pKFn)*/)
2021-12-08 22:09:39 +08:00
{
2022-03-28 21:20:28 +08:00
if(!pKFn->isBad() && pKFn->mnId<pKF->mnId)
2021-12-08 22:09:39 +08:00
{
2022-03-28 21:20:28 +08:00
if(sInsertedEdges.count(make_pair(min(pKF->mnId,pKFn->mnId),max(pKF->mnId,pKFn->mnId))))
2021-12-08 22:09:39 +08:00
continue;
2020-12-01 11:58:17 +08:00
2021-12-08 22:09:39 +08:00
g2o::Sim3 Snw;
2020-12-01 11:58:17 +08:00
2021-12-08 22:09:39 +08:00
LoopClosing::KeyFrameAndPose::const_iterator itn = NonCorrectedSim3.find(pKFn);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(itn!=NonCorrectedSim3.end())
2021-12-08 22:09:39 +08:00
Snw = itn->second;
else
Snw = vScw[pKFn->mnId];
2020-12-01 11:58:17 +08:00
2021-12-08 22:09:39 +08:00
g2o::Sim3 Sni = Snw * Swi;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
g2o::EdgeSim3* en = new g2o::EdgeSim3();
en->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFn->mnId)));
en->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
2021-12-08 22:09:39 +08:00
en->setMeasurement(Sni);
en->information() = matLambda;
optimizer.addEdge(en);
}
}
}
2020-12-01 11:58:17 +08:00
2021-12-08 22:09:39 +08:00
// Inertial edges if inertial
2022-03-28 21:20:28 +08:00
if(pKF->bImu && pKF->mPrevKF)
2021-12-08 22:09:39 +08:00
{
g2o::Sim3 Spw;
LoopClosing::KeyFrameAndPose::const_iterator itp = NonCorrectedSim3.find(pKF->mPrevKF);
2022-03-28 21:20:28 +08:00
if(itp!=NonCorrectedSim3.end())
2021-12-08 22:09:39 +08:00
Spw = itp->second;
else
Spw = vScw[pKF->mPrevKF->mnId];
2020-12-01 11:58:17 +08:00
2021-12-08 22:09:39 +08:00
g2o::Sim3 Spi = Spw * Swi;
2022-03-28 21:20:28 +08:00
g2o::EdgeSim3* ep = new g2o::EdgeSim3();
ep->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKF->mPrevKF->mnId)));
ep->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
2021-12-08 22:09:39 +08:00
ep->setMeasurement(Spi);
ep->information() = matLambda;
optimizer.addEdge(ep);
2020-12-01 11:58:17 +08:00
}
}
optimizer.initializeOptimization();
2021-12-08 22:09:39 +08:00
optimizer.computeActiveErrors();
optimizer.optimize(20);
optimizer.computeActiveErrors();
unique_lock<mutex> lock(pMap->mMutexMapUpdate);
2020-12-01 11:58:17 +08:00
2021-12-08 22:09:39 +08:00
// SE3 Pose Recovering. Sim3:[sR t;0 1] -> SE3:[R t/s;0 1]
2022-03-28 21:20:28 +08:00
for(size_t i=0;i<vpKFs.size();i++)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
KeyFrame* pKFi = vpKFs[i];
2020-12-01 11:58:17 +08:00
2021-12-08 22:09:39 +08:00
const int nIDi = pKFi->mnId;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
g2o::VertexSim3Expmap* VSim3 = static_cast<g2o::VertexSim3Expmap*>(optimizer.vertex(nIDi));
g2o::Sim3 CorrectedSiw = VSim3->estimate();
vCorrectedSwc[nIDi]=CorrectedSiw.inverse();
2021-12-08 22:09:39 +08:00
double s = CorrectedSiw.scale();
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
Sophus::SE3f Tiw(CorrectedSiw.rotation().cast<float>(), CorrectedSiw.translation().cast<float>() / s);
2021-12-08 22:09:39 +08:00
pKFi->SetPose(Tiw);
2020-12-01 11:58:17 +08:00
}
2021-12-08 22:09:39 +08:00
// Correct points. Transform to "non-optimized" reference keyframe pose and transform back with optimized pose
2022-03-28 21:20:28 +08:00
for(size_t i=0, iend=vpMPs.size(); i<iend; i++)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
MapPoint* pMP = vpMPs[i];
2020-12-01 11:58:17 +08:00
if(pMP->isBad())
continue;
2021-12-08 22:09:39 +08:00
int nIDr;
2022-03-28 21:20:28 +08:00
if(pMP->mnCorrectedByKF==pCurKF->mnId)
2020-12-01 11:58:17 +08:00
{
2021-12-08 22:09:39 +08:00
nIDr = pMP->mnCorrectedReference;
2020-12-01 11:58:17 +08:00
}
else
{
2022-03-28 21:20:28 +08:00
KeyFrame* pRefKF = pMP->GetReferenceKeyFrame();
2021-12-08 22:09:39 +08:00
nIDr = pRefKF->mnId;
2020-12-01 11:58:17 +08:00
}
2021-12-08 22:09:39 +08:00
g2o::Sim3 Srw = vScw[nIDr];
g2o::Sim3 correctedSwr = vCorrectedSwc[nIDr];
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
Eigen::Matrix<double,3,1> eigP3Dw = pMP->GetWorldPos().cast<double>();
Eigen::Matrix<double,3,1> eigCorrectedP3Dw = correctedSwr.map(Srw.map(eigP3Dw));
pMP->SetWorldPos(eigCorrectedP3Dw.cast<float>());
2020-12-01 11:58:17 +08:00
pMP->UpdateNormalAndDepth();
}
// TODO Check this changeindex
pMap->IncreaseChangeIndex();
}
2022-03-28 21:20:28 +08:00
void Optimizer::OptimizeEssentialGraph(KeyFrame* pCurKF, vector<KeyFrame*> &vpFixedKFs, vector<KeyFrame*> &vpFixedCorrectedKFs,
vector<KeyFrame*> &vpNonFixedKFs, vector<MapPoint*> &vpNonCorrectedMPs)
2021-12-08 22:09:39 +08:00
{
2022-03-28 21:20:28 +08:00
Verbose::PrintMess("Opt_Essential: There are " + to_string(vpFixedKFs.size()) + " KFs fixed in the merged map", Verbose::VERBOSITY_DEBUG);
Verbose::PrintMess("Opt_Essential: There are " + to_string(vpFixedCorrectedKFs.size()) + " KFs fixed in the old map", Verbose::VERBOSITY_DEBUG);
Verbose::PrintMess("Opt_Essential: There are " + to_string(vpNonFixedKFs.size()) + " KFs non-fixed in the merged map", Verbose::VERBOSITY_DEBUG);
Verbose::PrintMess("Opt_Essential: There are " + to_string(vpNonCorrectedMPs.size()) + " MPs non-corrected in the merged map", Verbose::VERBOSITY_DEBUG);
2020-12-01 11:58:17 +08:00
g2o::SparseOptimizer optimizer;
optimizer.setVerbose(false);
g2o::BlockSolver_7_3::LinearSolverType * linearSolver =
new g2o::LinearSolverEigen<g2o::BlockSolver_7_3::PoseMatrixType>();
g2o::BlockSolver_7_3 * solver_ptr= new g2o::BlockSolver_7_3(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
solver->setUserLambdaInit(1e-16);
optimizer.setAlgorithm(solver);
2022-03-28 21:20:28 +08:00
Map* pMap = pCurKF->GetMap();
2020-12-01 11:58:17 +08:00
const unsigned int nMaxKFid = pMap->GetMaxKFid();
vector<g2o::Sim3,Eigen::aligned_allocator<g2o::Sim3> > vScw(nMaxKFid+1);
vector<g2o::Sim3,Eigen::aligned_allocator<g2o::Sim3> > vCorrectedSwc(nMaxKFid+1);
vector<g2o::VertexSim3Expmap*> vpVertices(nMaxKFid+1);
2022-03-28 21:20:28 +08:00
vector<bool> vpGoodPose(nMaxKFid+1);
vector<bool> vpBadPose(nMaxKFid+1);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
const int minFeat = 100;
for(KeyFrame* pKFi : vpFixedKFs)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
if(pKFi->isBad())
2020-12-01 11:58:17 +08:00
continue;
g2o::VertexSim3Expmap* VSim3 = new g2o::VertexSim3Expmap();
2022-03-28 21:20:28 +08:00
const int nIDi = pKFi->mnId;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
Sophus::SE3d Tcw = pKFi->GetPose().cast<double>();
g2o::Sim3 Siw(Tcw.unit_quaternion(),Tcw.translation(),1.0);
2021-12-08 22:09:39 +08:00
2022-03-28 21:20:28 +08:00
vCorrectedSwc[nIDi]=Siw.inverse();
VSim3->setEstimate(Siw);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
VSim3->setFixed(true);
2020-12-01 11:58:17 +08:00
VSim3->setId(nIDi);
VSim3->setMarginalized(false);
2022-03-28 21:20:28 +08:00
VSim3->_fix_scale = true;
2020-12-01 11:58:17 +08:00
optimizer.addVertex(VSim3);
vpVertices[nIDi]=VSim3;
2022-03-28 21:20:28 +08:00
vpGoodPose[nIDi] = true;
vpBadPose[nIDi] = false;
2020-12-01 11:58:17 +08:00
}
2022-03-28 21:20:28 +08:00
Verbose::PrintMess("Opt_Essential: vpFixedKFs loaded", Verbose::VERBOSITY_DEBUG);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
set<unsigned long> sIdKF;
for(KeyFrame* pKFi : vpFixedCorrectedKFs)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
if(pKFi->isBad())
continue;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
g2o::VertexSim3Expmap* VSim3 = new g2o::VertexSim3Expmap();
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
const int nIDi = pKFi->mnId;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
Sophus::SE3d Tcw = pKFi->GetPose().cast<double>();
g2o::Sim3 Siw(Tcw.unit_quaternion(),Tcw.translation(),1.0);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
vCorrectedSwc[nIDi]=Siw.inverse();
VSim3->setEstimate(Siw);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
Sophus::SE3d Tcw_bef = pKFi->mTcwBefMerge.cast<double>();
vScw[nIDi] = g2o::Sim3(Tcw_bef.unit_quaternion(),Tcw_bef.translation(),1.0);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
VSim3->setFixed(true);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
VSim3->setId(nIDi);
VSim3->setMarginalized(false);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
optimizer.addVertex(VSim3);
vpVertices[nIDi]=VSim3;
sIdKF.insert(nIDi);
vpGoodPose[nIDi] = true;
vpBadPose[nIDi] = true;
2020-12-01 11:58:17 +08:00
}
2022-03-28 21:20:28 +08:00
for(KeyFrame* pKFi : vpNonFixedKFs)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
if(pKFi->isBad())
continue;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
const int nIDi = pKFi->mnId;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(sIdKF.count(nIDi)) // It has already added in the corrected merge KFs
continue;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
g2o::VertexSim3Expmap* VSim3 = new g2o::VertexSim3Expmap();
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
Sophus::SE3d Tcw = pKFi->GetPose().cast<double>();
g2o::Sim3 Siw(Tcw.unit_quaternion(),Tcw.translation(),1.0);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
vScw[nIDi] = Siw;
VSim3->setEstimate(Siw);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
VSim3->setFixed(false);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
VSim3->setId(nIDi);
VSim3->setMarginalized(false);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
optimizer.addVertex(VSim3);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
vpVertices[nIDi]=VSim3;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
sIdKF.insert(nIDi);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
vpGoodPose[nIDi] = false;
vpBadPose[nIDi] = true;
}
2021-08-09 19:34:51 +08:00
2022-03-28 21:20:28 +08:00
vector<KeyFrame*> vpKFs;
vpKFs.reserve(vpFixedKFs.size() + vpFixedCorrectedKFs.size() + vpNonFixedKFs.size());
vpKFs.insert(vpKFs.end(),vpFixedKFs.begin(),vpFixedKFs.end());
vpKFs.insert(vpKFs.end(),vpFixedCorrectedKFs.begin(),vpFixedCorrectedKFs.end());
vpKFs.insert(vpKFs.end(),vpNonFixedKFs.begin(),vpNonFixedKFs.end());
set<KeyFrame*> spKFs(vpKFs.begin(), vpKFs.end());
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
const Eigen::Matrix<double,7,7> matLambda = Eigen::Matrix<double,7,7>::Identity();
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
for(KeyFrame* pKFi : vpKFs)
{
int num_connections = 0;
const int nIDi = pKFi->mnId;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
g2o::Sim3 correctedSwi;
g2o::Sim3 Swi;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(vpGoodPose[nIDi])
correctedSwi = vCorrectedSwc[nIDi];
if(vpBadPose[nIDi])
2020-12-01 11:58:17 +08:00
Swi = vScw[nIDi].inverse();
2022-03-28 21:20:28 +08:00
KeyFrame* pParentKFi = pKFi->GetParent();
2020-12-01 11:58:17 +08:00
// Spanning tree edge
2022-03-28 21:20:28 +08:00
if(pParentKFi && spKFs.find(pParentKFi) != spKFs.end())
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
int nIDj = pParentKFi->mnId;
2020-12-01 11:58:17 +08:00
g2o::Sim3 Sjw;
2022-03-28 21:20:28 +08:00
bool bHasRelation = false;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(vpGoodPose[nIDi] && vpGoodPose[nIDj])
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
Sjw = vCorrectedSwc[nIDj].inverse();
bHasRelation = true;
}
else if(vpBadPose[nIDi] && vpBadPose[nIDj])
{
2020-12-01 11:58:17 +08:00
Sjw = vScw[nIDj];
2022-03-28 21:20:28 +08:00
bHasRelation = true;
}
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(bHasRelation)
{
g2o::Sim3 Sji = Sjw * Swi;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
g2o::EdgeSim3* e = new g2o::EdgeSim3();
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDj)));
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
e->setMeasurement(Sji);
2020-12-01 11:58:17 +08:00
2021-12-08 22:09:39 +08:00
e->information() = matLambda;
optimizer.addEdge(e);
2022-03-28 21:20:28 +08:00
num_connections++;
2020-12-01 11:58:17 +08:00
}
}
// Loop edges
2022-03-28 21:20:28 +08:00
const set<KeyFrame*> sLoopEdges = pKFi->GetLoopEdges();
2020-12-01 11:58:17 +08:00
for(set<KeyFrame*>::const_iterator sit=sLoopEdges.begin(), send=sLoopEdges.end(); sit!=send; sit++)
{
KeyFrame* pLKF = *sit;
2022-03-28 21:20:28 +08:00
if(spKFs.find(pLKF) != spKFs.end() && pLKF->mnId<pKFi->mnId)
2020-12-01 11:58:17 +08:00
{
g2o::Sim3 Slw;
2022-03-28 21:20:28 +08:00
bool bHasRelation = false;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(vpGoodPose[nIDi] && vpGoodPose[pLKF->mnId])
2021-12-08 22:09:39 +08:00
{
2022-03-28 21:20:28 +08:00
Slw = vCorrectedSwc[pLKF->mnId].inverse();
bHasRelation = true;
}
else if(vpBadPose[nIDi] && vpBadPose[pLKF->mnId])
{
2020-12-01 11:58:17 +08:00
Slw = vScw[pLKF->mnId];
2022-03-28 21:20:28 +08:00
bHasRelation = true;
}
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(bHasRelation)
{
g2o::Sim3 Sli = Slw * Swi;
g2o::EdgeSim3* el = new g2o::EdgeSim3();
el->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pLKF->mnId)));
el->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
el->setMeasurement(Sli);
el->information() = matLambda;
optimizer.addEdge(el);
num_connections++;
}
2020-12-01 11:58:17 +08:00
}
}
// Covisibility graph edges
2022-03-28 21:20:28 +08:00
const vector<KeyFrame*> vpConnectedKFs = pKFi->GetCovisiblesByWeight(minFeat);
2020-12-01 11:58:17 +08:00
for(vector<KeyFrame*>::const_iterator vit=vpConnectedKFs.begin(); vit!=vpConnectedKFs.end(); vit++)
{
KeyFrame* pKFn = *vit;
2022-03-28 21:20:28 +08:00
if(pKFn && pKFn!=pParentKFi && !pKFi->hasChild(pKFn) && !sLoopEdges.count(pKFn) && spKFs.find(pKFn) != spKFs.end())
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
if(!pKFn->isBad() && pKFn->mnId<pKFi->mnId)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
g2o::Sim3 Snw = vScw[pKFn->mnId];
bool bHasRelation = false;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(vpGoodPose[nIDi] && vpGoodPose[pKFn->mnId])
{
Snw = vCorrectedSwc[pKFn->mnId].inverse();
bHasRelation = true;
}
else if(vpBadPose[nIDi] && vpBadPose[pKFn->mnId])
{
2020-12-01 11:58:17 +08:00
Snw = vScw[pKFn->mnId];
2022-03-28 21:20:28 +08:00
bHasRelation = true;
}
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(bHasRelation)
{
g2o::Sim3 Sni = Snw * Swi;
g2o::EdgeSim3* en = new g2o::EdgeSim3();
en->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFn->mnId)));
en->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
en->setMeasurement(Sni);
en->information() = matLambda;
optimizer.addEdge(en);
num_connections++;
}
2020-12-01 11:58:17 +08:00
}
}
}
2022-03-28 21:20:28 +08:00
if(num_connections == 0 )
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
Verbose::PrintMess("Opt_Essential: KF " + to_string(pKFi->mnId) + " has 0 connections", Verbose::VERBOSITY_DEBUG);
2020-12-01 11:58:17 +08:00
}
}
// Optimize!
optimizer.initializeOptimization();
optimizer.optimize(20);
unique_lock<mutex> lock(pMap->mMutexMapUpdate);
// SE3 Pose Recovering. Sim3:[sR t;0 1] -> SE3:[R t/s;0 1]
2022-03-28 21:20:28 +08:00
for(KeyFrame* pKFi : vpNonFixedKFs)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
if(pKFi->isBad())
continue;
2020-12-01 11:58:17 +08:00
const int nIDi = pKFi->mnId;
g2o::VertexSim3Expmap* VSim3 = static_cast<g2o::VertexSim3Expmap*>(optimizer.vertex(nIDi));
g2o::Sim3 CorrectedSiw = VSim3->estimate();
vCorrectedSwc[nIDi]=CorrectedSiw.inverse();
double s = CorrectedSiw.scale();
2022-03-28 21:20:28 +08:00
Sophus::SE3d Tiw(CorrectedSiw.rotation(),CorrectedSiw.translation() / s);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
pKFi->mTcwBefMerge = pKFi->GetPose();
pKFi->mTwcBefMerge = pKFi->GetPoseInverse();
pKFi->SetPose(Tiw.cast<float>());
2020-12-01 11:58:17 +08:00
}
// Correct points. Transform to "non-optimized" reference keyframe pose and transform back with optimized pose
2022-03-28 21:20:28 +08:00
for(MapPoint* pMPi : vpNonCorrectedMPs)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
if(pMPi->isBad())
2020-12-01 11:58:17 +08:00
continue;
2022-03-28 21:20:28 +08:00
KeyFrame* pRefKF = pMPi->GetReferenceKeyFrame();
while(pRefKF->isBad())
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
if(!pRefKF)
{
Verbose::PrintMess("MP " + to_string(pMPi->mnId) + " without a valid reference KF", Verbose::VERBOSITY_DEBUG);
break;
}
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
pMPi->EraseObservation(pRefKF);
pRefKF = pMPi->GetReferenceKeyFrame();
}
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(vpBadPose[pRefKF->mnId])
{
Sophus::SE3f TNonCorrectedwr = pRefKF->mTwcBefMerge;
Sophus::SE3f Twr = pRefKF->GetPoseInverse();
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
Eigen::Vector3f eigCorrectedP3Dw = Twr * TNonCorrectedwr.inverse() * pMPi->GetWorldPos();
pMPi->SetWorldPos(eigCorrectedP3Dw);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
pMPi->UpdateNormalAndDepth();
}
else
2021-12-08 22:09:39 +08:00
{
2022-03-28 21:20:28 +08:00
cout << "ERROR: MapPoint has a reference KF from another map" << endl;
2021-12-08 22:09:39 +08:00
}
2020-12-01 11:58:17 +08:00
}
}
2022-03-28 21:20:28 +08:00
int Optimizer::OptimizeSim3(KeyFrame *pKF1, KeyFrame *pKF2, vector<MapPoint *> &vpMatches1, g2o::Sim3 &g2oS12, const float th2,
const bool bFixScale, Eigen::Matrix<double,7,7> &mAcumHessian, const bool bAllPoints)
2020-12-01 11:58:17 +08:00
{
g2o::SparseOptimizer optimizer;
2022-03-28 21:20:28 +08:00
g2o::BlockSolverX::LinearSolverType * linearSolver;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
linearSolver = new g2o::LinearSolverDense<g2o::BlockSolverX::PoseMatrixType>();
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
g2o::BlockSolverX * solver_ptr = new g2o::BlockSolverX(linearSolver);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
optimizer.setAlgorithm(solver);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Camera poses
const Eigen::Matrix3f R1w = pKF1->GetRotation();
const Eigen::Vector3f t1w = pKF1->GetTranslation();
const Eigen::Matrix3f R2w = pKF2->GetRotation();
const Eigen::Vector3f t2w = pKF2->GetTranslation();
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Set Sim3 vertex
ORB_SLAM3::VertexSim3Expmap * vSim3 = new ORB_SLAM3::VertexSim3Expmap();
vSim3->_fix_scale=bFixScale;
vSim3->setEstimate(g2oS12);
vSim3->setId(0);
vSim3->setFixed(false);
vSim3->pCamera1 = pKF1->mpCamera;
vSim3->pCamera2 = pKF2->mpCamera;
optimizer.addVertex(vSim3);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Set MapPoint vertices
const int N = vpMatches1.size();
const vector<MapPoint*> vpMapPoints1 = pKF1->GetMapPointMatches();
vector<ORB_SLAM3::EdgeSim3ProjectXYZ*> vpEdges12;
vector<ORB_SLAM3::EdgeInverseSim3ProjectXYZ*> vpEdges21;
vector<size_t> vnIndexEdge;
vector<bool> vbIsInKF2;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
vnIndexEdge.reserve(2*N);
vpEdges12.reserve(2*N);
vpEdges21.reserve(2*N);
vbIsInKF2.reserve(2*N);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
const float deltaHuber = sqrt(th2);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
int nCorrespondences = 0;
int nBadMPs = 0;
int nInKF2 = 0;
int nOutKF2 = 0;
int nMatchWithoutMP = 0;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
vector<int> vIdsOnlyInKF2;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
for(int i=0; i<N; i++)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
if(!vpMatches1[i])
2020-12-01 11:58:17 +08:00
continue;
2022-03-28 21:20:28 +08:00
MapPoint* pMP1 = vpMapPoints1[i];
MapPoint* pMP2 = vpMatches1[i];
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
const int id1 = 2*i+1;
const int id2 = 2*(i+1);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
const int i2 = get<0>(pMP2->GetIndexInKeyFrame(pKF2));
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
Eigen::Vector3f P3D1c;
Eigen::Vector3f P3D2c;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(pMP1 && pMP2)
{
if(!pMP1->isBad() && !pMP2->isBad())
2021-12-08 22:09:39 +08:00
{
2022-03-28 21:20:28 +08:00
g2o::VertexSBAPointXYZ* vPoint1 = new g2o::VertexSBAPointXYZ();
Eigen::Vector3f P3D1w = pMP1->GetWorldPos();
P3D1c = R1w*P3D1w + t1w;
vPoint1->setEstimate(P3D1c.cast<double>());
vPoint1->setId(id1);
vPoint1->setFixed(true);
optimizer.addVertex(vPoint1);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
g2o::VertexSBAPointXYZ* vPoint2 = new g2o::VertexSBAPointXYZ();
Eigen::Vector3f P3D2w = pMP2->GetWorldPos();
P3D2c = R2w*P3D2w + t2w;
vPoint2->setEstimate(P3D2c.cast<double>());
vPoint2->setId(id2);
vPoint2->setFixed(true);
optimizer.addVertex(vPoint2);
}
else
{
nBadMPs++;
continue;
}
}
else
{
nMatchWithoutMP++;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
//TODO The 3D position in KF1 doesn't exist
if(!pMP2->isBad())
{
g2o::VertexSBAPointXYZ* vPoint2 = new g2o::VertexSBAPointXYZ();
Eigen::Vector3f P3D2w = pMP2->GetWorldPos();
P3D2c = R2w*P3D2w + t2w;
vPoint2->setEstimate(P3D2c.cast<double>());
vPoint2->setId(id2);
vPoint2->setFixed(true);
optimizer.addVertex(vPoint2);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
vIdsOnlyInKF2.push_back(id2);
}
2020-12-01 11:58:17 +08:00
continue;
2022-03-28 21:20:28 +08:00
}
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(i2<0 && !bAllPoints)
{
Verbose::PrintMess(" Remove point -> i2: " + to_string(i2) + "; bAllPoints: " + to_string(bAllPoints), Verbose::VERBOSITY_DEBUG);
2020-12-01 11:58:17 +08:00
continue;
2022-03-28 21:20:28 +08:00
}
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(P3D2c(2) < 0)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
Verbose::PrintMess("Sim3: Z coordinate is negative", Verbose::VERBOSITY_DEBUG);
continue;
2020-12-01 11:58:17 +08:00
}
2022-03-28 21:20:28 +08:00
nCorrespondences++;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Set edge x1 = S12*X2
Eigen::Matrix<double,2,1> obs1;
const cv::KeyPoint &kpUn1 = pKF1->mvKeysUn[i];
obs1 << kpUn1.pt.x, kpUn1.pt.y;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
ORB_SLAM3::EdgeSim3ProjectXYZ* e12 = new ORB_SLAM3::EdgeSim3ProjectXYZ();
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
e12->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id2)));
e12->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(0)));
e12->setMeasurement(obs1);
const float &invSigmaSquare1 = pKF1->mvInvLevelSigma2[kpUn1.octave];
e12->setInformation(Eigen::Matrix2d::Identity()*invSigmaSquare1);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
g2o::RobustKernelHuber* rk1 = new g2o::RobustKernelHuber;
e12->setRobustKernel(rk1);
rk1->setDelta(deltaHuber);
optimizer.addEdge(e12);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Set edge x2 = S21*X1
Eigen::Matrix<double,2,1> obs2;
cv::KeyPoint kpUn2;
bool inKF2;
if(i2 >= 0)
{
kpUn2 = pKF2->mvKeysUn[i2];
obs2 << kpUn2.pt.x, kpUn2.pt.y;
inKF2 = true;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
nInKF2++;
2020-12-01 11:58:17 +08:00
}
2022-03-28 21:20:28 +08:00
else
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
float invz = 1/P3D2c(2);
float x = P3D2c(0)*invz;
float y = P3D2c(1)*invz;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
obs2 << x, y;
kpUn2 = cv::KeyPoint(cv::Point2f(x, y), pMP2->mnTrackScaleLevel);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
inKF2 = false;
nOutKF2++;
2020-12-01 11:58:17 +08:00
}
2022-03-28 21:20:28 +08:00
ORB_SLAM3::EdgeInverseSim3ProjectXYZ* e21 = new ORB_SLAM3::EdgeInverseSim3ProjectXYZ();
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
e21->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id1)));
e21->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(0)));
e21->setMeasurement(obs2);
float invSigmaSquare2 = pKF2->mvInvLevelSigma2[kpUn2.octave];
e21->setInformation(Eigen::Matrix2d::Identity()*invSigmaSquare2);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
g2o::RobustKernelHuber* rk2 = new g2o::RobustKernelHuber;
e21->setRobustKernel(rk2);
rk2->setDelta(deltaHuber);
optimizer.addEdge(e21);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
vpEdges12.push_back(e12);
vpEdges21.push_back(e21);
vnIndexEdge.push_back(i);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
vbIsInKF2.push_back(inKF2);
2020-12-01 11:58:17 +08:00
}
// Optimize!
optimizer.initializeOptimization();
2021-12-08 22:09:39 +08:00
optimizer.optimize(5);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Check inliers
int nBad=0;
int nBadOutKF2 = 0;
for(size_t i=0; i<vpEdges12.size();i++)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
ORB_SLAM3::EdgeSim3ProjectXYZ* e12 = vpEdges12[i];
ORB_SLAM3::EdgeInverseSim3ProjectXYZ* e21 = vpEdges21[i];
if(!e12 || !e21)
2020-12-01 11:58:17 +08:00
continue;
2022-03-28 21:20:28 +08:00
if(e12->chi2()>th2 || e21->chi2()>th2)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
size_t idx = vnIndexEdge[i];
vpMatches1[idx]=static_cast<MapPoint*>(NULL);
optimizer.removeEdge(e12);
optimizer.removeEdge(e21);
vpEdges12[i]=static_cast<ORB_SLAM3::EdgeSim3ProjectXYZ*>(NULL);
vpEdges21[i]=static_cast<ORB_SLAM3::EdgeInverseSim3ProjectXYZ*>(NULL);
nBad++;
2021-12-08 22:09:39 +08:00
2022-03-28 21:20:28 +08:00
if(!vbIsInKF2[i])
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
nBadOutKF2++;
2020-12-01 11:58:17 +08:00
}
2022-03-28 21:20:28 +08:00
continue;
2020-12-01 11:58:17 +08:00
}
2022-03-28 21:20:28 +08:00
//Check if remove the robust adjustment improve the result
e12->setRobustKernel(0);
e21->setRobustKernel(0);
}
2021-08-09 19:34:51 +08:00
2022-03-28 21:20:28 +08:00
int nMoreIterations;
if(nBad>0)
nMoreIterations=10;
else
nMoreIterations=5;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(nCorrespondences-nBad<10)
return 0;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Optimize again only with inliers
optimizer.initializeOptimization();
optimizer.optimize(nMoreIterations);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
int nIn = 0;
mAcumHessian = Eigen::MatrixXd::Zero(7, 7);
for(size_t i=0; i<vpEdges12.size();i++)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
ORB_SLAM3::EdgeSim3ProjectXYZ* e12 = vpEdges12[i];
ORB_SLAM3::EdgeInverseSim3ProjectXYZ* e21 = vpEdges21[i];
if(!e12 || !e21)
2020-12-01 11:58:17 +08:00
continue;
2022-03-28 21:20:28 +08:00
e12->computeError();
e21->computeError();
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(e12->chi2()>th2 || e21->chi2()>th2){
size_t idx = vnIndexEdge[i];
vpMatches1[idx]=static_cast<MapPoint*>(NULL);
}
else{
nIn++;
}
2020-12-01 11:58:17 +08:00
}
2022-03-28 21:20:28 +08:00
// Recover optimized Sim3
g2o::VertexSim3Expmap* vSim3_recov = static_cast<g2o::VertexSim3Expmap*>(optimizer.vertex(0));
g2oS12= vSim3_recov->estimate();
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
return nIn;
}
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
void Optimizer::LocalInertialBA(KeyFrame *pKF, bool *pbStopFlag, Map *pMap, int& num_fixedKF, int& num_OptKF, int& num_MPs, int& num_edges, bool bLarge, bool bRecInit)
{
Map* pCurrentMap = pKF->GetMap();
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
int maxOpt=10;
int opt_it=10;
if(bLarge)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
maxOpt=25;
opt_it=4;
}
const int Nd = std::min((int)pCurrentMap->KeyFramesInMap()-2,maxOpt);
const unsigned long maxKFid = pKF->mnId;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
vector<KeyFrame*> vpOptimizableKFs;
const vector<KeyFrame*> vpNeighsKFs = pKF->GetVectorCovisibleKeyFrames();
list<KeyFrame*> lpOptVisKFs;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
vpOptimizableKFs.reserve(Nd);
vpOptimizableKFs.push_back(pKF);
pKF->mnBALocalForKF = pKF->mnId;
for(int i=1; i<Nd; i++)
{
if(vpOptimizableKFs.back()->mPrevKF)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
vpOptimizableKFs.push_back(vpOptimizableKFs.back()->mPrevKF);
vpOptimizableKFs.back()->mnBALocalForKF = pKF->mnId;
}
else
break;
}
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
int N = vpOptimizableKFs.size();
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Optimizable points seen by temporal optimizable keyframes
list<MapPoint*> lLocalMapPoints;
for(int i=0; i<N; i++)
{
vector<MapPoint*> vpMPs = vpOptimizableKFs[i]->GetMapPointMatches();
for(vector<MapPoint*>::iterator vit=vpMPs.begin(), vend=vpMPs.end(); vit!=vend; vit++)
{
MapPoint* pMP = *vit;
if(pMP)
if(!pMP->isBad())
if(pMP->mnBALocalForKF!=pKF->mnId)
{
lLocalMapPoints.push_back(pMP);
pMP->mnBALocalForKF=pKF->mnId;
}
2020-12-01 11:58:17 +08:00
}
}
2022-03-28 21:20:28 +08:00
// Fixed Keyframe: First frame previous KF to optimization window)
list<KeyFrame*> lFixedKeyFrames;
if(vpOptimizableKFs.back()->mPrevKF)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
lFixedKeyFrames.push_back(vpOptimizableKFs.back()->mPrevKF);
vpOptimizableKFs.back()->mPrevKF->mnBAFixedForKF=pKF->mnId;
}
else
{
vpOptimizableKFs.back()->mnBALocalForKF=0;
vpOptimizableKFs.back()->mnBAFixedForKF=pKF->mnId;
lFixedKeyFrames.push_back(vpOptimizableKFs.back());
vpOptimizableKFs.pop_back();
}
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Optimizable visual KFs
const int maxCovKF = 0;
for(int i=0, iend=vpNeighsKFs.size(); i<iend; i++)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
if(lpOptVisKFs.size() >= maxCovKF)
break;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
KeyFrame* pKFi = vpNeighsKFs[i];
if(pKFi->mnBALocalForKF == pKF->mnId || pKFi->mnBAFixedForKF == pKF->mnId)
2020-12-01 11:58:17 +08:00
continue;
2022-03-28 21:20:28 +08:00
pKFi->mnBALocalForKF = pKF->mnId;
if(!pKFi->isBad() && pKFi->GetMap() == pCurrentMap)
2021-12-08 22:09:39 +08:00
{
2022-03-28 21:20:28 +08:00
lpOptVisKFs.push_back(pKFi);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
vector<MapPoint*> vpMPs = pKFi->GetMapPointMatches();
for(vector<MapPoint*>::iterator vit=vpMPs.begin(), vend=vpMPs.end(); vit!=vend; vit++)
{
MapPoint* pMP = *vit;
if(pMP)
if(!pMP->isBad())
if(pMP->mnBALocalForKF!=pKF->mnId)
{
lLocalMapPoints.push_back(pMP);
pMP->mnBALocalForKF=pKF->mnId;
}
}
2021-12-08 22:09:39 +08:00
}
2020-12-01 11:58:17 +08:00
}
2022-03-28 21:20:28 +08:00
// Fixed KFs which are not covisible optimizable
const int maxFixKF = 200;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
for(list<MapPoint*>::iterator lit=lLocalMapPoints.begin(), lend=lLocalMapPoints.end(); lit!=lend; lit++)
2021-12-08 22:09:39 +08:00
{
2022-03-28 21:20:28 +08:00
map<KeyFrame*,tuple<int,int>> observations = (*lit)->GetObservations();
for(map<KeyFrame*,tuple<int,int>>::iterator mit=observations.begin(), mend=observations.end(); mit!=mend; mit++)
2021-12-08 22:09:39 +08:00
{
2022-03-28 21:20:28 +08:00
KeyFrame* pKFi = mit->first;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(pKFi->mnBALocalForKF!=pKF->mnId && pKFi->mnBAFixedForKF!=pKF->mnId)
2021-12-08 22:09:39 +08:00
{
2022-03-28 21:20:28 +08:00
pKFi->mnBAFixedForKF=pKF->mnId;
if(!pKFi->isBad())
{
lFixedKeyFrames.push_back(pKFi);
break;
}
2021-12-08 22:09:39 +08:00
}
}
2022-03-28 21:20:28 +08:00
if(lFixedKeyFrames.size()>=maxFixKF)
break;
}
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
bool bNonFixed = (lFixedKeyFrames.size() == 0);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Setup optimizer
g2o::SparseOptimizer optimizer;
g2o::BlockSolverX::LinearSolverType * linearSolver;
linearSolver = new g2o::LinearSolverEigen<g2o::BlockSolverX::PoseMatrixType>();
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
g2o::BlockSolverX * solver_ptr = new g2o::BlockSolverX(linearSolver);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(bLarge)
{
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
solver->setUserLambdaInit(1e-2); // to avoid iterating for finding optimal lambda
optimizer.setAlgorithm(solver);
2020-12-01 11:58:17 +08:00
}
2022-03-28 21:20:28 +08:00
else
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
solver->setUserLambdaInit(1e0);
optimizer.setAlgorithm(solver);
2020-12-01 11:58:17 +08:00
}
2022-03-28 21:20:28 +08:00
// Set Local temporal KeyFrame vertices
N=vpOptimizableKFs.size();
for(int i=0; i<N; i++)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
KeyFrame* pKFi = vpOptimizableKFs[i];
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
VertexPose * VP = new VertexPose(pKFi);
VP->setId(pKFi->mnId);
VP->setFixed(false);
optimizer.addVertex(VP);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(pKFi->bImu)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
VertexVelocity* VV = new VertexVelocity(pKFi);
VV->setId(maxKFid+3*(pKFi->mnId)+1);
VV->setFixed(false);
optimizer.addVertex(VV);
VertexGyroBias* VG = new VertexGyroBias(pKFi);
VG->setId(maxKFid+3*(pKFi->mnId)+2);
VG->setFixed(false);
optimizer.addVertex(VG);
VertexAccBias* VA = new VertexAccBias(pKFi);
VA->setId(maxKFid+3*(pKFi->mnId)+3);
VA->setFixed(false);
optimizer.addVertex(VA);
2020-12-01 11:58:17 +08:00
}
2021-12-08 22:09:39 +08:00
}
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Set Local visual KeyFrame vertices
for(list<KeyFrame*>::iterator it=lpOptVisKFs.begin(), itEnd = lpOptVisKFs.end(); it!=itEnd; it++)
2021-12-08 22:09:39 +08:00
{
2022-03-28 21:20:28 +08:00
KeyFrame* pKFi = *it;
VertexPose * VP = new VertexPose(pKFi);
VP->setId(pKFi->mnId);
VP->setFixed(false);
optimizer.addVertex(VP);
}
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Set Fixed KeyFrame vertices
for(list<KeyFrame*>::iterator lit=lFixedKeyFrames.begin(), lend=lFixedKeyFrames.end(); lit!=lend; lit++)
{
KeyFrame* pKFi = *lit;
VertexPose * VP = new VertexPose(pKFi);
VP->setId(pKFi->mnId);
VP->setFixed(true);
optimizer.addVertex(VP);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(pKFi->bImu) // This should be done only for keyframe just before temporal window
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
VertexVelocity* VV = new VertexVelocity(pKFi);
VV->setId(maxKFid+3*(pKFi->mnId)+1);
VV->setFixed(true);
optimizer.addVertex(VV);
VertexGyroBias* VG = new VertexGyroBias(pKFi);
VG->setId(maxKFid+3*(pKFi->mnId)+2);
VG->setFixed(true);
optimizer.addVertex(VG);
VertexAccBias* VA = new VertexAccBias(pKFi);
VA->setId(maxKFid+3*(pKFi->mnId)+3);
VA->setFixed(true);
optimizer.addVertex(VA);
2020-12-01 11:58:17 +08:00
}
}
2022-03-28 21:20:28 +08:00
// Create intertial constraints
vector<EdgeInertial*> vei(N,(EdgeInertial*)NULL);
vector<EdgeGyroRW*> vegr(N,(EdgeGyroRW*)NULL);
vector<EdgeAccRW*> vear(N,(EdgeAccRW*)NULL);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
for(int i=0;i<N;i++)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
KeyFrame* pKFi = vpOptimizableKFs[i];
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(!pKFi->mPrevKF)
{
cout << "NOT INERTIAL LINK TO PREVIOUS FRAME!!!!" << endl;
2020-12-01 11:58:17 +08:00
continue;
2021-12-08 22:09:39 +08:00
}
2022-03-28 21:20:28 +08:00
if(pKFi->bImu && pKFi->mPrevKF->bImu && pKFi->mpImuPreintegrated)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
pKFi->mpImuPreintegrated->SetNewBias(pKFi->mPrevKF->GetImuBias());
g2o::HyperGraph::Vertex* VP1 = optimizer.vertex(pKFi->mPrevKF->mnId);
g2o::HyperGraph::Vertex* VV1 = optimizer.vertex(maxKFid+3*(pKFi->mPrevKF->mnId)+1);
g2o::HyperGraph::Vertex* VG1 = optimizer.vertex(maxKFid+3*(pKFi->mPrevKF->mnId)+2);
g2o::HyperGraph::Vertex* VA1 = optimizer.vertex(maxKFid+3*(pKFi->mPrevKF->mnId)+3);
g2o::HyperGraph::Vertex* VP2 = optimizer.vertex(pKFi->mnId);
g2o::HyperGraph::Vertex* VV2 = optimizer.vertex(maxKFid+3*(pKFi->mnId)+1);
g2o::HyperGraph::Vertex* VG2 = optimizer.vertex(maxKFid+3*(pKFi->mnId)+2);
g2o::HyperGraph::Vertex* VA2 = optimizer.vertex(maxKFid+3*(pKFi->mnId)+3);
if(!VP1 || !VV1 || !VG1 || !VA1 || !VP2 || !VV2 || !VG2 || !VA2)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
cerr << "Error " << VP1 << ", "<< VV1 << ", "<< VG1 << ", "<< VA1 << ", " << VP2 << ", " << VV2 << ", "<< VG2 << ", "<< VA2 <<endl;
2021-12-08 22:09:39 +08:00
continue;
2020-12-01 11:58:17 +08:00
}
2022-03-28 21:20:28 +08:00
vei[i] = new EdgeInertial(pKFi->mpImuPreintegrated);
2021-08-09 19:34:51 +08:00
2022-03-28 21:20:28 +08:00
vei[i]->setVertex(0,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VP1));
vei[i]->setVertex(1,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VV1));
vei[i]->setVertex(2,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VG1));
vei[i]->setVertex(3,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VA1));
vei[i]->setVertex(4,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VP2));
vei[i]->setVertex(5,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VV2));
2021-08-09 19:34:51 +08:00
2022-03-28 21:20:28 +08:00
if(i==N-1 || bRecInit)
2021-12-08 22:09:39 +08:00
{
2022-03-28 21:20:28 +08:00
// All inertial residuals are included without robust cost function, but not that one linking the
// last optimizable keyframe inside of the local window and the first fixed keyframe out. The
// information matrix for this measurement is also downweighted. This is done to avoid accumulating
// error due to fixing variables.
g2o::RobustKernelHuber* rki = new g2o::RobustKernelHuber;
vei[i]->setRobustKernel(rki);
if(i==N-1)
vei[i]->setInformation(vei[i]->information()*1e-2);
rki->setDelta(sqrt(16.92));
2021-12-08 22:09:39 +08:00
}
2022-03-28 21:20:28 +08:00
optimizer.addEdge(vei[i]);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
vegr[i] = new EdgeGyroRW();
vegr[i]->setVertex(0,VG1);
vegr[i]->setVertex(1,VG2);
Eigen::Matrix3d InfoG = pKFi->mpImuPreintegrated->C.block<3,3>(9,9).cast<double>().inverse();
vegr[i]->setInformation(InfoG);
optimizer.addEdge(vegr[i]);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
vear[i] = new EdgeAccRW();
vear[i]->setVertex(0,VA1);
vear[i]->setVertex(1,VA2);
Eigen::Matrix3d InfoA = pKFi->mpImuPreintegrated->C.block<3,3>(12,12).cast<double>().inverse();
vear[i]->setInformation(InfoA);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
optimizer.addEdge(vear[i]);
}
else
cout << "ERROR building inertial edge" << endl;
2020-12-01 11:58:17 +08:00
}
2022-03-28 21:20:28 +08:00
// Set MapPoint vertices
const int nExpectedSize = (N+lFixedKeyFrames.size())*lLocalMapPoints.size();
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Mono
vector<EdgeMono*> vpEdgesMono;
vpEdgesMono.reserve(nExpectedSize);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
vector<KeyFrame*> vpEdgeKFMono;
vpEdgeKFMono.reserve(nExpectedSize);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
vector<MapPoint*> vpMapPointEdgeMono;
vpMapPointEdgeMono.reserve(nExpectedSize);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Stereo
vector<EdgeStereo*> vpEdgesStereo;
vpEdgesStereo.reserve(nExpectedSize);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
vector<KeyFrame*> vpEdgeKFStereo;
vpEdgeKFStereo.reserve(nExpectedSize);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
vector<MapPoint*> vpMapPointEdgeStereo;
vpMapPointEdgeStereo.reserve(nExpectedSize);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
const float thHuberMono = sqrt(5.991);
const float chi2Mono2 = 5.991;
const float thHuberStereo = sqrt(7.815);
const float chi2Stereo2 = 7.815;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
const unsigned long iniMPid = maxKFid*5;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
map<int,int> mVisEdges;
for(int i=0;i<N;i++)
{
KeyFrame* pKFi = vpOptimizableKFs[i];
mVisEdges[pKFi->mnId] = 0;
2021-12-08 22:09:39 +08:00
}
2022-03-28 21:20:28 +08:00
for(list<KeyFrame*>::iterator lit=lFixedKeyFrames.begin(), lend=lFixedKeyFrames.end(); lit!=lend; lit++)
2021-12-08 22:09:39 +08:00
{
2022-03-28 21:20:28 +08:00
mVisEdges[(*lit)->mnId] = 0;
2020-12-01 11:58:17 +08:00
}
2022-03-28 21:20:28 +08:00
for(list<MapPoint*>::iterator lit=lLocalMapPoints.begin(), lend=lLocalMapPoints.end(); lit!=lend; lit++)
{
MapPoint* pMP = *lit;
g2o::VertexSBAPointXYZ* vPoint = new g2o::VertexSBAPointXYZ();
vPoint->setEstimate(pMP->GetWorldPos().cast<double>());
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
unsigned long id = pMP->mnId+iniMPid+1;
vPoint->setId(id);
vPoint->setMarginalized(true);
optimizer.addVertex(vPoint);
const map<KeyFrame*,tuple<int,int>> observations = pMP->GetObservations();
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Create visual constraints
for(map<KeyFrame*,tuple<int,int>>::const_iterator mit=observations.begin(), mend=observations.end(); mit!=mend; mit++)
{
KeyFrame* pKFi = mit->first;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(pKFi->mnBALocalForKF!=pKF->mnId && pKFi->mnBAFixedForKF!=pKF->mnId)
continue;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(!pKFi->isBad() && pKFi->GetMap() == pCurrentMap)
{
const int leftIndex = get<0>(mit->second);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
cv::KeyPoint kpUn;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Monocular left observation
if(leftIndex != -1 && pKFi->mvuRight[leftIndex]<0)
{
mVisEdges[pKFi->mnId]++;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
kpUn = pKFi->mvKeysUn[leftIndex];
Eigen::Matrix<double,2,1> obs;
obs << kpUn.pt.x, kpUn.pt.y;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
EdgeMono* e = new EdgeMono(0);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFi->mnId)));
e->setMeasurement(obs);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Add here uncerteinty
const float unc2 = pKFi->mpCamera->uncertainty2(obs);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
const float &invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave]/unc2;
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberMono);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vpEdgeKFMono.push_back(pKFi);
vpMapPointEdgeMono.push_back(pMP);
}
// Stereo-observation
else if(leftIndex != -1)// Stereo observation
{
kpUn = pKFi->mvKeysUn[leftIndex];
mVisEdges[pKFi->mnId]++;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
const float kp_ur = pKFi->mvuRight[leftIndex];
Eigen::Matrix<double,3,1> obs;
obs << kpUn.pt.x, kpUn.pt.y, kp_ur;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
EdgeStereo* e = new EdgeStereo(0);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFi->mnId)));
e->setMeasurement(obs);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Add here uncerteinty
const float unc2 = pKFi->mpCamera->uncertainty2(obs.head(2));
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
const float &invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave]/unc2;
e->setInformation(Eigen::Matrix3d::Identity()*invSigma2);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberStereo);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
optimizer.addEdge(e);
vpEdgesStereo.push_back(e);
vpEdgeKFStereo.push_back(pKFi);
vpMapPointEdgeStereo.push_back(pMP);
}
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Monocular right observation
if(pKFi->mpCamera2){
int rightIndex = get<1>(mit->second);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(rightIndex != -1 ){
rightIndex -= pKFi->NLeft;
mVisEdges[pKFi->mnId]++;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
Eigen::Matrix<double,2,1> obs;
cv::KeyPoint kp = pKFi->mvKeysRight[rightIndex];
obs << kp.pt.x, kp.pt.y;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
EdgeMono* e = new EdgeMono(1);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFi->mnId)));
e->setMeasurement(obs);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Add here uncerteinty
const float unc2 = pKFi->mpCamera->uncertainty2(obs);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
const float &invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave]/unc2;
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberMono);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vpEdgeKFMono.push_back(pKFi);
vpMapPointEdgeMono.push_back(pMP);
}
2021-12-08 22:09:39 +08:00
}
}
2020-12-01 11:58:17 +08:00
}
}
2022-03-28 21:20:28 +08:00
//cout << "Total map points: " << lLocalMapPoints.size() << endl;
for(map<int,int>::iterator mit=mVisEdges.begin(), mend=mVisEdges.end(); mit!=mend; mit++)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
assert(mit->second>=3);
2020-12-01 11:58:17 +08:00
}
2022-03-28 21:20:28 +08:00
optimizer.initializeOptimization();
optimizer.computeActiveErrors();
float err = optimizer.activeRobustChi2();
optimizer.optimize(opt_it); // Originally to 2
float err_end = optimizer.activeRobustChi2();
if(pbStopFlag)
optimizer.setForceStopFlag(pbStopFlag);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
vector<pair<KeyFrame*,MapPoint*> > vToErase;
vToErase.reserve(vpEdgesMono.size()+vpEdgesStereo.size());
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Check inlier observations
// Mono
for(size_t i=0, iend=vpEdgesMono.size(); i<iend;i++)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
EdgeMono* e = vpEdgesMono[i];
MapPoint* pMP = vpMapPointEdgeMono[i];
bool bClose = pMP->mTrackDepth<10.f;
2020-12-01 11:58:17 +08:00
if(pMP->isBad())
continue;
2022-03-28 21:20:28 +08:00
if((e->chi2()>chi2Mono2 && !bClose) || (e->chi2()>1.5f*chi2Mono2 && bClose) || !e->isDepthPositive())
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
KeyFrame* pKFi = vpEdgeKFMono[i];
vToErase.push_back(make_pair(pKFi,pMP));
2020-12-01 11:58:17 +08:00
}
2021-12-08 22:09:39 +08:00
}
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Stereo
for(size_t i=0, iend=vpEdgesStereo.size(); i<iend;i++)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
EdgeStereo* e = vpEdgesStereo[i];
MapPoint* pMP = vpMapPointEdgeStereo[i];
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(pMP->isBad())
2021-12-08 22:09:39 +08:00
continue;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(e->chi2()>chi2Stereo2)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
KeyFrame* pKFi = vpEdgeKFStereo[i];
vToErase.push_back(make_pair(pKFi,pMP));
2020-12-01 11:58:17 +08:00
}
2022-03-28 21:20:28 +08:00
}
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Get Map Mutex and erase outliers
unique_lock<mutex> lock(pMap->mMutexMapUpdate);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// TODO: Some convergence problems have been detected here
if((2*err < err_end || isnan(err) || isnan(err_end)) && !bLarge) //bGN)
{
cout << "FAIL LOCAL-INERTIAL BA!!!!" << endl;
return;
}
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(!vToErase.empty())
{
for(size_t i=0;i<vToErase.size();i++)
{
KeyFrame* pKFi = vToErase[i].first;
MapPoint* pMPi = vToErase[i].second;
pKFi->EraseMapPointMatch(pMPi);
pMPi->EraseObservation(pKFi);
}
2021-12-08 22:09:39 +08:00
}
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
for(list<KeyFrame*>::iterator lit=lFixedKeyFrames.begin(), lend=lFixedKeyFrames.end(); lit!=lend; lit++)
(*lit)->mnBAFixedForKF = 0;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Recover optimized data
// Local temporal Keyframes
N=vpOptimizableKFs.size();
2020-12-01 11:58:17 +08:00
for(int i=0; i<N; i++)
{
2022-03-28 21:20:28 +08:00
KeyFrame* pKFi = vpOptimizableKFs[i];
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
VertexPose* VP = static_cast<VertexPose*>(optimizer.vertex(pKFi->mnId));
Sophus::SE3f Tcw(VP->estimate().Rcw[0].cast<float>(), VP->estimate().tcw[0].cast<float>());
pKFi->SetPose(Tcw);
pKFi->mnBALocalForKF=0;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(pKFi->bImu)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
VertexVelocity* VV = static_cast<VertexVelocity*>(optimizer.vertex(maxKFid+3*(pKFi->mnId)+1));
pKFi->SetVelocity(VV->estimate().cast<float>());
VertexGyroBias* VG = static_cast<VertexGyroBias*>(optimizer.vertex(maxKFid+3*(pKFi->mnId)+2));
VertexAccBias* VA = static_cast<VertexAccBias*>(optimizer.vertex(maxKFid+3*(pKFi->mnId)+3));
Vector6d b;
b << VG->estimate(), VA->estimate();
pKFi->SetNewBias(IMU::Bias(b[3],b[4],b[5],b[0],b[1],b[2]));
2020-12-01 11:58:17 +08:00
}
}
2022-03-28 21:20:28 +08:00
// Local visual KeyFrame
for(list<KeyFrame*>::iterator it=lpOptVisKFs.begin(), itEnd = lpOptVisKFs.end(); it!=itEnd; it++)
2021-12-08 22:09:39 +08:00
{
2022-03-28 21:20:28 +08:00
KeyFrame* pKFi = *it;
VertexPose* VP = static_cast<VertexPose*>(optimizer.vertex(pKFi->mnId));
Sophus::SE3f Tcw(VP->estimate().Rcw[0].cast<float>(), VP->estimate().tcw[0].cast<float>());
pKFi->SetPose(Tcw);
pKFi->mnBALocalForKF=0;
2021-12-08 22:09:39 +08:00
}
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
//Points
for(list<MapPoint*>::iterator lit=lLocalMapPoints.begin(), lend=lLocalMapPoints.end(); lit!=lend; lit++)
2021-12-08 22:09:39 +08:00
{
2022-03-28 21:20:28 +08:00
MapPoint* pMP = *lit;
g2o::VertexSBAPointXYZ* vPoint = static_cast<g2o::VertexSBAPointXYZ*>(optimizer.vertex(pMP->mnId+iniMPid+1));
pMP->SetWorldPos(vPoint->estimate().cast<float>());
pMP->UpdateNormalAndDepth();
2021-12-08 22:09:39 +08:00
}
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
pMap->IncreaseChangeIndex();
}
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
Eigen::MatrixXd Optimizer::Marginalize(const Eigen::MatrixXd &H, const int &start, const int &end)
{
// Goal
// a | ab | ac a* | 0 | ac*
// ba | b | bc --> 0 | 0 | 0
// ca | cb | c ca* | 0 | c*
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Size of block before block to marginalize
const int a = start;
// Size of block to marginalize
const int b = end-start+1;
// Size of block after block to marginalize
const int c = H.cols() - (end+1);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Reorder as follows:
// a | ab | ac a | ac | ab
// ba | b | bc --> ca | c | cb
// ca | cb | c ba | bc | b
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
Eigen::MatrixXd Hn = Eigen::MatrixXd::Zero(H.rows(),H.cols());
if(a>0)
2021-12-08 22:09:39 +08:00
{
2022-03-28 21:20:28 +08:00
Hn.block(0,0,a,a) = H.block(0,0,a,a);
Hn.block(0,a+c,a,b) = H.block(0,a,a,b);
Hn.block(a+c,0,b,a) = H.block(a,0,b,a);
2020-12-01 11:58:17 +08:00
}
2022-03-28 21:20:28 +08:00
if(a>0 && c>0)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
Hn.block(0,a,a,c) = H.block(0,a+b,a,c);
Hn.block(a,0,c,a) = H.block(a+b,0,c,a);
2020-12-01 11:58:17 +08:00
}
2022-03-28 21:20:28 +08:00
if(c>0)
2021-12-08 22:09:39 +08:00
{
2022-03-28 21:20:28 +08:00
Hn.block(a,a,c,c) = H.block(a+b,a+b,c,c);
Hn.block(a,a+c,c,b) = H.block(a+b,a,c,b);
Hn.block(a+c,a,b,c) = H.block(a,a+b,b,c);
2021-12-08 22:09:39 +08:00
}
2022-03-28 21:20:28 +08:00
Hn.block(a+c,a+c,b,b) = H.block(a,a,b,b);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Perform marginalization (Schur complement)
Eigen::JacobiSVD<Eigen::MatrixXd> svd(Hn.block(a+c,a+c,b,b),Eigen::ComputeThinU | Eigen::ComputeThinV);
Eigen::JacobiSVD<Eigen::MatrixXd>::SingularValuesType singularValues_inv=svd.singularValues();
for (int i=0; i<b; ++i)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
if (singularValues_inv(i)>1e-6)
singularValues_inv(i)=1.0/singularValues_inv(i);
else singularValues_inv(i)=0;
2021-12-08 22:09:39 +08:00
}
2022-03-28 21:20:28 +08:00
Eigen::MatrixXd invHb = svd.matrixV()*singularValues_inv.asDiagonal()*svd.matrixU().transpose();
Hn.block(0,0,a+c,a+c) = Hn.block(0,0,a+c,a+c) - Hn.block(0,a+c,a+c,b)*invHb*Hn.block(a+c,0,b,a+c);
Hn.block(a+c,a+c,b,b) = Eigen::MatrixXd::Zero(b,b);
Hn.block(0,a+c,a+c,b) = Eigen::MatrixXd::Zero(a+c,b);
Hn.block(a+c,0,b,a+c) = Eigen::MatrixXd::Zero(b,a+c);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Inverse reorder
// a* | ac* | 0 a* | 0 | ac*
// ca* | c* | 0 --> 0 | 0 | 0
// 0 | 0 | 0 ca* | 0 | c*
Eigen::MatrixXd res = Eigen::MatrixXd::Zero(H.rows(),H.cols());
if(a>0)
2021-12-08 22:09:39 +08:00
{
2022-03-28 21:20:28 +08:00
res.block(0,0,a,a) = Hn.block(0,0,a,a);
res.block(0,a,a,b) = Hn.block(0,a+c,a,b);
res.block(a,0,b,a) = Hn.block(a+c,0,b,a);
2021-12-08 22:09:39 +08:00
}
2022-03-28 21:20:28 +08:00
if(a>0 && c>0)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
res.block(0,a+b,a,c) = Hn.block(0,a,a,c);
res.block(a+b,0,c,a) = Hn.block(a,0,c,a);
2021-12-08 22:09:39 +08:00
}
2022-03-28 21:20:28 +08:00
if(c>0)
2021-12-08 22:09:39 +08:00
{
2022-03-28 21:20:28 +08:00
res.block(a+b,a+b,c,c) = Hn.block(a,a,c,c);
res.block(a+b,a,c,b) = Hn.block(a,a+c,c,b);
res.block(a,a+b,b,c) = Hn.block(a+c,a,b,c);
2020-12-01 11:58:17 +08:00
}
2022-03-28 21:20:28 +08:00
res.block(a,a,b,b) = Hn.block(a+c,a+c,b,b);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
return res;
2020-12-01 11:58:17 +08:00
}
2022-03-28 21:20:28 +08:00
void Optimizer::InertialOptimization(Map *pMap, Eigen::Matrix3d &Rwg, double &scale, Eigen::Vector3d &bg, Eigen::Vector3d &ba, bool bMono, Eigen::MatrixXd &covInertial, bool bFixedVel, bool bGauss, float priorG, float priorA)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
Verbose::PrintMess("inertial optimization", Verbose::VERBOSITY_NORMAL);
2021-08-09 19:34:51 +08:00
int its = 200;
2022-03-28 21:20:28 +08:00
long unsigned int maxKFid = pMap->GetMaxKFid();
const vector<KeyFrame*> vpKFs = pMap->GetAllKeyFrames();
2020-12-01 11:58:17 +08:00
// Setup optimizer
g2o::SparseOptimizer optimizer;
g2o::BlockSolverX::LinearSolverType * linearSolver;
linearSolver = new g2o::LinearSolverEigen<g2o::BlockSolverX::PoseMatrixType>();
g2o::BlockSolverX * solver_ptr = new g2o::BlockSolverX(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
2022-03-28 21:20:28 +08:00
if (priorG!=0.f)
solver->setUserLambdaInit(1e3);
2020-12-01 11:58:17 +08:00
optimizer.setAlgorithm(solver);
// Set KeyFrame vertices (fixed poses and optimizable velocities)
for(size_t i=0; i<vpKFs.size(); i++)
{
KeyFrame* pKFi = vpKFs[i];
2022-03-28 21:20:28 +08:00
if(pKFi->mnId>maxKFid)
continue;
2020-12-01 11:58:17 +08:00
VertexPose * VP = new VertexPose(pKFi);
VP->setId(pKFi->mnId);
VP->setFixed(true);
optimizer.addVertex(VP);
VertexVelocity* VV = new VertexVelocity(pKFi);
VV->setId(maxKFid+(pKFi->mnId)+1);
2022-03-28 21:20:28 +08:00
if (bFixedVel)
VV->setFixed(true);
else
2021-12-08 22:09:39 +08:00
VV->setFixed(false);
2020-12-01 11:58:17 +08:00
optimizer.addVertex(VV);
}
// Biases
VertexGyroBias* VG = new VertexGyroBias(vpKFs.front());
VG->setId(maxKFid*2+2);
2022-03-28 21:20:28 +08:00
if (bFixedVel)
VG->setFixed(true);
else
VG->setFixed(false);
2020-12-01 11:58:17 +08:00
optimizer.addVertex(VG);
VertexAccBias* VA = new VertexAccBias(vpKFs.front());
VA->setId(maxKFid*2+3);
2022-03-28 21:20:28 +08:00
if (bFixedVel)
VA->setFixed(true);
else
VA->setFixed(false);
2020-12-01 11:58:17 +08:00
optimizer.addVertex(VA);
// prior acc bias
2022-03-28 21:20:28 +08:00
Eigen::Vector3f bprior;
bprior.setZero();
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
EdgePriorAcc* epa = new EdgePriorAcc(bprior);
2020-12-01 11:58:17 +08:00
epa->setVertex(0,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VA));
double infoPriorA = priorA;
epa->setInformation(infoPriorA*Eigen::Matrix3d::Identity());
optimizer.addEdge(epa);
2022-03-28 21:20:28 +08:00
EdgePriorGyro* epg = new EdgePriorGyro(bprior);
2020-12-01 11:58:17 +08:00
epg->setVertex(0,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VG));
double infoPriorG = priorG;
epg->setInformation(infoPriorG*Eigen::Matrix3d::Identity());
optimizer.addEdge(epg);
// Gravity and scale
2022-03-28 21:20:28 +08:00
VertexGDir* VGDir = new VertexGDir(Rwg);
2020-12-01 11:58:17 +08:00
VGDir->setId(maxKFid*2+4);
2022-03-28 21:20:28 +08:00
VGDir->setFixed(false);
2020-12-01 11:58:17 +08:00
optimizer.addVertex(VGDir);
2022-03-28 21:20:28 +08:00
VertexScale* VS = new VertexScale(scale);
2020-12-01 11:58:17 +08:00
VS->setId(maxKFid*2+5);
2022-03-28 21:20:28 +08:00
VS->setFixed(!bMono); // Fixed for stereo case
2020-12-01 11:58:17 +08:00
optimizer.addVertex(VS);
// Graph edges
// IMU links with gravity and scale
vector<EdgeInertialGS*> vpei;
vpei.reserve(vpKFs.size());
vector<pair<KeyFrame*,KeyFrame*> > vppUsedKF;
vppUsedKF.reserve(vpKFs.size());
2022-03-28 21:20:28 +08:00
//std::cout << "build optimization graph" << std::endl;
2020-12-01 11:58:17 +08:00
for(size_t i=0;i<vpKFs.size();i++)
{
KeyFrame* pKFi = vpKFs[i];
if(pKFi->mPrevKF && pKFi->mnId<=maxKFid)
{
if(pKFi->isBad() || pKFi->mPrevKF->mnId>maxKFid)
continue;
2022-03-28 21:20:28 +08:00
if(!pKFi->mpImuPreintegrated)
std::cout << "Not preintegrated measurement" << std::endl;
2020-12-01 11:58:17 +08:00
pKFi->mpImuPreintegrated->SetNewBias(pKFi->mPrevKF->GetImuBias());
g2o::HyperGraph::Vertex* VP1 = optimizer.vertex(pKFi->mPrevKF->mnId);
g2o::HyperGraph::Vertex* VV1 = optimizer.vertex(maxKFid+(pKFi->mPrevKF->mnId)+1);
g2o::HyperGraph::Vertex* VP2 = optimizer.vertex(pKFi->mnId);
g2o::HyperGraph::Vertex* VV2 = optimizer.vertex(maxKFid+(pKFi->mnId)+1);
g2o::HyperGraph::Vertex* VG = optimizer.vertex(maxKFid*2+2);
g2o::HyperGraph::Vertex* VA = optimizer.vertex(maxKFid*2+3);
g2o::HyperGraph::Vertex* VGDir = optimizer.vertex(maxKFid*2+4);
g2o::HyperGraph::Vertex* VS = optimizer.vertex(maxKFid*2+5);
if(!VP1 || !VV1 || !VG || !VA || !VP2 || !VV2 || !VGDir || !VS)
{
cout << "Error" << VP1 << ", "<< VV1 << ", "<< VG << ", "<< VA << ", " << VP2 << ", " << VV2 << ", "<< VGDir << ", "<< VS <<endl;
continue;
}
EdgeInertialGS* ei = new EdgeInertialGS(pKFi->mpImuPreintegrated);
ei->setVertex(0,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VP1));
ei->setVertex(1,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VV1));
ei->setVertex(2,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VG));
ei->setVertex(3,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VA));
ei->setVertex(4,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VP2));
ei->setVertex(5,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VV2));
ei->setVertex(6,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VGDir));
ei->setVertex(7,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VS));
vpei.push_back(ei);
vppUsedKF.push_back(make_pair(pKFi->mPrevKF,pKFi));
optimizer.addEdge(ei);
}
}
// Compute error for different scales
2022-03-28 21:20:28 +08:00
std::set<g2o::HyperGraph::Edge*> setEdges = optimizer.edges();
2020-12-01 11:58:17 +08:00
optimizer.setVerbose(false);
optimizer.initializeOptimization();
optimizer.optimize(its);
2022-03-28 21:20:28 +08:00
scale = VS->estimate();
2020-12-01 11:58:17 +08:00
// Recover optimized data
// Biases
VG = static_cast<VertexGyroBias*>(optimizer.vertex(maxKFid*2+2));
VA = static_cast<VertexAccBias*>(optimizer.vertex(maxKFid*2+3));
Vector6d vb;
vb << VG->estimate(), VA->estimate();
bg << VG->estimate();
ba << VA->estimate();
scale = VS->estimate();
2022-03-28 21:20:28 +08:00
IMU::Bias b (vb[3],vb[4],vb[5],vb[0],vb[1],vb[2]);
Rwg = VGDir->estimate().Rwg;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
//Keyframes velocities and biases
const int N = vpKFs.size();
for(size_t i=0; i<N; i++)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
KeyFrame* pKFi = vpKFs[i];
if(pKFi->mnId>maxKFid)
2020-12-01 11:58:17 +08:00
continue;
2022-03-28 21:20:28 +08:00
VertexVelocity* VV = static_cast<VertexVelocity*>(optimizer.vertex(maxKFid+(pKFi->mnId)+1));
Eigen::Vector3d Vw = VV->estimate(); // Velocity is scaled after
pKFi->SetVelocity(Vw.cast<float>());
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if ((pKFi->GetGyroBias() - bg.cast<float>()).norm() > 0.01)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
pKFi->SetNewBias(b);
if (pKFi->mpImuPreintegrated)
pKFi->mpImuPreintegrated->Reintegrate();
}
else
pKFi->SetNewBias(b);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
}
}
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
void Optimizer::InertialOptimization(Map *pMap, Eigen::Vector3d &bg, Eigen::Vector3d &ba, float priorG, float priorA)
{
int its = 200; // Check number of iterations
long unsigned int maxKFid = pMap->GetMaxKFid();
const vector<KeyFrame*> vpKFs = pMap->GetAllKeyFrames();
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Setup optimizer
g2o::SparseOptimizer optimizer;
g2o::BlockSolverX::LinearSolverType * linearSolver;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
linearSolver = new g2o::LinearSolverEigen<g2o::BlockSolverX::PoseMatrixType>();
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
g2o::BlockSolverX * solver_ptr = new g2o::BlockSolverX(linearSolver);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
solver->setUserLambdaInit(1e3);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
optimizer.setAlgorithm(solver);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Set KeyFrame vertices (fixed poses and optimizable velocities)
for(size_t i=0; i<vpKFs.size(); i++)
{
KeyFrame* pKFi = vpKFs[i];
if(pKFi->mnId>maxKFid)
continue;
VertexPose * VP = new VertexPose(pKFi);
VP->setId(pKFi->mnId);
VP->setFixed(true);
optimizer.addVertex(VP);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
VertexVelocity* VV = new VertexVelocity(pKFi);
VV->setId(maxKFid+(pKFi->mnId)+1);
VV->setFixed(false);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
optimizer.addVertex(VV);
2020-12-01 11:58:17 +08:00
}
2022-03-28 21:20:28 +08:00
// Biases
VertexGyroBias* VG = new VertexGyroBias(vpKFs.front());
VG->setId(maxKFid*2+2);
VG->setFixed(false);
optimizer.addVertex(VG);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
VertexAccBias* VA = new VertexAccBias(vpKFs.front());
VA->setId(maxKFid*2+3);
VA->setFixed(false);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
optimizer.addVertex(VA);
// prior acc bias
Eigen::Vector3f bprior;
bprior.setZero();
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
EdgePriorAcc* epa = new EdgePriorAcc(bprior);
epa->setVertex(0,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VA));
double infoPriorA = priorA;
epa->setInformation(infoPriorA*Eigen::Matrix3d::Identity());
optimizer.addEdge(epa);
EdgePriorGyro* epg = new EdgePriorGyro(bprior);
epg->setVertex(0,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VG));
double infoPriorG = priorG;
epg->setInformation(infoPriorG*Eigen::Matrix3d::Identity());
optimizer.addEdge(epg);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Gravity and scale
VertexGDir* VGDir = new VertexGDir(Eigen::Matrix3d::Identity());
VGDir->setId(maxKFid*2+4);
VGDir->setFixed(true);
optimizer.addVertex(VGDir);
VertexScale* VS = new VertexScale(1.0);
VS->setId(maxKFid*2+5);
VS->setFixed(true); // Fixed since scale is obtained from already well initialized map
optimizer.addVertex(VS);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Graph edges
// IMU links with gravity and scale
vector<EdgeInertialGS*> vpei;
vpei.reserve(vpKFs.size());
vector<pair<KeyFrame*,KeyFrame*> > vppUsedKF;
vppUsedKF.reserve(vpKFs.size());
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
for(size_t i=0;i<vpKFs.size();i++)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
KeyFrame* pKFi = vpKFs[i];
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(pKFi->mPrevKF && pKFi->mnId<=maxKFid)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
if(pKFi->isBad() || pKFi->mPrevKF->mnId>maxKFid)
2020-12-01 11:58:17 +08:00
continue;
2022-03-28 21:20:28 +08:00
pKFi->mpImuPreintegrated->SetNewBias(pKFi->mPrevKF->GetImuBias());
g2o::HyperGraph::Vertex* VP1 = optimizer.vertex(pKFi->mPrevKF->mnId);
g2o::HyperGraph::Vertex* VV1 = optimizer.vertex(maxKFid+(pKFi->mPrevKF->mnId)+1);
g2o::HyperGraph::Vertex* VP2 = optimizer.vertex(pKFi->mnId);
g2o::HyperGraph::Vertex* VV2 = optimizer.vertex(maxKFid+(pKFi->mnId)+1);
g2o::HyperGraph::Vertex* VG = optimizer.vertex(maxKFid*2+2);
g2o::HyperGraph::Vertex* VA = optimizer.vertex(maxKFid*2+3);
g2o::HyperGraph::Vertex* VGDir = optimizer.vertex(maxKFid*2+4);
g2o::HyperGraph::Vertex* VS = optimizer.vertex(maxKFid*2+5);
if(!VP1 || !VV1 || !VG || !VA || !VP2 || !VV2 || !VGDir || !VS)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
cout << "Error" << VP1 << ", "<< VV1 << ", "<< VG << ", "<< VA << ", " << VP2 << ", " << VV2 << ", "<< VGDir << ", "<< VS <<endl;
2020-12-01 11:58:17 +08:00
continue;
}
2022-03-28 21:20:28 +08:00
EdgeInertialGS* ei = new EdgeInertialGS(pKFi->mpImuPreintegrated);
ei->setVertex(0,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VP1));
ei->setVertex(1,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VV1));
ei->setVertex(2,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VG));
ei->setVertex(3,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VA));
ei->setVertex(4,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VP2));
ei->setVertex(5,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VV2));
ei->setVertex(6,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VGDir));
ei->setVertex(7,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VS));
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
vpei.push_back(ei);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
vppUsedKF.push_back(make_pair(pKFi->mPrevKF,pKFi));
optimizer.addEdge(ei);
2020-12-01 11:58:17 +08:00
}
}
2022-03-28 21:20:28 +08:00
// Compute error for different scales
optimizer.setVerbose(false);
optimizer.initializeOptimization();
optimizer.optimize(its);
2020-12-01 11:58:17 +08:00
// Recover optimized data
2022-03-28 21:20:28 +08:00
// Biases
VG = static_cast<VertexGyroBias*>(optimizer.vertex(maxKFid*2+2));
VA = static_cast<VertexAccBias*>(optimizer.vertex(maxKFid*2+3));
Vector6d vb;
vb << VG->estimate(), VA->estimate();
bg << VG->estimate();
ba << VA->estimate();
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
IMU::Bias b (vb[3],vb[4],vb[5],vb[0],vb[1],vb[2]);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
//Keyframes velocities and biases
const int N = vpKFs.size();
for(size_t i=0; i<N; i++)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
KeyFrame* pKFi = vpKFs[i];
if(pKFi->mnId>maxKFid)
2020-12-01 11:58:17 +08:00
continue;
2022-03-28 21:20:28 +08:00
VertexVelocity* VV = static_cast<VertexVelocity*>(optimizer.vertex(maxKFid+(pKFi->mnId)+1));
Eigen::Vector3d Vw = VV->estimate();
pKFi->SetVelocity(Vw.cast<float>());
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if ((pKFi->GetGyroBias() - bg.cast<float>()).norm() > 0.01)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
pKFi->SetNewBias(b);
if (pKFi->mpImuPreintegrated)
pKFi->mpImuPreintegrated->Reintegrate();
2020-12-01 11:58:17 +08:00
}
2022-03-28 21:20:28 +08:00
else
pKFi->SetNewBias(b);
2020-12-01 11:58:17 +08:00
}
2022-03-28 21:20:28 +08:00
}
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
void Optimizer::InertialOptimization(Map *pMap, Eigen::Matrix3d &Rwg, double &scale)
{
int its = 10;
long unsigned int maxKFid = pMap->GetMaxKFid();
const vector<KeyFrame*> vpKFs = pMap->GetAllKeyFrames();
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Setup optimizer
g2o::SparseOptimizer optimizer;
g2o::BlockSolverX::LinearSolverType * linearSolver;
linearSolver = new g2o::LinearSolverEigen<g2o::BlockSolverX::PoseMatrixType>();
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
g2o::BlockSolverX * solver_ptr = new g2o::BlockSolverX(linearSolver);
2021-12-08 22:09:39 +08:00
2022-03-28 21:20:28 +08:00
g2o::OptimizationAlgorithmGaussNewton* solver = new g2o::OptimizationAlgorithmGaussNewton(solver_ptr);
optimizer.setAlgorithm(solver);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Set KeyFrame vertices (all variables are fixed)
for(size_t i=0; i<vpKFs.size(); i++)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
KeyFrame* pKFi = vpKFs[i];
if(pKFi->mnId>maxKFid)
2020-12-01 11:58:17 +08:00
continue;
2022-03-28 21:20:28 +08:00
VertexPose * VP = new VertexPose(pKFi);
VP->setId(pKFi->mnId);
VP->setFixed(true);
optimizer.addVertex(VP);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
VertexVelocity* VV = new VertexVelocity(pKFi);
VV->setId(maxKFid+1+(pKFi->mnId));
VV->setFixed(true);
optimizer.addVertex(VV);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Vertex of fixed biases
VertexGyroBias* VG = new VertexGyroBias(vpKFs.front());
VG->setId(2*(maxKFid+1)+(pKFi->mnId));
VG->setFixed(true);
optimizer.addVertex(VG);
VertexAccBias* VA = new VertexAccBias(vpKFs.front());
VA->setId(3*(maxKFid+1)+(pKFi->mnId));
VA->setFixed(true);
optimizer.addVertex(VA);
2020-12-01 11:58:17 +08:00
}
2022-03-28 21:20:28 +08:00
// Gravity and scale
VertexGDir* VGDir = new VertexGDir(Rwg);
VGDir->setId(4*(maxKFid+1));
VGDir->setFixed(false);
optimizer.addVertex(VGDir);
VertexScale* VS = new VertexScale(scale);
VS->setId(4*(maxKFid+1)+1);
VS->setFixed(false);
optimizer.addVertex(VS);
2021-12-08 22:09:39 +08:00
2022-03-28 21:20:28 +08:00
// Graph edges
int count_edges = 0;
for(size_t i=0;i<vpKFs.size();i++)
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
KeyFrame* pKFi = vpKFs[i];
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(pKFi->mPrevKF && pKFi->mnId<=maxKFid)
{
if(pKFi->isBad() || pKFi->mPrevKF->mnId>maxKFid)
continue;
g2o::HyperGraph::Vertex* VP1 = optimizer.vertex(pKFi->mPrevKF->mnId);
g2o::HyperGraph::Vertex* VV1 = optimizer.vertex((maxKFid+1)+pKFi->mPrevKF->mnId);
g2o::HyperGraph::Vertex* VP2 = optimizer.vertex(pKFi->mnId);
g2o::HyperGraph::Vertex* VV2 = optimizer.vertex((maxKFid+1)+pKFi->mnId);
g2o::HyperGraph::Vertex* VG = optimizer.vertex(2*(maxKFid+1)+pKFi->mPrevKF->mnId);
g2o::HyperGraph::Vertex* VA = optimizer.vertex(3*(maxKFid+1)+pKFi->mPrevKF->mnId);
g2o::HyperGraph::Vertex* VGDir = optimizer.vertex(4*(maxKFid+1));
g2o::HyperGraph::Vertex* VS = optimizer.vertex(4*(maxKFid+1)+1);
if(!VP1 || !VV1 || !VG || !VA || !VP2 || !VV2 || !VGDir || !VS)
{
Verbose::PrintMess("Error" + to_string(VP1->id()) + ", " + to_string(VV1->id()) + ", " + to_string(VG->id()) + ", " + to_string(VA->id()) + ", " + to_string(VP2->id()) + ", " + to_string(VV2->id()) + ", " + to_string(VGDir->id()) + ", " + to_string(VS->id()), Verbose::VERBOSITY_NORMAL);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
continue;
}
count_edges++;
EdgeInertialGS* ei = new EdgeInertialGS(pKFi->mpImuPreintegrated);
ei->setVertex(0,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VP1));
ei->setVertex(1,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VV1));
ei->setVertex(2,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VG));
ei->setVertex(3,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VA));
ei->setVertex(4,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VP2));
ei->setVertex(5,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VV2));
ei->setVertex(6,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VGDir));
ei->setVertex(7,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VS));
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
ei->setRobustKernel(rk);
rk->setDelta(1.f);
optimizer.addEdge(ei);
}
2020-12-01 11:58:17 +08:00
}
2021-12-08 22:09:39 +08:00
2022-03-28 21:20:28 +08:00
// Compute error for different scales
optimizer.setVerbose(false);
optimizer.initializeOptimization();
optimizer.computeActiveErrors();
float err = optimizer.activeRobustChi2();
optimizer.optimize(its);
optimizer.computeActiveErrors();
float err_end = optimizer.activeRobustChi2();
// Recover optimized data
scale = VS->estimate();
Rwg = VGDir->estimate().Rwg;
2020-12-01 11:58:17 +08:00
}
2021-12-08 22:09:39 +08:00
2020-12-01 11:58:17 +08:00
void Optimizer::LocalBundleAdjustment(KeyFrame* pMainKF,vector<KeyFrame*> vpAdjustKF, vector<KeyFrame*> vpFixedKF, bool *pbStopFlag)
{
bool bShowImages = false;
vector<MapPoint*> vpMPs;
g2o::SparseOptimizer optimizer;
g2o::BlockSolver_6_3::LinearSolverType * linearSolver;
linearSolver = new g2o::LinearSolverEigen<g2o::BlockSolver_6_3::PoseMatrixType>();
g2o::BlockSolver_6_3 * solver_ptr = new g2o::BlockSolver_6_3(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
optimizer.setAlgorithm(solver);
optimizer.setVerbose(false);
if(pbStopFlag)
optimizer.setForceStopFlag(pbStopFlag);
long unsigned int maxKFid = 0;
2022-03-28 21:20:28 +08:00
set<KeyFrame*> spKeyFrameBA;
2020-12-01 11:58:17 +08:00
Map* pCurrentMap = pMainKF->GetMap();
// Set fixed KeyFrame vertices
2022-03-28 21:20:28 +08:00
int numInsertedPoints = 0;
2020-12-01 11:58:17 +08:00
for(KeyFrame* pKFi : vpFixedKF)
{
if(pKFi->isBad() || pKFi->GetMap() != pCurrentMap)
{
Verbose::PrintMess("ERROR LBA: KF is bad or is not in the current map", Verbose::VERBOSITY_NORMAL);
continue;
}
2022-03-28 21:20:28 +08:00
pKFi->mnBALocalForMerge = pMainKF->mnId;
2020-12-01 11:58:17 +08:00
g2o::VertexSE3Expmap * vSE3 = new g2o::VertexSE3Expmap();
2022-03-28 21:20:28 +08:00
Sophus::SE3<float> Tcw = pKFi->GetPose();
vSE3->setEstimate(g2o::SE3Quat(Tcw.unit_quaternion().cast<double>(),Tcw.translation().cast<double>()));
2020-12-01 11:58:17 +08:00
vSE3->setId(pKFi->mnId);
vSE3->setFixed(true);
optimizer.addVertex(vSE3);
if(pKFi->mnId>maxKFid)
maxKFid=pKFi->mnId;
set<MapPoint*> spViewMPs = pKFi->GetMapPoints();
for(MapPoint* pMPi : spViewMPs)
{
if(pMPi)
if(!pMPi->isBad() && pMPi->GetMap() == pCurrentMap)
if(pMPi->mnBALocalForMerge!=pMainKF->mnId)
{
vpMPs.push_back(pMPi);
pMPi->mnBALocalForMerge=pMainKF->mnId;
2022-03-28 21:20:28 +08:00
numInsertedPoints++;
2020-12-01 11:58:17 +08:00
}
}
spKeyFrameBA.insert(pKFi);
}
// Set non fixed Keyframe vertices
set<KeyFrame*> spAdjustKF(vpAdjustKF.begin(), vpAdjustKF.end());
2022-03-28 21:20:28 +08:00
numInsertedPoints = 0;
2020-12-01 11:58:17 +08:00
for(KeyFrame* pKFi : vpAdjustKF)
{
if(pKFi->isBad() || pKFi->GetMap() != pCurrentMap)
continue;
2022-03-28 21:20:28 +08:00
pKFi->mnBALocalForMerge = pMainKF->mnId;
2020-12-01 11:58:17 +08:00
g2o::VertexSE3Expmap * vSE3 = new g2o::VertexSE3Expmap();
2022-03-28 21:20:28 +08:00
Sophus::SE3<float> Tcw = pKFi->GetPose();
vSE3->setEstimate(g2o::SE3Quat(Tcw.unit_quaternion().cast<double>(),Tcw.translation().cast<double>()));
2020-12-01 11:58:17 +08:00
vSE3->setId(pKFi->mnId);
optimizer.addVertex(vSE3);
if(pKFi->mnId>maxKFid)
maxKFid=pKFi->mnId;
set<MapPoint*> spViewMPs = pKFi->GetMapPoints();
for(MapPoint* pMPi : spViewMPs)
{
if(pMPi)
{
if(!pMPi->isBad() && pMPi->GetMap() == pCurrentMap)
{
if(pMPi->mnBALocalForMerge != pMainKF->mnId)
{
vpMPs.push_back(pMPi);
pMPi->mnBALocalForMerge = pMainKF->mnId;
2022-03-28 21:20:28 +08:00
numInsertedPoints++;
2020-12-01 11:58:17 +08:00
}
}
}
}
spKeyFrameBA.insert(pKFi);
}
const int nExpectedSize = (vpAdjustKF.size()+vpFixedKF.size())*vpMPs.size();
vector<ORB_SLAM3::EdgeSE3ProjectXYZ*> vpEdgesMono;
vpEdgesMono.reserve(nExpectedSize);
vector<KeyFrame*> vpEdgeKFMono;
vpEdgeKFMono.reserve(nExpectedSize);
vector<MapPoint*> vpMapPointEdgeMono;
vpMapPointEdgeMono.reserve(nExpectedSize);
vector<g2o::EdgeStereoSE3ProjectXYZ*> vpEdgesStereo;
vpEdgesStereo.reserve(nExpectedSize);
vector<KeyFrame*> vpEdgeKFStereo;
vpEdgeKFStereo.reserve(nExpectedSize);
vector<MapPoint*> vpMapPointEdgeStereo;
vpMapPointEdgeStereo.reserve(nExpectedSize);
const float thHuber2D = sqrt(5.99);
const float thHuber3D = sqrt(7.815);
// Set MapPoint vertices
2022-03-28 21:20:28 +08:00
map<KeyFrame*, int> mpObsKFs;
map<KeyFrame*, int> mpObsFinalKFs;
map<MapPoint*, int> mpObsMPs;
2020-12-01 11:58:17 +08:00
for(unsigned int i=0; i < vpMPs.size(); ++i)
{
MapPoint* pMPi = vpMPs[i];
if(pMPi->isBad())
continue;
g2o::VertexSBAPointXYZ* vPoint = new g2o::VertexSBAPointXYZ();
2022-03-28 21:20:28 +08:00
vPoint->setEstimate(pMPi->GetWorldPos().cast<double>());
2020-12-01 11:58:17 +08:00
const int id = pMPi->mnId+maxKFid+1;
vPoint->setId(id);
vPoint->setMarginalized(true);
optimizer.addVertex(vPoint);
const map<KeyFrame*,tuple<int,int>> observations = pMPi->GetObservations();
int nEdges = 0;
//SET EDGES
for(map<KeyFrame*,tuple<int,int>>::const_iterator mit=observations.begin(); mit!=observations.end(); mit++)
{
KeyFrame* pKF = mit->first;
if(pKF->isBad() || pKF->mnId>maxKFid || pKF->mnBALocalForMerge != pMainKF->mnId || !pKF->GetMapPoint(get<0>(mit->second)))
continue;
nEdges++;
const cv::KeyPoint &kpUn = pKF->mvKeysUn[get<0>(mit->second)];
if(pKF->mvuRight[get<0>(mit->second)]<0) //Monocular
{
mpObsMPs[pMPi]++;
Eigen::Matrix<double,2,1> obs;
obs << kpUn.pt.x, kpUn.pt.y;
ORB_SLAM3::EdgeSE3ProjectXYZ* e = new ORB_SLAM3::EdgeSE3ProjectXYZ();
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKF->mnId)));
e->setMeasurement(obs);
const float &invSigma2 = pKF->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuber2D);
e->pCamera = pKF->mpCamera;
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vpEdgeKFMono.push_back(pKF);
vpMapPointEdgeMono.push_back(pMPi);
mpObsKFs[pKF]++;
}
else // RGBD or Stereo
{
mpObsMPs[pMPi]+=2;
Eigen::Matrix<double,3,1> obs;
const float kp_ur = pKF->mvuRight[get<0>(mit->second)];
obs << kpUn.pt.x, kpUn.pt.y, kp_ur;
g2o::EdgeStereoSE3ProjectXYZ* e = new g2o::EdgeStereoSE3ProjectXYZ();
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKF->mnId)));
e->setMeasurement(obs);
const float &invSigma2 = pKF->mvInvLevelSigma2[kpUn.octave];
Eigen::Matrix3d Info = Eigen::Matrix3d::Identity()*invSigma2;
e->setInformation(Info);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuber3D);
e->fx = pKF->fx;
e->fy = pKF->fy;
e->cx = pKF->cx;
e->cy = pKF->cy;
e->bf = pKF->mbf;
optimizer.addEdge(e);
vpEdgesStereo.push_back(e);
vpEdgeKFStereo.push_back(pKF);
vpMapPointEdgeStereo.push_back(pMPi);
mpObsKFs[pKF]++;
}
}
}
if(pbStopFlag)
if(*pbStopFlag)
return;
2021-12-08 22:09:39 +08:00
2020-12-01 11:58:17 +08:00
optimizer.initializeOptimization();
optimizer.optimize(5);
bool bDoMore= true;
if(pbStopFlag)
if(*pbStopFlag)
bDoMore = false;
2021-12-08 22:09:39 +08:00
2020-12-01 11:58:17 +08:00
map<unsigned long int, int> mWrongObsKF;
if(bDoMore)
{
// Check inlier observations
int badMonoMP = 0, badStereoMP = 0;
for(size_t i=0, iend=vpEdgesMono.size(); i<iend;i++)
{
ORB_SLAM3::EdgeSE3ProjectXYZ* e = vpEdgesMono[i];
MapPoint* pMP = vpMapPointEdgeMono[i];
if(pMP->isBad())
continue;
if(e->chi2()>5.991 || !e->isDepthPositive())
{
e->setLevel(1);
badMonoMP++;
}
e->setRobustKernel(0);
}
for(size_t i=0, iend=vpEdgesStereo.size(); i<iend;i++)
{
g2o::EdgeStereoSE3ProjectXYZ* e = vpEdgesStereo[i];
MapPoint* pMP = vpMapPointEdgeStereo[i];
if(pMP->isBad())
continue;
if(e->chi2()>7.815 || !e->isDepthPositive())
{
e->setLevel(1);
badStereoMP++;
}
e->setRobustKernel(0);
}
2022-03-28 21:20:28 +08:00
Verbose::PrintMess("[BA]: First optimization(Huber), there are " + to_string(badMonoMP) + " monocular and " + to_string(badStereoMP) + " stereo bad edges", Verbose::VERBOSITY_DEBUG);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
optimizer.initializeOptimization(0);
optimizer.optimize(10);
2020-12-01 11:58:17 +08:00
}
vector<pair<KeyFrame*,MapPoint*> > vToErase;
vToErase.reserve(vpEdgesMono.size()+vpEdgesStereo.size());
set<MapPoint*> spErasedMPs;
set<KeyFrame*> spErasedKFs;
// Check inlier observations
int badMonoMP = 0, badStereoMP = 0;
for(size_t i=0, iend=vpEdgesMono.size(); i<iend;i++)
{
ORB_SLAM3::EdgeSE3ProjectXYZ* e = vpEdgesMono[i];
MapPoint* pMP = vpMapPointEdgeMono[i];
if(pMP->isBad())
continue;
if(e->chi2()>5.991 || !e->isDepthPositive())
{
KeyFrame* pKFi = vpEdgeKFMono[i];
vToErase.push_back(make_pair(pKFi,pMP));
mWrongObsKF[pKFi->mnId]++;
badMonoMP++;
spErasedMPs.insert(pMP);
spErasedKFs.insert(pKFi);
}
}
for(size_t i=0, iend=vpEdgesStereo.size(); i<iend;i++)
{
g2o::EdgeStereoSE3ProjectXYZ* e = vpEdgesStereo[i];
MapPoint* pMP = vpMapPointEdgeStereo[i];
if(pMP->isBad())
continue;
if(e->chi2()>7.815 || !e->isDepthPositive())
{
KeyFrame* pKFi = vpEdgeKFStereo[i];
vToErase.push_back(make_pair(pKFi,pMP));
mWrongObsKF[pKFi->mnId]++;
badStereoMP++;
spErasedMPs.insert(pMP);
spErasedKFs.insert(pKFi);
}
}
2022-03-28 21:20:28 +08:00
Verbose::PrintMess("[BA]: Second optimization, there are " + to_string(badMonoMP) + " monocular and " + to_string(badStereoMP) + " sterero bad edges", Verbose::VERBOSITY_DEBUG);
2020-12-01 11:58:17 +08:00
// Get Map Mutex
unique_lock<mutex> lock(pMainKF->GetMap()->mMutexMapUpdate);
if(!vToErase.empty())
{
for(size_t i=0;i<vToErase.size();i++)
{
KeyFrame* pKFi = vToErase[i].first;
MapPoint* pMPi = vToErase[i].second;
pKFi->EraseMapPointMatch(pMPi);
pMPi->EraseObservation(pKFi);
}
}
for(unsigned int i=0; i < vpMPs.size(); ++i)
{
MapPoint* pMPi = vpMPs[i];
if(pMPi->isBad())
continue;
const map<KeyFrame*,tuple<int,int>> observations = pMPi->GetObservations();
for(map<KeyFrame*,tuple<int,int>>::const_iterator mit=observations.begin(); mit!=observations.end(); mit++)
{
KeyFrame* pKF = mit->first;
if(pKF->isBad() || pKF->mnId>maxKFid || pKF->mnBALocalForKF != pMainKF->mnId || !pKF->GetMapPoint(get<0>(mit->second)))
continue;
if(pKF->mvuRight[get<0>(mit->second)]<0) //Monocular
{
mpObsFinalKFs[pKF]++;
}
else // RGBD or Stereo
{
mpObsFinalKFs[pKF]++;
}
}
}
// Recover optimized data
2021-12-08 22:09:39 +08:00
// Keyframes
2020-12-01 11:58:17 +08:00
for(KeyFrame* pKFi : vpAdjustKF)
{
if(pKFi->isBad())
continue;
2021-12-08 22:09:39 +08:00
2020-12-01 11:58:17 +08:00
g2o::VertexSE3Expmap* vSE3 = static_cast<g2o::VertexSE3Expmap*>(optimizer.vertex(pKFi->mnId));
g2o::SE3Quat SE3quat = vSE3->estimate();
2022-03-28 21:20:28 +08:00
Sophus::SE3f Tiw(SE3quat.rotation().cast<float>(), SE3quat.translation().cast<float>());
2020-12-01 11:58:17 +08:00
int numMonoBadPoints = 0, numMonoOptPoints = 0;
int numStereoBadPoints = 0, numStereoOptPoints = 0;
2022-03-28 21:20:28 +08:00
vector<MapPoint*> vpMonoMPsOpt, vpStereoMPsOpt;
vector<MapPoint*> vpMonoMPsBad, vpStereoMPsBad;
2020-12-01 11:58:17 +08:00
for(size_t i=0, iend=vpEdgesMono.size(); i<iend;i++)
{
ORB_SLAM3::EdgeSE3ProjectXYZ* e = vpEdgesMono[i];
MapPoint* pMP = vpMapPointEdgeMono[i];
KeyFrame* pKFedge = vpEdgeKFMono[i];
if(pKFi != pKFedge)
{
continue;
}
if(pMP->isBad())
continue;
if(e->chi2()>5.991 || !e->isDepthPositive())
{
numMonoBadPoints++;
vpMonoMPsBad.push_back(pMP);
}
else
{
numMonoOptPoints++;
vpMonoMPsOpt.push_back(pMP);
}
}
for(size_t i=0, iend=vpEdgesStereo.size(); i<iend;i++)
{
g2o::EdgeStereoSE3ProjectXYZ* e = vpEdgesStereo[i];
MapPoint* pMP = vpMapPointEdgeStereo[i];
KeyFrame* pKFedge = vpEdgeKFMono[i];
if(pKFi != pKFedge)
{
continue;
}
if(pMP->isBad())
continue;
if(e->chi2()>7.815 || !e->isDepthPositive())
{
numStereoBadPoints++;
vpStereoMPsBad.push_back(pMP);
}
else
{
numStereoOptPoints++;
vpStereoMPsOpt.push_back(pMP);
}
}
pKFi->SetPose(Tiw);
}
//Points
for(MapPoint* pMPi : vpMPs)
{
if(pMPi->isBad())
continue;
g2o::VertexSBAPointXYZ* vPoint = static_cast<g2o::VertexSBAPointXYZ*>(optimizer.vertex(pMPi->mnId+maxKFid+1));
2022-03-28 21:20:28 +08:00
pMPi->SetWorldPos(vPoint->estimate().cast<float>());
2020-12-01 11:58:17 +08:00
pMPi->UpdateNormalAndDepth();
}
}
2022-03-28 21:20:28 +08:00
2020-12-01 11:58:17 +08:00
void Optimizer::MergeInertialBA(KeyFrame* pCurrKF, KeyFrame* pMergeKF, bool *pbStopFlag, Map *pMap, LoopClosing::KeyFrameAndPose &corrPoses)
{
const int Nd = 6;
const unsigned long maxKFid = pCurrKF->mnId;
2022-03-28 21:20:28 +08:00
2020-12-01 11:58:17 +08:00
vector<KeyFrame*> vpOptimizableKFs;
vpOptimizableKFs.reserve(2*Nd);
// For cov KFS, inertial parameters are not optimized
2022-03-28 21:20:28 +08:00
const int maxCovKF = 30;
2020-12-01 11:58:17 +08:00
vector<KeyFrame*> vpOptimizableCovKFs;
2022-03-28 21:20:28 +08:00
vpOptimizableCovKFs.reserve(maxCovKF);
2020-12-01 11:58:17 +08:00
// Add sliding window for current KF
vpOptimizableKFs.push_back(pCurrKF);
pCurrKF->mnBALocalForKF = pCurrKF->mnId;
for(int i=1; i<Nd; i++)
{
if(vpOptimizableKFs.back()->mPrevKF)
{
vpOptimizableKFs.push_back(vpOptimizableKFs.back()->mPrevKF);
vpOptimizableKFs.back()->mnBALocalForKF = pCurrKF->mnId;
}
else
break;
}
2022-03-28 21:20:28 +08:00
2020-12-01 11:58:17 +08:00
list<KeyFrame*> lFixedKeyFrames;
if(vpOptimizableKFs.back()->mPrevKF)
{
vpOptimizableCovKFs.push_back(vpOptimizableKFs.back()->mPrevKF);
vpOptimizableKFs.back()->mPrevKF->mnBALocalForKF=pCurrKF->mnId;
}
else
{
vpOptimizableCovKFs.push_back(vpOptimizableKFs.back());
vpOptimizableKFs.pop_back();
}
// Add temporal neighbours to merge KF (previous and next KFs)
vpOptimizableKFs.push_back(pMergeKF);
pMergeKF->mnBALocalForKF = pCurrKF->mnId;
// Previous KFs
for(int i=1; i<(Nd/2); i++)
{
if(vpOptimizableKFs.back()->mPrevKF)
{
vpOptimizableKFs.push_back(vpOptimizableKFs.back()->mPrevKF);
vpOptimizableKFs.back()->mnBALocalForKF = pCurrKF->mnId;
}
else
break;
}
// We fix just once the old map
if(vpOptimizableKFs.back()->mPrevKF)
{
lFixedKeyFrames.push_back(vpOptimizableKFs.back()->mPrevKF);
vpOptimizableKFs.back()->mPrevKF->mnBAFixedForKF=pCurrKF->mnId;
}
else
{
vpOptimizableKFs.back()->mnBALocalForKF=0;
vpOptimizableKFs.back()->mnBAFixedForKF=pCurrKF->mnId;
lFixedKeyFrames.push_back(vpOptimizableKFs.back());
vpOptimizableKFs.pop_back();
}
// Next KFs
if(pMergeKF->mNextKF)
{
vpOptimizableKFs.push_back(pMergeKF->mNextKF);
vpOptimizableKFs.back()->mnBALocalForKF = pCurrKF->mnId;
}
2022-03-28 21:20:28 +08:00
2020-12-01 11:58:17 +08:00
while(vpOptimizableKFs.size()<(2*Nd))
{
if(vpOptimizableKFs.back()->mNextKF)
{
vpOptimizableKFs.push_back(vpOptimizableKFs.back()->mNextKF);
vpOptimizableKFs.back()->mnBALocalForKF = pCurrKF->mnId;
}
else
break;
}
int N = vpOptimizableKFs.size();
// Optimizable points seen by optimizable keyframes
list<MapPoint*> lLocalMapPoints;
map<MapPoint*,int> mLocalObs;
for(int i=0; i<N; i++)
{
vector<MapPoint*> vpMPs = vpOptimizableKFs[i]->GetMapPointMatches();
for(vector<MapPoint*>::iterator vit=vpMPs.begin(), vend=vpMPs.end(); vit!=vend; vit++)
{
// Using mnBALocalForKF we avoid redundance here, one MP can not be added several times to lLocalMapPoints
MapPoint* pMP = *vit;
if(pMP)
if(!pMP->isBad())
if(pMP->mnBALocalForKF!=pCurrKF->mnId)
{
mLocalObs[pMP]=1;
lLocalMapPoints.push_back(pMP);
pMP->mnBALocalForKF=pCurrKF->mnId;
}
2022-03-28 21:20:28 +08:00
else {
2020-12-01 11:58:17 +08:00
mLocalObs[pMP]++;
2022-03-28 21:20:28 +08:00
}
2020-12-01 11:58:17 +08:00
}
}
2022-03-28 21:20:28 +08:00
std::vector<std::pair<MapPoint*, int>> pairs;
pairs.reserve(mLocalObs.size());
for (auto itr = mLocalObs.begin(); itr != mLocalObs.end(); ++itr)
pairs.push_back(*itr);
sort(pairs.begin(), pairs.end(),sortByVal);
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
// Fixed Keyframes. Keyframes that see Local MapPoints but that are not Local Keyframes
int i=0;
for(vector<pair<MapPoint*,int>>::iterator lit=pairs.begin(), lend=pairs.end(); lit!=lend; lit++, i++)
2021-08-09 19:34:51 +08:00
{
2022-03-28 21:20:28 +08:00
map<KeyFrame*,tuple<int,int>> observations = lit->first->GetObservations();
2021-08-09 19:34:51 +08:00
if(i>=maxCovKF)
break;
2022-03-28 21:20:28 +08:00
for(map<KeyFrame*,tuple<int,int>>::iterator mit=observations.begin(), mend=observations.end(); mit!=mend; mit++)
2021-08-09 19:34:51 +08:00
{
2022-03-28 21:20:28 +08:00
KeyFrame* pKFi = mit->first;
2020-12-01 11:58:17 +08:00
2022-03-28 21:20:28 +08:00
if(pKFi->mnBALocalForKF!=pCurrKF->mnId && pKFi->mnBAFixedForKF!=pCurrKF->mnId) // If optimizable or already included...
2020-12-01 11:58:17 +08:00
{
2022-03-28 21:20:28 +08:00
pKFi->mnBALocalForKF=pCurrKF->mnId;
if(!pKFi->isBad())
{
vpOptimizableCovKFs.push_back(pKFi);
break;
}
2020-12-01 11:58:17 +08:00
}
}
}
g2o::SparseOptimizer optimizer;
g2o::BlockSolverX::LinearSolverType * linearSolver;
linearSolver = new g2o::LinearSolverEigen<g2o::BlockSolverX::PoseMatrixType>();
g2o::BlockSolverX * solver_ptr = new g2o::BlockSolverX(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
2021-08-09 19:34:51 +08:00
solver->setUserLambdaInit(1e3);
2020-12-01 11:58:17 +08:00
optimizer.setAlgorithm(solver);
optimizer.setVerbose(false);
// Set Local KeyFrame vertices
N=vpOptimizableKFs.size();
for(int i=0; i<N; i++)
{
KeyFrame* pKFi = vpOptimizableKFs[i];
VertexPose * VP = new VertexPose(pKFi);
VP->setId(pKFi->mnId);
VP->setFixed(false);
optimizer.addVertex(VP);
if(pKFi->bImu)
{
VertexVelocity* VV = new VertexVelocity(pKFi);
VV->setId(maxKFid+3*(pKFi->mnId)+1);
VV->setFixed(false);
optimizer.addVertex(VV);
VertexGyroBias* VG = new VertexGyroBias(pKFi);
VG->setId(maxKFid+3*(pKFi->mnId)+2);
VG->setFixed(false);
optimizer.addVertex(VG);
VertexAccBias* VA = new VertexAccBias(pKFi);
VA->setId(maxKFid+3*(pKFi->mnId)+3);
VA->setFixed(false);
optimizer.addVertex(VA);
}
}
// Set Local cov keyframes vertices
int Ncov=vpOptimizableCovKFs.size();
for(int i=0; i<Ncov; i++)
{
KeyFrame* pKFi = vpOptimizableCovKFs[i];
VertexPose * VP = new VertexPose(pKFi);
VP->setId(pKFi->mnId);
VP->setFixed(false);
optimizer.addVertex(VP);
if(pKFi->bImu)
{
VertexVelocity* VV = new VertexVelocity(pKFi);
VV->setId(maxKFid+3*(pKFi->mnId)+1);
2022-03-28 21:20:28 +08:00
VV->setFixed(false);
2020-12-01 11:58:17 +08:00
optimizer.addVertex(VV);
VertexGyroBias* VG = new VertexGyroBias(pKFi);
VG->setId(maxKFid+3*(pKFi->mnId)+2);
2022-03-28 21:20:28 +08:00
VG->setFixed(false);
2020-12-01 11:58:17 +08:00
optimizer.addVertex(VG);
VertexAccBias* VA = new VertexAccBias(pKFi);
VA->setId(maxKFid+3*(pKFi->mnId)+3);
2022-03-28 21:20:28 +08:00
VA->setFixed(false);
2020-12-01 11:58:17 +08:00
optimizer.addVertex(VA);
}
}
// Set Fixed KeyFrame vertices
for(list<KeyFrame*>::iterator lit=lFixedKeyFrames.begin(), lend=lFixedKeyFrames.end(); lit!=lend; lit++)
{
KeyFrame* pKFi = *lit;
VertexPose * VP = new VertexPose(pKFi);
VP->setId(pKFi->mnId);
VP->setFixed(true);
optimizer.addVertex(VP);
if(pKFi->bImu)
{
VertexVelocity* VV = new VertexVelocity(pKFi);
VV->setId(maxKFid+3*(pKFi->mnId)+1);
VV->setFixed(true);
optimizer.addVertex(VV);
VertexGyroBias* VG = new VertexGyroBias(pKFi);
VG->setId(maxKFid+3*(pKFi->mnId)+2);
VG->setFixed(true);
optimizer.addVertex(VG);
VertexAccBias* VA = new VertexAccBias(pKFi);
VA->setId(maxKFid+3*(pKFi->mnId)+3);
VA->setFixed(true);
optimizer.addVertex(VA);
}
}
// Create intertial constraints
vector<EdgeInertial*> vei(N,(EdgeInertial*)NULL);
vector<EdgeGyroRW*> vegr(N,(EdgeGyroRW*)NULL);
vector<EdgeAccRW*> vear(N,(EdgeAccRW*)NULL);
for(int i=0;i<N;i++)
{
//cout << "inserting inertial edge " << i << endl;
KeyFrame* pKFi = vpOptimizableKFs[i];
if(!pKFi->mPrevKF)
{
Verbose::PrintMess("NOT INERTIAL LINK TO PREVIOUS FRAME!!!!", Verbose::VERBOSITY_NORMAL);
continue;
}
if(pKFi->bImu && pKFi->mPrevKF->bImu && pKFi->mpImuPreintegrated)
{
pKFi->mpImuPreintegrated->SetNewBias(pKFi->mPrevKF->GetImuBias());
g2o::HyperGraph::Vertex* VP1 = optimizer.vertex(pKFi->mPrevKF->mnId);
g2o::HyperGraph::Vertex* VV1 = optimizer.vertex(maxKFid+3*(pKFi->mPrevKF->mnId)+1);
g2o::HyperGraph::Vertex* VG1 = optimizer.vertex(maxKFid+3*(pKFi->mPrevKF->mnId)+2);
g2o::HyperGraph::Vertex* VA1 = optimizer.vertex(maxKFid+3*(pKFi->mPrevKF->mnId)+3);
g2o::HyperGraph::Vertex* VP2 = optimizer.vertex(pKFi->mnId);
g2o::HyperGraph::Vertex* VV2 = optimizer.vertex(maxKFid+3*(pKFi->mnId)+1);
g2o::HyperGraph::Vertex* VG2 = optimizer.vertex(maxKFid+3*(pKFi->mnId)+2);
g2o::HyperGraph::Vertex* VA2 = optimizer.vertex(maxKFid+3*(pKFi->mnId)+3);
if(!VP1 || !VV1 || !VG1 || !VA1 || !VP2 || !VV2 || !VG2 || !VA2)
{
cerr << "Error " << VP1 << ", "<< VV1 << ", "<< VG1 << ", "<< VA1 << ", " << VP2 << ", " << VV2 << ", "<< VG2 << ", "<< VA2 <<endl;
continue;
}
vei[i] = new EdgeInertial(pKFi->mpImuPreintegrated);
vei[i]->setVertex(0,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VP1));
vei[i]->setVertex(1,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VV1));
vei[i]->setVertex(2,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VG1));
vei[i]->setVertex(3,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VA1));
vei[i]->setVertex(4,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VP2));
vei[i]->setVertex(5,dynamic_cast<g2o::OptimizableGraph::Vertex*>(VV2));
// TODO Uncomment
g2o::RobustKernelHuber* rki = new g2o::RobustKernelHuber;
vei[i]->setRobustKernel(rki);
rki->setDelta(sqrt(16.92));
optimizer.addEdge(vei[i]);
vegr[i] = new EdgeGyroRW();
vegr[i]->setVertex(0,VG1);
vegr[i]->setVertex(1,VG2);
2022-03-28 21:20:28 +08:00
Eigen::Matrix3d InfoG = pKFi->mpImuPreintegrated->C.block<3,3>(9,9).cast<double>().inverse();
2020-12-01 11:58:17 +08:00
vegr[i]->setInformation(InfoG);
optimizer.addEdge(vegr[i]);
vear[i] = new EdgeAccRW();
vear[i]->setVertex(0,VA1);
vear[i]->setVertex(1,VA2);
2022-03-28 21:20:28 +08:00
Eigen::Matrix3d InfoA = pKFi->mpImuPreintegrated->C.block<3,3>(12,12).cast<double>().inverse();
2020-12-01 11:58:17 +08:00
vear[i]->setInformation(InfoA);
optimizer.addEdge(vear[i]);
}
else
Verbose::PrintMess("ERROR building inertial edge", Verbose::VERBOSITY_NORMAL);
}
2022-03-28 21:20:28 +08:00
Verbose::PrintMess("end inserting inertial edges", Verbose::VERBOSITY_NORMAL);
2020-12-01 11:58:17 +08:00
// Set MapPoint vertices
const int nExpectedSize = (N+Ncov+lFixedKeyFrames.size())*lLocalMapPoints.size();
// Mono
vector<EdgeMono*> vpEdgesMono;
vpEdgesMono.reserve(nExpectedSize);
vector<KeyFrame*> vpEdgeKFMono;
vpEdgeKFMono.reserve(nExpectedSize);
vector<MapPoint*> vpMapPointEdgeMono;
vpMapPointEdgeMono.reserve(nExpectedSize);
// Stereo
vector<EdgeStereo*> vpEdgesStereo;
vpEdgesStereo.reserve(nExpectedSize);
vector<KeyFrame*> vpEdgeKFStereo;
vpEdgeKFStereo.reserve(nExpectedSize);
vector<MapPoint*> vpMapPointEdgeStereo;
vpMapPointEdgeStereo.reserve(nExpectedSize);
const float thHuberMono = sqrt(5.991);
const float chi2Mono2 = 5.991;
const float thHuberStereo = sqrt(7.815);
const float chi2Stereo2 = 7.815;
2021-08-09 19:34:51 +08:00
const unsigned long iniMPid = maxKFid*5;
2020-12-01 11:58:17 +08:00
for(list<MapPoint*>::iterator lit=lLocalMapPoints.begin(), lend=lLocalMapPoints.end(); lit!=lend; lit++)
{
MapPoint* pMP = *lit;
if (!pMP)
continue;
g2o::VertexSBAPointXYZ* vPoint = new g2o::VertexSBAPointXYZ();
2022-03-28 21:20:28 +08:00
vPoint->setEstimate(pMP->GetWorldPos().cast<double>());
2020-12-01 11:58:17 +08:00
unsigned long id = pMP->mnId+iniMPid+1;
vPoint->setId(id);
vPoint->setMarginalized(true);
optimizer.addVertex(vPoint);
const map<KeyFrame*,tuple<int,int>> observations = pMP->GetObservations();
// Create visual constraints
for(map<KeyFrame*,tuple<int,int>>::const_iterator mit=observations.begin(), mend=observations.end(); mit!=mend; mit++)
{
KeyFrame* pKFi = mit->first;
if (!pKFi)
continue;
if ((pKFi->mnBALocalForKF!=pCurrKF->mnId) && (pKFi->mnBAFixedForKF!=pCurrKF->mnId))
continue;
if (pKFi->mnId>maxKFid){
continue;
}
if(optimizer.vertex(id)==NULL || optimizer.vertex(pKFi->mnId)==NULL)
continue;
if(!pKFi->isBad())
{
const cv::KeyPoint &kpUn = pKFi->mvKeysUn[get<0>(mit->second)];
if(pKFi->mvuRight[get<0>(mit->second)]<0) // Monocular observation
{
Eigen::Matrix<double,2,1> obs;
obs << kpUn.pt.x, kpUn.pt.y;
EdgeMono* e = new EdgeMono();
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFi->mnId)));
e->setMeasurement(obs);
const float &invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberMono);
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vpEdgeKFMono.push_back(pKFi);
vpMapPointEdgeMono.push_back(pMP);
}
else // stereo observation
{
const float kp_ur = pKFi->mvuRight[get<0>(mit->second)];
Eigen::Matrix<double,3,1> obs;
obs << kpUn.pt.x, kpUn.pt.y, kp_ur;
EdgeStereo* e = new EdgeStereo();
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFi->mnId)));
e->setMeasurement(obs);
const float &invSigma2 = pKFi->mvInvLevelSigma2[kpUn.octave];
e->setInformation(Eigen::Matrix3d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberStereo);
optimizer.addEdge(e);
vpEdgesStereo.push_back(e);
vpEdgeKFStereo.push_back(pKFi);
vpMapPointEdgeStereo.push_back(pMP);
}
}
}
}
2022-03-28 21:20:28 +08:00
if(pbStopFlag)
optimizer.setForceStopFlag(pbStopFlag);
2020-12-01 11:58:17 +08:00
if(pbStopFlag)
if(*pbStopFlag)
return;
2022-03-28 21:20:28 +08:00
optimizer.initializeOptimization();
optimizer.optimize(8);
2020-12-01 11:58:17 +08:00
vector<pair<KeyFrame*,MapPoint*> > vToErase;
vToErase.reserve(vpEdgesMono.size()+vpEdgesStereo.size());
// Check inlier observations
// Mono
for(size_t i=0, iend=vpEdgesMono.size(); i<iend;i++)
{
EdgeMono* e = vpEdgesMono[i];
MapPoint* pMP = vpMapPointEdgeMono[i];
if(pMP->isBad())
continue;
if(e->chi2()>chi2Mono2)
{
KeyFrame* pKFi = vpEdgeKFMono[i];
vToErase.push_back(make_pair(pKFi,pMP));
}
}
// Stereo
for(size_t i=0, iend=vpEdgesStereo.size(); i<iend;i++)
{
EdgeStereo* e = vpEdgesStereo[i];
MapPoint* pMP = vpMapPointEdgeStereo[i];
if(pMP->isBad())
continue;
if(e->chi2()>chi2Stereo2)
{
KeyFrame* pKFi = vpEdgeKFStereo[i];
vToErase.push_back(make_pair(pKFi,pMP));
}
}
// Get Map Mutex and erase outliers
unique_lock<mutex> lock(pMap->mMutexMapUpdate);
if(!vToErase.empty())
{
for(size_t i=0;i<vToErase.size();i++)
{
KeyFrame* pKFi = vToErase[i].first;
MapPoint* pMPi = vToErase[i].second;
pKFi->EraseMapPointMatch(pMPi);
pMPi->EraseObservation(pKFi);
}
}
// Recover optimized data
//Keyframes
for(int i=0; i<N; i++)
{
KeyFrame* pKFi = vpOptimizableKFs[i];
VertexPose* VP = static_cast<VertexPose*>(optimizer.vertex(pKFi->mnId));
2022-03-28 21:20:28 +08:00
Sophus::SE3f Tcw(VP->estimate().Rcw[0].cast<float>(), VP->estimate().tcw[0].cast<float>());
2020-12-01 11:58:17 +08:00
pKFi->SetPose(Tcw);
2022-03-28 21:20:28 +08:00
Sophus::SE3d Tiw = pKFi->GetPose().cast<double>();
g2o::Sim3 g2oSiw(Tiw.unit_quaternion(),Tiw.translation(),1.0);
2020-12-01 11:58:17 +08:00
corrPoses[pKFi] = g2oSiw;
if(pKFi->bImu)
2022-03-28 21:20:28 +08:00
{
2020-12-01 11:58:17 +08:00
VertexVelocity* VV = static_cast<VertexVelocity*>(optimizer.vertex(maxKFid+3*(pKFi->mnId)+1));
2022-03-28 21:20:28 +08:00
pKFi->SetVelocity(VV->estimate().cast<float>());
2020-12-01 11:58:17 +08:00
VertexGyroBias* VG = static_cast<VertexGyroBias*>(optimizer.vertex(maxKFid+3*(pKFi->mnId)+2));
VertexAccBias* VA = static_cast<VertexAccBias*>(optimizer.vertex(maxKFid+3*(pKFi->mnId)+3));
Vector6d b;
b << VG->estimate(), VA->estimate();
pKFi->SetNewBias(IMU::Bias(b[3],b[4],b[5],b[0],b[1],b[2]));
}
}
for(int i=0; i<Ncov; i++)
{
KeyFrame* pKFi = vpOptimizableCovKFs[i];
VertexPose* VP = static_cast<VertexPose*>(optimizer.vertex(pKFi->mnId));
2022-03-28 21:20:28 +08:00
Sophus::SE3f Tcw(VP->estimate().Rcw[0].cast<float>(), VP->estimate().tcw[0].cast<float>());
2020-12-01 11:58:17 +08:00
pKFi->SetPose(Tcw);
2022-03-28 21:20:28 +08:00
Sophus::SE3d Tiw = pKFi->GetPose().cast<double>();
g2o::Sim3 g2oSiw(Tiw.unit_quaternion(),Tiw.translation(),1.0);
2020-12-01 11:58:17 +08:00
corrPoses[pKFi] = g2oSiw;
if(pKFi->bImu)
{
VertexVelocity* VV = static_cast<VertexVelocity*>(optimizer.vertex(maxKFid+3*(pKFi->mnId)+1));
2022-03-28 21:20:28 +08:00
pKFi->SetVelocity(VV->estimate().cast<float>());
2020-12-01 11:58:17 +08:00
VertexGyroBias* VG = static_cast<VertexGyroBias*>(optimizer.vertex(maxKFid+3*(pKFi->mnId)+2));
VertexAccBias* VA = static_cast<VertexAccBias*>(optimizer.vertex(maxKFid+3*(pKFi->mnId)+3));
Vector6d b;
b << VG->estimate(), VA->estimate();
pKFi->SetNewBias(IMU::Bias(b[3],b[4],b[5],b[0],b[1],b[2]));
}
}
//Points
for(list<MapPoint*>::iterator lit=lLocalMapPoints.begin(), lend=lLocalMapPoints.end(); lit!=lend; lit++)
{
MapPoint* pMP = *lit;
g2o::VertexSBAPointXYZ* vPoint = static_cast<g2o::VertexSBAPointXYZ*>(optimizer.vertex(pMP->mnId+iniMPid+1));
2022-03-28 21:20:28 +08:00
pMP->SetWorldPos(vPoint->estimate().cast<float>());
2020-12-01 11:58:17 +08:00
pMP->UpdateNormalAndDepth();
}
pMap->IncreaseChangeIndex();
}
int Optimizer::PoseInertialOptimizationLastKeyFrame(Frame *pFrame, bool bRecInit)
{
g2o::SparseOptimizer optimizer;
g2o::BlockSolverX::LinearSolverType * linearSolver;
linearSolver = new g2o::LinearSolverDense<g2o::BlockSolverX::PoseMatrixType>();
g2o::BlockSolverX * solver_ptr = new g2o::BlockSolverX(linearSolver);
2021-09-03 14:24:01 +08:00
2020-12-01 11:58:17 +08:00
g2o::OptimizationAlgorithmGaussNewton* solver = new g2o::OptimizationAlgorithmGaussNewton(solver_ptr);
optimizer.setVerbose(false);
optimizer.setAlgorithm(solver);
int nInitialMonoCorrespondences=0;
int nInitialStereoCorrespondences=0;
int nInitialCorrespondences=0;
// Set Frame vertex
VertexPose* VP = new VertexPose(pFrame);
VP->setId(0);
VP->setFixed(false);
optimizer.addVertex(VP);
VertexVelocity* VV = new VertexVelocity(pFrame);
VV->setId(1);
VV->setFixed(false);
optimizer.addVertex(VV);
VertexGyroBias* VG = new VertexGyroBias(pFrame);
VG->setId(2);
VG->setFixed(false);
optimizer.addVertex(VG);
VertexAccBias* VA = new VertexAccBias(pFrame);
VA->setId(3);
VA->setFixed(false);
optimizer.addVertex(VA);
// Set MapPoint vertices
const int N = pFrame->N;
const int Nleft = pFrame->Nleft;
const bool bRight = (Nleft!=-1);
vector<EdgeMonoOnlyPose*> vpEdgesMono;
vector<EdgeStereoOnlyPose*> vpEdgesStereo;
vector<size_t> vnIndexEdgeMono;
vector<size_t> vnIndexEdgeStereo;
vpEdgesMono.reserve(N);
vpEdgesStereo.reserve(N);
vnIndexEdgeMono.reserve(N);
vnIndexEdgeStereo.reserve(N);
const float thHuberMono = sqrt(5.991);
const float thHuberStereo = sqrt(7.815);
{
unique_lock<mutex> lock(MapPoint::mGlobalMutex);
for(int i=0; i<N; i++)
{
MapPoint* pMP = pFrame->mvpMapPoints[i];
if(pMP)
{
cv::KeyPoint kpUn;
// Left monocular observation
2021-12-23 14:22:58 +08:00
// 这里说的Left monocular包含两种情况1.单目情况 2.两个相机情况下的相机1
2020-12-01 11:58:17 +08:00
if((!bRight && pFrame->mvuRight[i]<0) || i < Nleft)
{
2021-12-23 14:22:58 +08:00
//如果是两个相机情况下的相机1
2020-12-01 11:58:17 +08:00
if(i < Nleft) // pair left-right
kpUn = pFrame->mvKeys[i];
else
kpUn = pFrame->mvKeysUn[i];
nInitialMonoCorrespondences++;
pFrame->mvbOutlier[i] = false;
Eigen::Matrix<double,2,1> obs;
obs << kpUn.pt.x, kpUn.pt.y;
EdgeMonoOnlyPose* e = new EdgeMonoOnlyPose(pMP->GetWorldPos(),0);
e->setVertex(0,VP);
e->setMeasurement(obs);
// Add here uncerteinty
const float unc2 = pFrame->mpCamera->uncertainty2(obs);
const float invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave]/unc2;
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberMono);
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vnIndexEdgeMono.push_back(i);
}
// Stereo observation
else if(!bRight)
{
nInitialStereoCorrespondences++;
pFrame->mvbOutlier[i] = false;
kpUn = pFrame->mvKeysUn[i];
const float kp_ur = pFrame->mvuRight[i];
Eigen::Matrix<double,3,1> obs;
obs << kpUn.pt.x, kpUn.pt.y, kp_ur;
EdgeStereoOnlyPose* e = new EdgeStereoOnlyPose(pMP->GetWorldPos());
e->setVertex(0, VP);
e->setMeasurement(obs);
// Add here uncerteinty
const float unc2 = pFrame->mpCamera->uncertainty2(obs.head(2));
const float &invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave]/unc2;
e->setInformation(Eigen::Matrix3d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberStereo);
optimizer.addEdge(e);
vpEdgesStereo.push_back(e);
vnIndexEdgeStereo.push_back(i);
}
// Right monocular observation
if(bRight && i >= Nleft)
{
nInitialMonoCorrespondences++;
pFrame->mvbOutlier[i] = false;
kpUn = pFrame->mvKeysRight[i - Nleft];
Eigen::Matrix<double,2,1> obs;
obs << kpUn.pt.x, kpUn.pt.y;
EdgeMonoOnlyPose* e = new EdgeMonoOnlyPose(pMP->GetWorldPos(),1);
e->setVertex(0,VP);
e->setMeasurement(obs);
// Add here uncerteinty
const float unc2 = pFrame->mpCamera->uncertainty2(obs);
const float invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave]/unc2;
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberMono);
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vnIndexEdgeMono.push_back(i);
}
}
}
}
nInitialCorrespondences = nInitialMonoCorrespondences + nInitialStereoCorrespondences;
KeyFrame* pKF = pFrame->mpLastKeyFrame;
VertexPose* VPk = new VertexPose(pKF);
VPk->setId(4);
VPk->setFixed(true);
optimizer.addVertex(VPk);
VertexVelocity* VVk = new VertexVelocity(pKF);
VVk->setId(5);
VVk->setFixed(true);
optimizer.addVertex(VVk);
VertexGyroBias* VGk = new VertexGyroBias(pKF);
VGk->setId(6);
VGk->setFixed(true);
optimizer.addVertex(VGk);
VertexAccBias* VAk = new VertexAccBias(pKF);
VAk->setId(7);
VAk->setFixed(true);
optimizer.addVertex(VAk);
EdgeInertial* ei = new EdgeInertial(pFrame->mpImuPreintegrated);
ei->setVertex(0, VPk);
ei->setVertex(1, VVk);
ei->setVertex(2, VGk);
ei->setVertex(3, VAk);
ei->setVertex(4, VP);
ei->setVertex(5, VV);
optimizer.addEdge(ei);
EdgeGyroRW* egr = new EdgeGyroRW();
egr->setVertex(0,VGk);
egr->setVertex(1,VG);
2022-03-28 21:20:28 +08:00
Eigen::Matrix3d InfoG = pFrame->mpImuPreintegrated->C.block<3,3>(9,9).cast<double>().inverse();
2020-12-01 11:58:17 +08:00
egr->setInformation(InfoG);
optimizer.addEdge(egr);
EdgeAccRW* ear = new EdgeAccRW();
ear->setVertex(0,VAk);
ear->setVertex(1,VA);
2022-03-28 21:20:28 +08:00
Eigen::Matrix3d InfoA = pFrame->mpImuPreintegrated->C.block<3,3>(12,12).cast<double>().inverse();
2020-12-01 11:58:17 +08:00
ear->setInformation(InfoA);
optimizer.addEdge(ear);
// We perform 4 optimizations, after each optimization we classify observation as inlier/outlier
// At the next optimization, outliers are not included, but at the end they can be classified as inliers again.
float chi2Mono[4]={12,7.5,5.991,5.991};
float chi2Stereo[4]={15.6,9.8,7.815,7.815};
int its[4]={10,10,10,10};
2022-03-28 21:20:28 +08:00
int nBad = 0;
2020-12-01 11:58:17 +08:00
int nBadMono = 0;
int nBadStereo = 0;
int nInliersMono = 0;
int nInliersStereo = 0;
2022-03-28 21:20:28 +08:00
int nInliers = 0;
2020-12-01 11:58:17 +08:00
for(size_t it=0; it<4; it++)
{
optimizer.initializeOptimization(0);
optimizer.optimize(its[it]);
2022-03-28 21:20:28 +08:00
nBad = 0;
2020-12-01 11:58:17 +08:00
nBadMono = 0;
nBadStereo = 0;
2022-03-28 21:20:28 +08:00
nInliers = 0;
nInliersMono = 0;
nInliersStereo = 0;
2020-12-01 11:58:17 +08:00
float chi2close = 1.5*chi2Mono[it];
// For monocular observations
for(size_t i=0, iend=vpEdgesMono.size(); i<iend; i++)
{
EdgeMonoOnlyPose* e = vpEdgesMono[i];
const size_t idx = vnIndexEdgeMono[i];
if(pFrame->mvbOutlier[idx])
{
e->computeError();
}
const float chi2 = e->chi2();
bool bClose = pFrame->mvpMapPoints[idx]->mTrackDepth<10.f;
if((chi2>chi2Mono[it]&&!bClose)||(bClose && chi2>chi2close)||!e->isDepthPositive())
{
pFrame->mvbOutlier[idx]=true;
e->setLevel(1);
nBadMono++;
}
else
{
pFrame->mvbOutlier[idx]=false;
e->setLevel(0);
nInliersMono++;
}
if (it==2)
e->setRobustKernel(0);
}
// For stereo observations
for(size_t i=0, iend=vpEdgesStereo.size(); i<iend; i++)
{
EdgeStereoOnlyPose* e = vpEdgesStereo[i];
const size_t idx = vnIndexEdgeStereo[i];
if(pFrame->mvbOutlier[idx])
{
e->computeError();
}
const float chi2 = e->chi2();
if(chi2>chi2Stereo[it])
{
pFrame->mvbOutlier[idx]=true;
e->setLevel(1); // not included in next optimization
nBadStereo++;
}
else
{
pFrame->mvbOutlier[idx]=false;
e->setLevel(0);
nInliersStereo++;
}
if(it==2)
e->setRobustKernel(0);
}
nInliers = nInliersMono + nInliersStereo;
nBad = nBadMono + nBadStereo;
if(optimizer.edges().size()<10)
{
break;
}
}
// If not too much tracks, recover not too bad points
if ((nInliers<30) && !bRecInit)
{
nBad=0;
const float chi2MonoOut = 18.f;
const float chi2StereoOut = 24.f;
EdgeMonoOnlyPose* e1;
EdgeStereoOnlyPose* e2;
for(size_t i=0, iend=vnIndexEdgeMono.size(); i<iend; i++)
{
const size_t idx = vnIndexEdgeMono[i];
e1 = vpEdgesMono[i];
e1->computeError();
if (e1->chi2()<chi2MonoOut)
pFrame->mvbOutlier[idx]=false;
else
nBad++;
}
for(size_t i=0, iend=vnIndexEdgeStereo.size(); i<iend; i++)
{
const size_t idx = vnIndexEdgeStereo[i];
e2 = vpEdgesStereo[i];
e2->computeError();
if (e2->chi2()<chi2StereoOut)
pFrame->mvbOutlier[idx]=false;
else
nBad++;
}
}
// Recover optimized pose, velocity and biases
2022-03-28 21:20:28 +08:00
pFrame->SetImuPoseVelocity(VP->estimate().Rwb.cast<float>(), VP->estimate().twb.cast<float>(), VV->estimate().cast<float>());
2020-12-01 11:58:17 +08:00
Vector6d b;
b << VG->estimate(), VA->estimate();
pFrame->mImuBias = IMU::Bias(b[3],b[4],b[5],b[0],b[1],b[2]);
// Recover Hessian, marginalize keyFframe states and generate new prior for frame
Eigen::Matrix<double,15,15> H;
H.setZero();
H.block<9,9>(0,0)+= ei->GetHessian2();
H.block<3,3>(9,9) += egr->GetHessian2();
H.block<3,3>(12,12) += ear->GetHessian2();
int tot_in = 0, tot_out = 0;
for(size_t i=0, iend=vpEdgesMono.size(); i<iend; i++)
{
EdgeMonoOnlyPose* e = vpEdgesMono[i];
const size_t idx = vnIndexEdgeMono[i];
if(!pFrame->mvbOutlier[idx])
{
H.block<6,6>(0,0) += e->GetHessian();
tot_in++;
}
else
tot_out++;
}
for(size_t i=0, iend=vpEdgesStereo.size(); i<iend; i++)
{
EdgeStereoOnlyPose* e = vpEdgesStereo[i];
const size_t idx = vnIndexEdgeStereo[i];
if(!pFrame->mvbOutlier[idx])
{
H.block<6,6>(0,0) += e->GetHessian();
tot_in++;
}
else
tot_out++;
}
pFrame->mpcpi = new ConstraintPoseImu(VP->estimate().Rwb,VP->estimate().twb,VV->estimate(),VG->estimate(),VA->estimate(),H);
return nInitialCorrespondences-nBad;
}
int Optimizer::PoseInertialOptimizationLastFrame(Frame *pFrame, bool bRecInit)
{
g2o::SparseOptimizer optimizer;
g2o::BlockSolverX::LinearSolverType * linearSolver;
linearSolver = new g2o::LinearSolverDense<g2o::BlockSolverX::PoseMatrixType>();
g2o::BlockSolverX * solver_ptr = new g2o::BlockSolverX(linearSolver);
g2o::OptimizationAlgorithmGaussNewton* solver = new g2o::OptimizationAlgorithmGaussNewton(solver_ptr);
optimizer.setAlgorithm(solver);
optimizer.setVerbose(false);
int nInitialMonoCorrespondences=0;
int nInitialStereoCorrespondences=0;
int nInitialCorrespondences=0;
// Set Current Frame vertex
VertexPose* VP = new VertexPose(pFrame);
VP->setId(0);
2022-03-28 21:20:28 +08:00
VP->setFixed(false);
2020-12-01 11:58:17 +08:00
optimizer.addVertex(VP);
VertexVelocity* VV = new VertexVelocity(pFrame);
VV->setId(1);
VV->setFixed(false);
optimizer.addVertex(VV);
VertexGyroBias* VG = new VertexGyroBias(pFrame);
VG->setId(2);
VG->setFixed(false);
optimizer.addVertex(VG);
VertexAccBias* VA = new VertexAccBias(pFrame);
VA->setId(3);
VA->setFixed(false);
optimizer.addVertex(VA);
// Set MapPoint vertices
const int N = pFrame->N;
const int Nleft = pFrame->Nleft;
const bool bRight = (Nleft!=-1);
vector<EdgeMonoOnlyPose*> vpEdgesMono;
vector<EdgeStereoOnlyPose*> vpEdgesStereo;
vector<size_t> vnIndexEdgeMono;
vector<size_t> vnIndexEdgeStereo;
vpEdgesMono.reserve(N);
vpEdgesStereo.reserve(N);
vnIndexEdgeMono.reserve(N);
vnIndexEdgeStereo.reserve(N);
const float thHuberMono = sqrt(5.991);
const float thHuberStereo = sqrt(7.815);
{
unique_lock<mutex> lock(MapPoint::mGlobalMutex);
for(int i=0; i<N; i++)
{
MapPoint* pMP = pFrame->mvpMapPoints[i];
if(pMP)
{
cv::KeyPoint kpUn;
// Left monocular observation
2021-12-23 14:22:58 +08:00
// 这里说的Left monocular包含两种情况1.单目情况 2.两个相机情况下的相机1
2020-12-01 11:58:17 +08:00
if((!bRight && pFrame->mvuRight[i]<0) || i < Nleft)
{
2021-12-23 14:22:58 +08:00
//如果是两个相机情况下的相机1
2020-12-01 11:58:17 +08:00
if(i < Nleft) // pair left-right
kpUn = pFrame->mvKeys[i];
else
kpUn = pFrame->mvKeysUn[i];
nInitialMonoCorrespondences++;
pFrame->mvbOutlier[i] = false;
2022-03-28 21:20:28 +08:00
2020-12-01 11:58:17 +08:00
Eigen::Matrix<double,2,1> obs;
obs << kpUn.pt.x, kpUn.pt.y;
EdgeMonoOnlyPose* e = new EdgeMonoOnlyPose(pMP->GetWorldPos(),0);
e->setVertex(0,VP);
e->setMeasurement(obs);
// Add here uncerteinty
const float unc2 = pFrame->mpCamera->uncertainty2(obs);
const float invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave]/unc2;
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberMono);
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vnIndexEdgeMono.push_back(i);
}
// Stereo observation
2022-03-28 21:20:28 +08:00
else if(!bRight)
2020-12-01 11:58:17 +08:00
{
nInitialStereoCorrespondences++;
pFrame->mvbOutlier[i] = false;
kpUn = pFrame->mvKeysUn[i];
const float kp_ur = pFrame->mvuRight[i];
Eigen::Matrix<double,3,1> obs;
obs << kpUn.pt.x, kpUn.pt.y, kp_ur;
EdgeStereoOnlyPose* e = new EdgeStereoOnlyPose(pMP->GetWorldPos());
e->setVertex(0, VP);
e->setMeasurement(obs);
// Add here uncerteinty
const float unc2 = pFrame->mpCamera->uncertainty2(obs.head(2));
const float &invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave]/unc2;
e->setInformation(Eigen::Matrix3d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberStereo);
optimizer.addEdge(e);
vpEdgesStereo.push_back(e);
vnIndexEdgeStereo.push_back(i);
}
// Right monocular observation
if(bRight && i >= Nleft)
{
nInitialMonoCorrespondences++;
pFrame->mvbOutlier[i] = false;
kpUn = pFrame->mvKeysRight[i - Nleft];
Eigen::Matrix<double,2,1> obs;
obs << kpUn.pt.x, kpUn.pt.y;
EdgeMonoOnlyPose* e = new EdgeMonoOnlyPose(pMP->GetWorldPos(),1);
e->setVertex(0,VP);
e->setMeasurement(obs);
// Add here uncerteinty
const float unc2 = pFrame->mpCamera->uncertainty2(obs);
const float invSigma2 = pFrame->mvInvLevelSigma2[kpUn.octave]/unc2;
e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
e->setRobustKernel(rk);
rk->setDelta(thHuberMono);
optimizer.addEdge(e);
vpEdgesMono.push_back(e);
vnIndexEdgeMono.push_back(i);
}
}
}
}
2021-09-03 14:24:01 +08:00
2020-12-01 11:58:17 +08:00
nInitialCorrespondences = nInitialMonoCorrespondences + nInitialStereoCorrespondences;
// Set Previous Frame Vertex
Frame* pFp = pFrame->mpPrevFrame;
VertexPose* VPk = new VertexPose(pFp);
VPk->setId(4);
VPk->setFixed(false);
optimizer.addVertex(VPk);
VertexVelocity* VVk = new VertexVelocity(pFp);
VVk->setId(5);
VVk->setFixed(false);
optimizer.addVertex(VVk);
VertexGyroBias* VGk = new VertexGyroBias(pFp);
VGk->setId(6);
VGk->setFixed(false);
optimizer.addVertex(VGk);
VertexAccBias* VAk = new VertexAccBias(pFp);
VAk->setId(7);
VAk->setFixed(false);
optimizer.addVertex(VAk);
EdgeInertial* ei = new EdgeInertial(pFrame->mpImuPreintegratedFrame);
ei->setVertex(0, VPk);
ei->setVertex(1, VVk);
ei->setVertex(2, VGk);
ei->setVertex(3, VAk);
ei->setVertex(4, VP);
ei->setVertex(5, VV);
optimizer.addEdge(ei);
EdgeGyroRW* egr = new EdgeGyroRW();
egr->setVertex(0,VGk);
egr->setVertex(1,VG);
2022-03-28 21:20:28 +08:00
Eigen::Matrix3d InfoG = pFrame->mpImuPreintegrated->C.block<3,3>(9,9).cast<double>().inverse();
2020-12-01 11:58:17 +08:00
egr->setInformation(InfoG);
optimizer.addEdge(egr);
EdgeAccRW* ear = new EdgeAccRW();
ear->setVertex(0,VAk);
ear->setVertex(1,VA);
2022-03-28 21:20:28 +08:00
Eigen::Matrix3d InfoA = pFrame->mpImuPreintegrated->C.block<3,3>(12,12).cast<double>().inverse();
2020-12-01 11:58:17 +08:00
ear->setInformation(InfoA);
optimizer.addEdge(ear);
if (!pFp->mpcpi)
Verbose::PrintMess("pFp->mpcpi does not exist!!!\nPrevious Frame " + to_string(pFp->mnId), Verbose::VERBOSITY_NORMAL);
EdgePriorPoseImu* ep = new EdgePriorPoseImu(pFp->mpcpi);
ep->setVertex(0,VPk);
ep->setVertex(1,VVk);
ep->setVertex(2,VGk);
ep->setVertex(3,VAk);
g2o::RobustKernelHuber* rkp = new g2o::RobustKernelHuber;
ep->setRobustKernel(rkp);
rkp->setDelta(5);
optimizer.addEdge(ep);
// We perform 4 optimizations, after each optimization we classify observation as inlier/outlier
// At the next optimization, outliers are not included, but at the end they can be classified as inliers again.
const float chi2Mono[4]={5.991,5.991,5.991,5.991};
const float chi2Stereo[4]={15.6f,9.8f,7.815f,7.815f};
const int its[4]={10,10,10,10};
int nBad=0;
int nBadMono = 0;
int nBadStereo = 0;
int nInliersMono = 0;
int nInliersStereo = 0;
int nInliers=0;
for(size_t it=0; it<4; it++)
{
optimizer.initializeOptimization(0);
optimizer.optimize(its[it]);
nBad=0;
nBadMono = 0;
nBadStereo = 0;
nInliers=0;
nInliersMono=0;
nInliersStereo=0;
float chi2close = 1.5*chi2Mono[it];
for(size_t i=0, iend=vpEdgesMono.size(); i<iend; i++)
{
EdgeMonoOnlyPose* e = vpEdgesMono[i];
const size_t idx = vnIndexEdgeMono[i];
bool bClose = pFrame->mvpMapPoints[idx]->mTrackDepth<10.f;
if(pFrame->mvbOutlier[idx])
{
e->computeError();
}
const float chi2 = e->chi2();
if((chi2>chi2Mono[it]&&!bClose)||(bClose && chi2>chi2close)||!e->isDepthPositive())
{
pFrame->mvbOutlier[idx]=true;
e->setLevel(1);
nBadMono++;
}
else
{
pFrame->mvbOutlier[idx]=false;
e->setLevel(0);
nInliersMono++;
}
if (it==2)
e->setRobustKernel(0);
}
for(size_t i=0, iend=vpEdgesStereo.size(); i<iend; i++)
{
EdgeStereoOnlyPose* e = vpEdgesStereo[i];
const size_t idx = vnIndexEdgeStereo[i];
if(pFrame->mvbOutlier[idx])
{
e->computeError();
}
const float chi2 = e->chi2();
if(chi2>chi2Stereo[it])
{
pFrame->mvbOutlier[idx]=true;
e->setLevel(1);
nBadStereo++;
}
else
{
pFrame->mvbOutlier[idx]=false;
e->setLevel(0);
nInliersStereo++;
}
if(it==2)
e->setRobustKernel(0);
}
nInliers = nInliersMono + nInliersStereo;
nBad = nBadMono + nBadStereo;
if(optimizer.edges().size()<10)
{
break;
}
}
2021-12-08 22:09:39 +08:00
2020-12-01 11:58:17 +08:00
if ((nInliers<30) && !bRecInit)
{
nBad=0;
const float chi2MonoOut = 18.f;
const float chi2StereoOut = 24.f;
EdgeMonoOnlyPose* e1;
EdgeStereoOnlyPose* e2;
for(size_t i=0, iend=vnIndexEdgeMono.size(); i<iend; i++)
{
const size_t idx = vnIndexEdgeMono[i];
e1 = vpEdgesMono[i];
e1->computeError();
if (e1->chi2()<chi2MonoOut)
pFrame->mvbOutlier[idx]=false;
else
nBad++;
}
for(size_t i=0, iend=vnIndexEdgeStereo.size(); i<iend; i++)
{
const size_t idx = vnIndexEdgeStereo[i];
e2 = vpEdgesStereo[i];
e2->computeError();
if (e2->chi2()<chi2StereoOut)
pFrame->mvbOutlier[idx]=false;
else
nBad++;
}
}
nInliers = nInliersMono + nInliersStereo;
// Recover optimized pose, velocity and biases
2022-03-28 21:20:28 +08:00
pFrame->SetImuPoseVelocity(VP->estimate().Rwb.cast<float>(), VP->estimate().twb.cast<float>(), VV->estimate().cast<float>());
2020-12-01 11:58:17 +08:00
Vector6d b;
b << VG->estimate(), VA->estimate();
pFrame->mImuBias = IMU::Bias(b[3],b[4],b[5],b[0],b[1],b[2]);
// Recover Hessian, marginalize previous frame states and generate new prior for frame
Eigen::Matrix<double,30,30> H;
H.setZero();
H.block<24,24>(0,0)+= ei->GetHessian();
Eigen::Matrix<double,6,6> Hgr = egr->GetHessian();
H.block<3,3>(9,9) += Hgr.block<3,3>(0,0);
H.block<3,3>(9,24) += Hgr.block<3,3>(0,3);
H.block<3,3>(24,9) += Hgr.block<3,3>(3,0);
H.block<3,3>(24,24) += Hgr.block<3,3>(3,3);
Eigen::Matrix<double,6,6> Har = ear->GetHessian();
H.block<3,3>(12,12) += Har.block<3,3>(0,0);
H.block<3,3>(12,27) += Har.block<3,3>(0,3);
H.block<3,3>(27,12) += Har.block<3,3>(3,0);
H.block<3,3>(27,27) += Har.block<3,3>(3,3);
H.block<15,15>(0,0) += ep->GetHessian();
int tot_in = 0, tot_out = 0;
for(size_t i=0, iend=vpEdgesMono.size(); i<iend; i++)
{
EdgeMonoOnlyPose* e = vpEdgesMono[i];
const size_t idx = vnIndexEdgeMono[i];
if(!pFrame->mvbOutlier[idx])
{
H.block<6,6>(15,15) += e->GetHessian();
tot_in++;
}
else
tot_out++;
}
for(size_t i=0, iend=vpEdgesStereo.size(); i<iend; i++)
{
EdgeStereoOnlyPose* e = vpEdgesStereo[i];
const size_t idx = vnIndexEdgeStereo[i];
if(!pFrame->mvbOutlier[idx])
{
H.block<6,6>(15,15) += e->GetHessian();
tot_in++;
}
else
tot_out++;
}
H = Marginalize(H,0,14);
pFrame->mpcpi = new ConstraintPoseImu(VP->estimate().Rwb,VP->estimate().twb,VV->estimate(),VG->estimate(),VA->estimate(),H.block<15,15>(15,15));
delete pFp->mpcpi;
pFp->mpcpi = NULL;
return nInitialCorrespondences-nBad;
}
void Optimizer::OptimizeEssentialGraph4DoF(Map* pMap, KeyFrame* pLoopKF, KeyFrame* pCurKF,
const LoopClosing::KeyFrameAndPose &NonCorrectedSim3,
const LoopClosing::KeyFrameAndPose &CorrectedSim3,
const map<KeyFrame *, set<KeyFrame *> > &LoopConnections)
{
typedef g2o::BlockSolver< g2o::BlockSolverTraits<4, 4> > BlockSolver_4_4;
// Setup optimizer
g2o::SparseOptimizer optimizer;
optimizer.setVerbose(false);
g2o::BlockSolverX::LinearSolverType * linearSolver =
new g2o::LinearSolverEigen<g2o::BlockSolverX::PoseMatrixType>();
g2o::BlockSolverX * solver_ptr = new g2o::BlockSolverX(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
optimizer.setAlgorithm(solver);
const vector<KeyFrame*> vpKFs = pMap->GetAllKeyFrames();
const vector<MapPoint*> vpMPs = pMap->GetAllMapPoints();
const unsigned int nMaxKFid = pMap->GetMaxKFid();
vector<g2o::Sim3,Eigen::aligned_allocator<g2o::Sim3> > vScw(nMaxKFid+1);
vector<g2o::Sim3,Eigen::aligned_allocator<g2o::Sim3> > vCorrectedSwc(nMaxKFid+1);
vector<VertexPose4DoF*> vpVertices(nMaxKFid+1);
const int minFeat = 100;
// Set KeyFrame vertices
for(size_t i=0, iend=vpKFs.size(); i<iend;i++)
{
KeyFrame* pKF = vpKFs[i];
if(pKF->isBad())
continue;
VertexPose4DoF* V4DoF;
const int nIDi = pKF->mnId;
LoopClosing::KeyFrameAndPose::const_iterator it = CorrectedSim3.find(pKF);
if(it!=CorrectedSim3.end())
{
vScw[nIDi] = it->second;
const g2o::Sim3 Swc = it->second.inverse();
Eigen::Matrix3d Rwc = Swc.rotation().toRotationMatrix();
Eigen::Vector3d twc = Swc.translation();
V4DoF = new VertexPose4DoF(Rwc, twc, pKF);
}
else
{
2022-03-28 21:20:28 +08:00
Sophus::SE3d Tcw = pKF->GetPose().cast<double>();
g2o::Sim3 Siw(Tcw.unit_quaternion(),Tcw.translation(),1.0);
2020-12-01 11:58:17 +08:00
vScw[nIDi] = Siw;
V4DoF = new VertexPose4DoF(pKF);
}
if(pKF==pLoopKF)
V4DoF->setFixed(true);
V4DoF->setId(nIDi);
V4DoF->setMarginalized(false);
optimizer.addVertex(V4DoF);
vpVertices[nIDi]=V4DoF;
}
set<pair<long unsigned int,long unsigned int> > sInsertedEdges;
// Edge used in posegraph has still 6Dof, even if updates of camera poses are just in 4DoF
Eigen::Matrix<double,6,6> matLambda = Eigen::Matrix<double,6,6>::Identity();
matLambda(0,0) = 1e3;
matLambda(1,1) = 1e3;
matLambda(0,0) = 1e3;
// Set Loop edges
Edge4DoF* e_loop;
for(map<KeyFrame *, set<KeyFrame *> >::const_iterator mit = LoopConnections.begin(), mend=LoopConnections.end(); mit!=mend; mit++)
{
KeyFrame* pKF = mit->first;
const long unsigned int nIDi = pKF->mnId;
const set<KeyFrame*> &spConnections = mit->second;
const g2o::Sim3 Siw = vScw[nIDi];
for(set<KeyFrame*>::const_iterator sit=spConnections.begin(), send=spConnections.end(); sit!=send; sit++)
{
const long unsigned int nIDj = (*sit)->mnId;
if((nIDi!=pCurKF->mnId || nIDj!=pLoopKF->mnId) && pKF->GetWeight(*sit)<minFeat)
continue;
const g2o::Sim3 Sjw = vScw[nIDj];
const g2o::Sim3 Sij = Siw * Sjw.inverse();
Eigen::Matrix4d Tij;
Tij.block<3,3>(0,0) = Sij.rotation().toRotationMatrix();
Tij.block<3,1>(0,3) = Sij.translation();
Tij(3,3) = 1.;
Edge4DoF* e = new Edge4DoF(Tij);
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDj)));
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
e->information() = matLambda;
e_loop = e;
optimizer.addEdge(e);
sInsertedEdges.insert(make_pair(min(nIDi,nIDj),max(nIDi,nIDj)));
}
}
// 1. Set normal edges
for(size_t i=0, iend=vpKFs.size(); i<iend; i++)
{
KeyFrame* pKF = vpKFs[i];
const int nIDi = pKF->mnId;
g2o::Sim3 Siw;
// Use noncorrected poses for posegraph edges
LoopClosing::KeyFrameAndPose::const_iterator iti = NonCorrectedSim3.find(pKF);
if(iti!=NonCorrectedSim3.end())
Siw = iti->second;
else
Siw = vScw[nIDi];
// 1.1.0 Spanning tree edge
KeyFrame* pParentKF = static_cast<KeyFrame*>(NULL);
if(pParentKF)
{
int nIDj = pParentKF->mnId;
g2o::Sim3 Swj;
LoopClosing::KeyFrameAndPose::const_iterator itj = NonCorrectedSim3.find(pParentKF);
if(itj!=NonCorrectedSim3.end())
Swj = (itj->second).inverse();
else
Swj = vScw[nIDj].inverse();
g2o::Sim3 Sij = Siw * Swj;
Eigen::Matrix4d Tij;
Tij.block<3,3>(0,0) = Sij.rotation().toRotationMatrix();
Tij.block<3,1>(0,3) = Sij.translation();
Tij(3,3)=1.;
Edge4DoF* e = new Edge4DoF(Tij);
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDj)));
e->information() = matLambda;
optimizer.addEdge(e);
}
// 1.1.1 Inertial edges
KeyFrame* prevKF = pKF->mPrevKF;
if(prevKF)
{
int nIDj = prevKF->mnId;
g2o::Sim3 Swj;
LoopClosing::KeyFrameAndPose::const_iterator itj = NonCorrectedSim3.find(prevKF);
if(itj!=NonCorrectedSim3.end())
Swj = (itj->second).inverse();
else
Swj = vScw[nIDj].inverse();
g2o::Sim3 Sij = Siw * Swj;
Eigen::Matrix4d Tij;
Tij.block<3,3>(0,0) = Sij.rotation().toRotationMatrix();
Tij.block<3,1>(0,3) = Sij.translation();
Tij(3,3)=1.;
Edge4DoF* e = new Edge4DoF(Tij);
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDj)));
e->information() = matLambda;
optimizer.addEdge(e);
}
// 1.2 Loop edges
const set<KeyFrame*> sLoopEdges = pKF->GetLoopEdges();
for(set<KeyFrame*>::const_iterator sit=sLoopEdges.begin(), send=sLoopEdges.end(); sit!=send; sit++)
{
KeyFrame* pLKF = *sit;
if(pLKF->mnId<pKF->mnId)
{
g2o::Sim3 Swl;
LoopClosing::KeyFrameAndPose::const_iterator itl = NonCorrectedSim3.find(pLKF);
if(itl!=NonCorrectedSim3.end())
Swl = itl->second.inverse();
else
Swl = vScw[pLKF->mnId].inverse();
g2o::Sim3 Sil = Siw * Swl;
Eigen::Matrix4d Til;
Til.block<3,3>(0,0) = Sil.rotation().toRotationMatrix();
Til.block<3,1>(0,3) = Sil.translation();
Til(3,3) = 1.;
Edge4DoF* e = new Edge4DoF(Til);
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pLKF->mnId)));
e->information() = matLambda;
optimizer.addEdge(e);
}
}
// 1.3 Covisibility graph edges
const vector<KeyFrame*> vpConnectedKFs = pKF->GetCovisiblesByWeight(minFeat);
for(vector<KeyFrame*>::const_iterator vit=vpConnectedKFs.begin(); vit!=vpConnectedKFs.end(); vit++)
{
KeyFrame* pKFn = *vit;
if(pKFn && pKFn!=pParentKF && pKFn!=prevKF && pKFn!=pKF->mNextKF && !pKF->hasChild(pKFn) && !sLoopEdges.count(pKFn))
{
if(!pKFn->isBad() && pKFn->mnId<pKF->mnId)
{
if(sInsertedEdges.count(make_pair(min(pKF->mnId,pKFn->mnId),max(pKF->mnId,pKFn->mnId))))
continue;
g2o::Sim3 Swn;
LoopClosing::KeyFrameAndPose::const_iterator itn = NonCorrectedSim3.find(pKFn);
if(itn!=NonCorrectedSim3.end())
Swn = itn->second.inverse();
else
Swn = vScw[pKFn->mnId].inverse();
g2o::Sim3 Sin = Siw * Swn;
Eigen::Matrix4d Tin;
Tin.block<3,3>(0,0) = Sin.rotation().toRotationMatrix();
Tin.block<3,1>(0,3) = Sin.translation();
Tin(3,3) = 1.;
Edge4DoF* e = new Edge4DoF(Tin);
e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(nIDi)));
e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKFn->mnId)));
e->information() = matLambda;
optimizer.addEdge(e);
}
}
}
}
optimizer.initializeOptimization();
optimizer.computeActiveErrors();
optimizer.optimize(20);
unique_lock<mutex> lock(pMap->mMutexMapUpdate);
// SE3 Pose Recovering. Sim3:[sR t;0 1] -> SE3:[R t/s;0 1]
for(size_t i=0;i<vpKFs.size();i++)
{
KeyFrame* pKFi = vpKFs[i];
const int nIDi = pKFi->mnId;
VertexPose4DoF* Vi = static_cast<VertexPose4DoF*>(optimizer.vertex(nIDi));
Eigen::Matrix3d Ri = Vi->estimate().Rcw[0];
Eigen::Vector3d ti = Vi->estimate().tcw[0];
g2o::Sim3 CorrectedSiw = g2o::Sim3(Ri,ti,1.);
vCorrectedSwc[nIDi]=CorrectedSiw.inverse();
2022-03-28 21:20:28 +08:00
Sophus::SE3d Tiw(CorrectedSiw.rotation(),CorrectedSiw.translation());
pKFi->SetPose(Tiw.cast<float>());
2020-12-01 11:58:17 +08:00
}
// Correct points. Transform to "non-optimized" reference keyframe pose and transform back with optimized pose
for(size_t i=0, iend=vpMPs.size(); i<iend; i++)
{
MapPoint* pMP = vpMPs[i];
if(pMP->isBad())
continue;
int nIDr;
KeyFrame* pRefKF = pMP->GetReferenceKeyFrame();
nIDr = pRefKF->mnId;
g2o::Sim3 Srw = vScw[nIDr];
g2o::Sim3 correctedSwr = vCorrectedSwc[nIDr];
2022-03-28 21:20:28 +08:00
Eigen::Matrix<double,3,1> eigP3Dw = pMP->GetWorldPos().cast<double>();
2020-12-01 11:58:17 +08:00
Eigen::Matrix<double,3,1> eigCorrectedP3Dw = correctedSwr.map(Srw.map(eigP3Dw));
2022-03-28 21:20:28 +08:00
pMP->SetWorldPos(eigCorrectedP3Dw.cast<float>());
2020-12-01 11:58:17 +08:00
pMP->UpdateNormalAndDepth();
}
pMap->IncreaseChangeIndex();
}
} //namespace ORB_SLAM