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Abstract

In this paper we introduce disciplined convex-concave programming (DCCP), which
combines the ideas of disciplined convex programming (DCP) with convex-concave pro-
gramming (CCP). Convex-concave programming is an organized heuristic for solving
nonconvex problems that involve objective and constraint functions that are a sum of
a convex and a concave term. DCP is a structured way to define convex optimization
problems, based on a family of basic convex and concave functions and a few rules
for combining them. Problems expressed using DCP can be automatically converted
to standard form and solved by a generic solver; widely used implementations include
YALMIP, CVX, CVXPY, and Convex.jl. In this paper we propose a framework that com-
bines the two ideas, and includes two improvements over previously published work
on convex-concave programming, specifically the handling of domains of the functions,
and the issue of nondifferentiability on the boundary of the domains. We describe a
Python implementation called DCCP, which extends CVXPY, and give examples.

1 Disciplined convex-concave programming

1.1 Difference of convex programming

Difference of convex (DC) programming problems have the form

minimize f0(x)− g0(x)
subject to fi(x)− gi(x) ≤ 0, i = 1, . . . ,m,

(1)

where x ∈ Rn is the optimization variable, and the functions fi : Rn → R and gi : Rn → R
for i = 0, . . . ,m are convex. The DC problem (1) can also include equality constraints of
the form pi(x) = qi(x), where pi and qi are convex; we simply express these as the pair of
inequality constraints

pi(x)− qi(x) ≤ 0, qi(x)− pi(x) ≤ 0,

which have the difference of convex form in (1). When the functions gi are all affine, the
problem (1) is a convex optimization problem, and easily solved [BV04].
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The broad class of DC functions includes all C2 functions [Har59], so the DC problem
(1) is very general. A special case is Boolean linear programs, which can represent many
problems, such as the traveling salesman problem, that are widely believed to be hard to
solve [Kar72]. DC programs arise in many applications in fields such as signal processing
[LOX15], machine learning [ALNT08], computer vision [LZOX15], and statistics [THA+14].

DC problems can be solved globally by methods such as branch and bound [Agi66, LW66],
which can be slow in practice. Good overviews of solving DC programs globally can be found
in [HPT95, HT99] and the references therein. A locally optimal (approximate) solution can
be found instead through the many techniques of general nonlinear optimization [NW06].

The convex-concave procedure (CCP) [YR03] is another heuristic algorithm for finding
a local optimum of (1), which leverages our ability to efficiently solve convex optimization
problems. In its basic form, it replaces concave terms with a convex upper bound, and
then solves the resulting convex problem, which is a restriction of the original DC problem.
Basic CCP can thus be viewed as an instance of majorization minimization (MM) algorithms
[LHY00], in which a minimization problem is approximated by an easier to solve upper bound
created around the current point (a step called majorization) and then minimized. Many
MM extensions have been developed over the years and more can be found in [LR87, Lan04,
MK07]. CCP can also be viewed as a version of DCA [TS86] which instead of explicitly
stating the linearization, finds it by solving a dual problem. More information on DCA can
be found at [An15] and the references therein.

A recent overview of CCP, with some extensions, can be found in [LB15], where the issue
of infeasibility is handled (heuristically) by an increasing penalty on constraint violations.
The method we present in this paper is an extension of the penalty CCP method introduced
in [LB15], given as algorithm 1.1 below.

Algorithm 1.1 Penalty CCP.

given an initial point x0, τ0 > 0, τmax > 0, and µ > 1.
k := 0.

repeat
1. Convexify. Form ĝi(x;xk) = gi(xk) +∇gi(xk)T (x− xk) for i = 0, . . . ,m.
2. Solve. Set the value of xk+1 to a solution of

minimize f0(x)− ĝ0(x;xk) + τk
∑m

i=1 si
subject to fi(x)− ĝi(x;xk) ≤ si, i = 1, . . . ,m

si ≥ 0, i = 1, . . . ,m.
3. Update τ . τk+1 := min(µτk, τmax).
4. Update iteration. k := k + 1.

until stopping criterion is satisfied.

See [LB15] for discussion of a few variations on the penalty CCP algorithm, such as not
using slack variables for constraints that are convex, i.e., the case when gi is affine. Here it
is assumed that gi are differentiable, and have full domain (i.e., Rn). The first condition is
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not critical; we can replace ∇gi(xk) with a subgradient of gi at xk, if it is not differentiable.
The linearization with a subgradient instead of the gradient is still a lower bound on gi.

In some practical applications, the second assumption, that gi have full domain, does not
hold, in which case the penalty CCP algorithm can fail, by arriving at a point xk not in the
domain of gi, so the convexification step fails. This is one of the issues we will address in
this paper.

1.2 Disciplined convex programming

Disciplined convex programming (DCP) is a methodology introduced by Grant et al. [GBY06]
that imposes a set of conventions that must be followed when constructing (or specifying or
defining) convex programs. Conforming problems are called disciplined convex programs.

The conventions of DCP restrict the set of functions that can appear in a problem and
the way functions can be composed. Every function in a disciplined convex program must
come from a set of atomic functions with known curvature and graph implementation, or
representation as partial optimization over a cone program [GB08, NN92]. Every composition
of functions f(g1(x), . . . , gk(x)), where f : Rp → R→ R is convex and g1, . . . , gp : Rn → R,
must satisfy the following composition rule, which ensures the composition is convex. Let
f̃ : Rp → R→ R ∪ {∞} be the extended-value extension of f [BV04, Chap. 3]. One of the
following conditions must hold for each i = 1, . . . , p:

• gi is convex and f̃ is nondecreasing in argument i on the range of (g1(x), . . . , gp(x)).

• gi is concave and f̃ is nonincreasing in argument i on the range of (g1(x), . . . , gp(x)).

• gi is affine.

The composition rule for concave functions is analogous. These rules allow us to certify
the curvature (i.e., convexity or concavity) of functions described as compositions using the
basic atomic functions.

A DCP problem has the specific form

minimize/maximize o(x)
subject to li(x) ∼ ri(x), i = 1, . . . ,m,

(2)

where o (the objective), li (lefthand sides), and ri (righthand sides) are expressions (functions
of the variable x) with curvature known from the DCP rules, and ∼ denotes one of the
relational operators =, ≤, or ≥. In DCP this problem must be convex, which imposes
conditions on the curvature of the expressions, listed below.

• For a minimization problem, o must be convex; for a maximization problem, o must
be concave.

• When the relational operator is =, li and ri must both be affine.

• When the relational operator is ≤, li must be convex, and ri must be concave.
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• When the relational operator is ≥, li must be concave, and ri must be convex.

Functions that are affine (i.e., are both convex and concave) can match either curvature
requirement; for example, we can minimize or maximize an affine expression.

A disciplined convex program can be transformed into an equivalent cone program by
replacing each function with its graph implementation. The convex optimization modeling
systems YALMIP [Lof04], CVX [CVX12], CVXPY [DB16], and Convex.jl [UMZ+14] use DCP
to verify problem convexity and automatically convert convex programs into cone programs,
which can then be solved using generic solvers.

1.3 Disciplined convex-concave programming

We refer to a problem as a disciplined convex-concave program if it has the form (2), with
o, li, and ri all having known DCP-verified curvature, but the DCP curvature conditions
for the objective and constraints need not hold. Such problems include DCP as a special
case, but it includes many other nonconvex problems as well. In a DCCP problem we can,
for example, maximize a convex function, subject to nonaffine equality constraints, and
nonconvex inequality constraints between convex and concave expressions.

The general DC program (1) and the DCCP standard form (2) are equivalent. To express
(1) as (2), we express it as

minimize f0(x)− t
subject to t = g0(x)

fi(x) ≤ gi(x), i = 1, . . . ,m,

where x is the original optimization variable, and t is a new optimization variable. The
objective here is convex, we have one (nonconvex) equality constraint, and the constraints
are all nonconvex (except for some special cases when fi or gi is affine) It is straighforward
to express the DCCP problem (2) in the form (1), by identifying the functions oi, li, and ri
as ±fi or ±gi depending on their curvatures.

DCCP problems are an ideal standard form for DC programming because the linearized
problem in algorithm 1.1 is a DCP program whenever the original problem is DCCP. The
linearized problem can thus be automatically converted into a cone program and solved using
generic solvers.

2 Domain and subdifferentiability

In this section we delve deeper into an issue that is ‘assumed away’ in the standard treatments
and discussions of DC programming, specifically, how to handle the case when the functions
gi do not have full domain. (The functions fi can have non-full domains, but this is handled
automatically by the conversion into a cone program.)
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An example. Suppose the domain of gi is Di, for i = 0, . . . ,m. If Di 6= Rn, simply
defining the linearization ĝi(x; z) as the first order Taylor expansion of gi at the point z can
lead to failure. The following simple problem gives an example:

minimize
√
x

subject to x ≥ −1,

where x ∈ R is the optimization variable. The objective has domain R+, and the solution
is evidently x? = 0. The linearized problem in the first iteration of CCP is

minimize x0 + 1
2
√
x0

(x− x0)

subject to x ≥ −1,

which has solution x1 = −1. The DCCP algorithm will fail in the first step of the next
iteration, since the original objective function is not defined at x1 = −1.

If we add the domain constraint directly into the linearized problem, we obtain x1 = 0,
but the first step of the next iteration also fails here, in a different way. While x1 is in the
domain of the objective function, the objective is not differentiable (or superdifferentiable)
at x1, so the linearization does not exist. This phenomenon of non-subdifferentiability or
non-superdifferentiability can only occur at a point on the boundary of the domain.

2.1 Linearization with domain

Suppose that the intersection of domains of all gi in problem (1) is D = ∩mi=0Di. The correct
way to handle the domain is to define the linearization of gi at point z to be

ĝi(x; z) = gi(z) +∇gi(z)T (x− z)− Ii(x), (3)

where the indicator function is

Ii(x) =

{
0 x ∈ Di

∞ x /∈ Di,

so any feasible point for the linearized problem is in the domain D.
Since gi is convex, Di is a convex set and Ii is a convex function. Therefore the ‘lin-

earization’ (3) is a concave function; it follows that if we replace the standard linearization
in algorithm 1.1 with the domain-restricted linearization (3), the linearized problem is still
convex.

2.2 Domain in DCCP

Recall that we defined DCCP problems to ensure that the linearized problem in algorithm
1.1 is a DCP problem. It is not obvious that if we replace the standard linearization with
equation (3) the linearized problem is still a DCP problem. In this section we prove that
the linearized DCCP problem still satisfies the rules of DCP, or equivalently that each Ii(x)
has a known graph implementation or satisfies the DCP composition rule.
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If gi is an atomic function, then we assume that

Di = ∩p
i=1{x | Aix+ bi ∈ Ki},

for some cone constraints K1, . . . ,Kp. The assumption is reasonable since gi itself can be
represented as partial optimization over a cone program. The graph implementation of Ii(x)
is simply

minimize 0
subject to Aix+ bi ∈ Ki, i = 1, . . . , p.

The other possibility is that gi is a composition of atomic functions. Since the original
problem is DCCP, we may assume that gi(x) = f(h1(x), . . . , hp(x)) for some convex atomic
function f : Rp → R and DCP compliant h1, . . . , hp : Rn → R such that f(h1(x), . . . , hp(x))
satisfies the DCP composition rule. Then we have

Ii(x) = If (h1(x), . . . , hp(x)) +

p∑
j=1

Ihj
(x),

where If is the indicator function for the domain of f and Ih1 , . . . , Ihp are defined similarly.
Since f is convex, If is convex. Moreover, If (h1(x), . . . , hp(x)) satisfies the DCP compo-

sition rule. To see why, observe that for i = 1, . . . , p, if hi is convex then by assumption the
extended-value extension f̃ is nondecreasing in argument i on the range of (h1(x), . . . , hp(x)).
It follows that If is nondecreasing in argument i on the range of (h1(x), . . . , hp(x)). Similarly,
if hi is concave then If is nonincreasing in argument i on the range of (h1(x), . . . , hp(x)).

An inductive argument shows that Ih1 , . . . , Ihp are convex and satisfy the DCP rules. We
conclude that Ii satisfies the DCP composition rule.

2.3 Sub-differentiability on boundary

When D 6= Rn, a solution to the linearized problem x̂k at iteration k can be on the boundary
of the closure of D. It is possible (as our simple example above shows) that the convex
function gi is not subdifferentiable at x̂k, which means the linearization does not exist and
the algorithm fails. This pathology can and does occur in practical problems.

In order to handle this, at each iteration, when the subgradient ∇gi(x̂k) for any function
gi does not exist, we simply take a damped step,

xk = αx̂k + (1− α)xk−1,

where 0 < α < 1. If x0 is in the interior of the domain, then xk will be in the interior for all
k ≥ 0, and ∇gi(xk) will be guaranteed to exist. The algorithm can (and does, for our simple
example) converge to a point on the boundary of the the domain, but each iterate is in the
interior of the domain, which is enough to guarantee that the linearization exists.
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3 Initialization

As a heuristic method, the result of algorithm 1.1 generally depends on the initialization, and
the initial values of variables should be in the interior of the domain. In many applications
there is a natural way to carry out this initialization; here we discuss a generic method
(attempting) to do it. Note that in general the problem of finding x0 ∈ D can be very hard,
so we do not expect to have a generic method that always works.

One simple and effective method is to generate random points zj for j = 1, . . . , kini, with
entries drawn from from i.i.d. standard Gaussian distributions. We then project these points
onto D, i.e., solve the problems

minimize ‖x− zj‖2

subject to x ∈ D,

for j = 1, . . . , kini, denoting the solutions as xjini. These points are on the boundary of D
when zj 6∈ D. We then take

x0 =
1

kini

kini∑
j=1

xjini.

Forming the average is a heuristic for finding x0 in the interior of D; but it is still possible
that x0 is on the boundary, in which case it is an unacceptable starting point. As a generic
practical method, however, this approach seems to work very well.

4 Implementation

The proposed methods described above have been implemented as the Python package DCCP,
which extends the package CVXPY. New methods were added to CVXPY to return the domain of
a DCP expression (as a list of constraints), and gradients (or subgradients or supergradients)
were added to the atoms. The linearization, damping, and initialization are handled by the
package DCCP. Users can form any DCCP problem of the form (2), with each expression
composed of functions in the CVXPY library.

When the solve(method = ’dccp’) method is called on a problem object, DCCP first
verifies that the problem satisfies the DCCP rules. The package then splits each non-affine
equality constraint li = ri into li ≤ ri and li ≥ ri. The curvature of the objective and
the left and righthand sides of each constraint is checked, and if needed, linearized. In
the linearization the function value and gradient are CVXPYparameters, which are constants
whose value can change without reconstructing the problem. For each constraint in which the
left or righthand side is linearized, a slack variable is introduced, and added to the objective.
For any expression that is linearized, the domain of the original expression is added into the
constraints.

Algorithm 1.1 is next applied to the convexified problem. If a valid initial value of a
variable is given by the user, it is used; otherwise the generic method described above is
used. In each iteration the parameters in the linearizations (which are function and gradient
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values) are updated based on the current value of the variables. If a gradient (or super- or
subgradient) w.r.t. any variable does not exist, damping is applied to all the variables. The
convexified problem at each iteration is solved using CVXPY.

Some useful functions and attributes in the DCCP package are below.

• Function is_dccp(problem) returns a boolean indicating if an optimization problem
is DCCP.

• Attribute expression.gradient returns a dictionary of the gradients of a DCP ex-
pression w.r.t. its variables at the points specified by variable.value. (This attribute
is also in the core CVXPY package.)

• Function linearize(expression) returns the linearization (3) of a DCP expression.

• Attribute expression.domain returns a list of constraints describing the domain of a
DCP expression. (This attribute is also in the core CVXPY package.)

• Function convexify(constraint) returns the transformed constraint (without slack
variables) satisfying DCP of a DCCP constraint.

• Method problem.solve(method = ’dccp’) carries out the proposed penalty CCP al-
gorithm, and returns the value of the transformed cost function, the value of the weight
µk, and the maximum value of slack variables at each iteration k. An optional parame-
ter is used to set the number of times to run CCP, using the randomized initialization.
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Figure 1: Circle packing.

5 Examples

In this section we describe some simple examples, show how they can be expressed using
DCCP, and give the results. In each case we run the default solve method, with no tuning or
adjustment of algorithm parameters.

5.1 Circle packing

The aim is to arrange n circles in R2 with given radii ri for i = 1, . . . , n, so that they do not
overlap and are contained in the smallest possible square [Spe13]. The optimization problem
can be formulated as

minimize maxi=1,...,n(‖ci‖∞ + ri)
subject to ‖ci − cj‖2 ≥ ri + rj, 1 ≤ i < j ≤ n,

where the variables are the centers of the circles ci ∈ R2, i = 1, . . . , n, and ri, i = 1, . . . , n,
are given data. If l is the value of the objective function, the circles are contained in the
square [−l, l]× [−l, l].

This problem can be specified in DCCP (and solved, in the last line) as follows.

c = Variable(n,2)

constr = []

for i in range(n-1):

for j in range(i+1,n):

constr += [norm(c[i,:]-c[j,:]) >= r[i]+r[j]]

prob = Problem(Minimize(max_entries(row_norm(c,’inf’)+r)), constr)

prob.solve(method = ’dccp’)

The result obtained for an instance of the problem, with n = 14 circles, is shown in
figure 1. The fraction of the square covered by circles is 0.73.
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Figure 2: Boolean least squares.

5.2 Boolean least squares

A binary signal s ∈ {−1, 1}n is transmitted through a communication channel, and received
as y = As + v, where v ∼ N (0, σ2I) is a noise, and A ∈ Rm×n is the channel matrix. The
maximum likelihood estimate of s given y is a solution of

minimize ‖y − Ax‖2

subject to x2
i = 1, i = 1, . . . , n,

where x is the optimization variable [For72]. It is a boolean least squares problem if the
objective function is squared.

The corresponding code for this problem is given below.

x = Variable(n)

prob = Problem(Minimize(norm(y-A*x,2)), [square(x) == 1])

result = prob.solve(method = ’dccp’)

Note that the square function in the constraint is elementwise.
We consider some numerical examples with m = n = 100, with Aij ∼ N (0, 1) i.i.d., and

si i.i.d. with probability 1/2 1 or −1. The signal to noise ratio level is n/σ2. In each of
the 10 independent instances, A and s are generated, and n/σ2 takes 8 values from 1 to 17.
For each value of n/σ2, v is generated. The bit error rates averaged from 10 instances are
shown in figure 2. Also shown are the same results obtained when the boolean least squares
problem is solved globally (at considerably more effort) using MOSEK [ApS15]. We can see
that the results, judged in terms of bit error rate, are very similar.
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5.3 Path planning

The goal is to find the shortest path connecting points a and b in Rd that avoids m cir-
cles, centered at pj with radius rj, j = 1, . . . ,m [Lat91]. After discretizing the arc length
parametrized path into points x0, . . . , xn, the problem is posed as

minimize L
subject to x0 = a, xn = b

‖xi − xi−1‖2 ≤ L/n, i = 1, . . . , n
‖xi − pj‖2 ≥ rj, i = 1, . . . , n, j = 1, . . . ,m,

where L and xi are variables, and a, b, pj, and rj are given.
The code is given below.

x = Variable(d,n+1)

L = Variable()

cost = L

constr = [x[:,0] == a, x[:,n] == b]

for i in range(1,n+1):

constr += [norm(x[:,i]-x[:,i-1],2) <= L/n]

for j in range(m):

constr += [norm(x[:,i]-center[:,j],2) >= r[j]]

prob = Problem(Minimize(cost), constr)

result = prob.solve(method = ’dccp’)

An example with d = 2 and n = 50 is shown in figure 3.
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5.4 Control with collision avoidance

We have n linear dynamic systems, given by

xit+1 = Aixit +Biuit, yit = Cixit, i = 1, . . . , n,

where t = 0, 1, . . . denotes (discrete) time, xit are the states, and yit are the outputs. At each
time t for t = 0, . . . , T the n outputs yit are required to keep a distance of at least dmin from
each other [MWCD99]. The initial states xi0 and ending states xin are given by xiinit and xiend,
and the inputs are limited by ‖uit‖∞ ≤ fmax. We will minimize a sum of the `1 norms of the
inputs, an approximation of fuel use. (Of course we can have any convex state and input
constraints, and any convex objective.) This gives the problem

minimize
∑n

i=1

∑T−1
t=0 ‖uit‖1

subject to xi0 = xiinit, xiT = xiend, i = 1, . . . , n
xit+1 = Aixit +Biuit, t = 0, . . . , T − 1, i = 1, . . . , n

‖yit − y
j
t‖2 ≥ dmin, t = 0, . . . , T, 1 ≤ i < j ≤ n

yit = Cixit, ‖uit‖∞ ≤ fmax, t = 0, . . . , T − 1, i = 1, . . . , n,

where xit, y
i
t, and uit are variables.

The code can be written as follows.

constr = []

cost = 0

for i in range(n):

for t in range(T):

u[i] += [Variable(d)]

constr += [norm(u[i][-1],’inf’) <= f_max]

cost += norm(u[i][-1],1)

y[i] += [Variable(d)]

x[i] += [Variable(2*d)]

constr += [y[i][-1] == C[i]*x[i][-1]]

for i in range(n):

constr += [x[i][0] == x_ini[i]]

constr += [x[i][-1] == x_end[i]]

for t in range(T-1):

constr += [x[i][t+1] == A[i]*x[i][t] + B[i]*u[i][t]]

for t in range(T):

for i in range(n-1):

for j in range(i+1,n):

constr += [norm(y[i][t] - y[j][t],2) >= d_min]

prob = Problem(Minimize(cost), constr)

prob.solve(method = ’dccp’)

12



1.0 1.5 2.0 2.5 3.0 3.5 4.0
2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0
2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

0 20 40 60 80 100
t

0.0

0.5

1.0

1.5

2.0

2.5

||y
0 t
−
y

1 t
|| 2

with avoidance
without avoidance

Figure 4: Optimal control with collision avoidance. Left : Output trajectory with-
out collision avoidance. Middle: Output trajectory with collision avoidance. Right :
Distance between outputs versus time.

We consider an instance with n = 2, with outputs (positions) yit ∈ R2, dmin = 0.6,
fmax = 0.5, T = 100. The linear dynamic system matrices are

Ai =


1 0 0.1 0
0 1 0 0.1
0 0 0.95 0
0 0 0 0.95

 , Bi =


0 0
0 0

0.1 0
0 0.1

 , Ci =

[
1 0 0 0
0 1 0 0

]
.

The results are in figure 4, where the black arrows in the first two figures show initial and
final states (position and velocity), and the black dashed line in the third figure shows dmin.
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Figure 5: Sparse recovery. Left : l1 norm. Right : Sqrt of `1/2 ‘norm’.

5.5 Sparse recovery using `1/2 ‘norm’

The aim is to recover a sparse nonnegative signal x0 ∈ Rn from a measurement vector
y = Ax0, where A ∈ Rm×n (with m < n) is a known sensing matrix [CW08]. A common
heuristic based on convex optimization is to minimize the `1 norm of x (which reduces here
to the sum of entries of x) subject to y = Ax0 (and here, x ≥ 0). It has been proposed
to minimize the sum of the squareroots of the entries of x, which since x ≥ 0 is the same
as minimizing the squareroot of the `1/2 ‘norm’ (which is not convex, and therefore not a
norm), to obtain better recovery. The optimization problem is

minimize
∑n

i=1

√
xi

subject to y = Ax,

where x is the variable. (The constraint x ≥ 0 is implicit, since this is the objective domain.)
This is a nonconvex problem, directly in DCCP form.

The corresponding code is as follows.

x = Variable(n,1)

x.value = np.ones((n,1))

prob = Problem(Minimize(sum_entries(sqrt(x))), [A*x == y])

result = prob.solve(method = ’dccp’)

In a numerical simulation, we take n = 100, Aij ∼ N (0, 1), the positions of the nonzero
entries in x0 are from uniform distribution, and the nonzero values are the absolute values of
N (0, 100) random variables. To count the probability of recovery, 100 independent instances
are tested, and a recovery is successful if the relative error ‖x̂ − x0‖2/‖x0‖2 is less than
0.01. In each instance, the cardinality takes 6 values from 30 to 50, according to which x0

is generated, and A is generated for each m taking one of the 6 values from 50 to 80. The
results in figure 5 verify that nonconvex recovery is more effective than convex recovery.
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Figure 6: Phase retrieval.

5.6 Phase retrieval

Phase retrieval is the problem of recovering a signal x0 ∈ Cn from the magnitudes of the
complex inner products x∗0ak, for k = 1, . . . ,m, where ak ∈ Cn are the given measurement
vectors [CESV13]. The recovery problem can be expressed as

find x
subject to |x∗ak| = yk, k = 1, . . . ,m,

where x ∈ Cn is the optimization variable, and ak and yk ∈ R+ are given. The lefthand
side of the constraints are convex quadratic functions of the real and imaginary parts of the
arguments, which are in turn linear functions of the variable x.

The following code segment specifies the problem. CVXPY (and therefore DCCP) does not
yet support complex variables and constants, so we expand complex numbers into real and
imaginary parts.

x = Variable(2,n)

z = []

constr = []

c = np.matrix([[0,1],[-1,0]])

for k in range(m):

z.append(Variable(2))

z[-1].value = np.random.rand(2,1)

constr += [norm(z[-1]) == y[k]]

constr += [z[-1] == x*Ar[k,:] + c*x*Ai[k,:]]

prob = Problem(Minimize(0), constr)

result = prob.solve(method = ’dccp’)

We consider an instance with n = 128 and m = 3n. The real part and the imaginary
part of each entry of x0 and ak are i.i.d. N (0, 1). The result in figure 6 shows that the phase
is recovered (up to a global constant).
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5.7 Magnitude filter design

A filter is characterized by its impulse response {hk}nk=1. Its frequency response H : [0, π]→
C is defined as

H(ω) =
n∑

k=1

hke
−iωk,

where i =
√
−1. In magnitude filter design, the goal is to find impulse response coefficients

that meet certain specifications on the magnitude of the frequency response [WBV99]. We
will consider a typical lowpass filter design problem, which can be expressed as

minimize Ustop

subject to Lpass ≤ |H(πl/N)| ≤ Upass, l = 0, . . . , lpass − 1
|H(πl/N)| ≤ Upass, l = lpass, . . . , lstop − 1
|H(πl/N)| ≤ Ustop, l = lstop, . . . , N,

where h ∈ Rn and Ustop ∈ R are the optimization variables. The passband magnitude limits
Lpass and Upass are given.

The code can be written as follows.

omega = np.linspace(0,np.pi,N)

h = Variable(n)

U_stop = Variable()

constr = []

for l in range(len(omega)):

if l < l_pass:

constr += [norm(expo[l]*h,2) >= L_pass]

if l < l_stop:

constr += [norm(expo[l]*h,2) <= U_pass]

else:

constr += [norm(expo[l]*h,2) <= U_stop]

prob = Problem(Minimize(U_stop), constr)

result = prob.solve(method = ’dccp’)

An instance of low pass filter design, with n = 10 and N = 100, is shown in figure 7.
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5.8 Sparse singular vectors

The left singular vectors associated with the smallest and largest singular values of a matrix
A (globally) minimize and maximize ‖Ax‖2 subject to ‖x‖2 = 1. Here we seek sparse vectors,
with ‖x‖2 = 1, which make ‖Ax‖2 large or small [WTH09]. To induce sparsity in x, we limit
the `1-norm of x. (We could also limit a nonconvex sparsifier, as above in sparse recovery.)
This leads to the problems

minimize/maximize ‖Ax‖2

subject to ‖x‖2 = 1, ‖x‖1 ≤ µ,

where x ∈ Rn is the variable and µ ≥ 0 controls the sparsification, to find x that is sparse,
satisfies ‖x‖2 = 1, and makes ‖Ax‖2 small or large. We call such a vector, with some abuse
of notation, a sparse singular vector. Since ‖x‖2 = 1, we know 1 ≤ ‖x‖1 ≤

√
n, so the range

of µ can be set as [1,
√
n].

The code (for minimization) is the following.

x = Variable(n)

prob = Problem(Minimize(norm(A*x)), [norm(x) == 1, norm(x,1) <= mu])

prob.solve(method = ’dccp’)

We consider an instance for minimization with a random matrix A ∈ R100×100 with i.i.d.
entries Aij ∼ N (0, 1), with (positive) smallest singular value σmin. The parameter µ is swept
from 1 to 10 with increment 0.2, and for each value of µ the result of solving the problem
above is shown as a red dot in figure 8. The most left point in the figure corresponds to
‖x‖1 ≤ 1, which gives cardinality 1. (In this instance it achieves the globally optimal value,
which is the smallest of the norm of the columns of A.)
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5.9 Gaussian covariance matrix estimation

Suppose yi ∈ Rn for i = 1, . . . , N are points drawn i.i.d fromN (0,Σ). Our goal is to estimate
the parameter Σ given these samples. The maximum likelihood problem of estimating Σ is
convex in the inverse of Σ, but not Σ [BGdN06]. If there are no other constraints on Σ,
the maximum likelihood estimate is Σ̂ = 1

N

∑N
i=1 yiy

T
i , the empirical covariance matrix. We

consider here the case where the sign of the off-diagonal entries in Σ is known; that is, we
know which entries of Σ are negative, which are zero, and which are positive. (So we know
which components of y are uncorrelated, and which are negatively and positively correlated.)

The maximum likelihood problem is then

maximize − log det(Σ)− 1
N

∑N
i=1 y

T
i Σ−1yi

subject to ΣΩ+ ≥ 0, ΣΩ− ≤ 0, ΣΩ0 = 0,

where Σ is the variable, and the index sets Ω+, Ω−, and Ω0 are given. The objective is a
difference of convex functions, so we transform the problem into the following DCCP problem
with additional variable t,

maximize − log det(Σ)− t
subject to 1

N

∑N
i=1 y

T
i Σ−1yi ≤ t

ΣΩ+ ≥ 0, ΣΩ− ≤ 0, ΣΩ0 = 0.

The code is as follows.

Sigma = Variable(n,n)

t = Variable()

cost = -log_det(Sigma) - t

trace_val = trace(sum([matrix_frac(y[:,i], Sigma)/N for i in range(N)]))

prob = Problem(Maximize(cost),

[trace_val <= t,

Sigma[pos] >= 0,

Sigma[neg] <= 0,

Sigma[zero] == 0])

prob.solve(method = ’dccp’)

An example with n = 20 and N = 30 is in figure 9. Not surprisingly, knowledge of the
signs of the entries of Σ allows us to obtain a much better estimate of the true covariance
matrix.
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[WTH09] D. M. Witten, R. Tibshirani, and T. Hastie. A penalized matrix decomposi-
tion, with applications to sparse principal components and canonical correlation
analysis. Biostatistics, 2009.

[YR03] A. L. Yuille and A. Rangarajan. The concave-convex procedure. Neural Com-
putation, 15(4):915–936, 2003.

23


