292 lines
31 KiB
Plaintext
292 lines
31 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# PATH WAYPOINTS AS PARAMETRIZED CURVE"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"In this notebook I try to reproduce the parmetrization of the track via curve-fitting like its done in Udacity MPC Course. "
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 10,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import numpy as np\n",
|
||
|
"from scipy.interpolate import interp1d\n",
|
||
|
"\n",
|
||
|
"def compute_path_from_wp(start_xp, start_yp, step = 0.1):\n",
|
||
|
" final_xp=[]\n",
|
||
|
" final_yp=[]\n",
|
||
|
" delta = step #[m]\n",
|
||
|
"\n",
|
||
|
" for idx in range(len(start_xp)-1):\n",
|
||
|
" section_len = np.sum(np.sqrt(np.power(np.diff(start_xp[idx:idx+2]),2)+np.power(np.diff(start_yp[idx:idx+2]),2)))\n",
|
||
|
"\n",
|
||
|
" interp_range = np.linspace(0,1,np.floor(section_len/delta).astype(int))\n",
|
||
|
" \n",
|
||
|
" fx=interp1d(np.linspace(0,1,2),start_xp[idx:idx+2],kind=1)\n",
|
||
|
" fy=interp1d(np.linspace(0,1,2),start_yp[idx:idx+2],kind=1)\n",
|
||
|
" \n",
|
||
|
" final_xp=np.append(final_xp,fx(interp_range))\n",
|
||
|
" final_yp=np.append(final_yp,fy(interp_range))\n",
|
||
|
"\n",
|
||
|
" return np.vstack((final_xp,final_yp))\n",
|
||
|
"\n",
|
||
|
"def get_nn_idx(state,path):\n",
|
||
|
"\n",
|
||
|
" dx = state[0]-path[0,:]\n",
|
||
|
" dy = state[1]-path[1,:]\n",
|
||
|
" dist = np.sqrt(dx**2 + dy**2)\n",
|
||
|
" nn_idx = np.argmin(dist)\n",
|
||
|
"\n",
|
||
|
" try:\n",
|
||
|
" v = [path[0,nn_idx+1] - path[0,nn_idx],\n",
|
||
|
" path[1,nn_idx+1] - path[1,nn_idx]] \n",
|
||
|
" v /= np.linalg.norm(v)\n",
|
||
|
"\n",
|
||
|
" d = [path[0,nn_idx] - state[0],\n",
|
||
|
" path[1,nn_idx] - state[1]]\n",
|
||
|
"\n",
|
||
|
" if np.dot(d,v) > 0:\n",
|
||
|
" target_idx = nn_idx\n",
|
||
|
" else:\n",
|
||
|
" target_idx = nn_idx+1\n",
|
||
|
"\n",
|
||
|
" except IndexError as e:\n",
|
||
|
" target_idx = nn_idx\n",
|
||
|
"\n",
|
||
|
" return target_idx"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 11,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stderr",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"/home/marcello/miniconda3/envs/jupyter/lib/python3.8/site-packages/IPython/core/interactiveshell.py:3331: RankWarning: Polyfit may be poorly conditioned\n",
|
||
|
" exec(code_obj, self.user_global_ns, self.user_ns)\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"#define track\n",
|
||
|
"wp=np.array([0,5,6,10,11,15, 0,0,2,2,0,4]).reshape(2,-1)\n",
|
||
|
"track = compute_path_from_wp(wp[0,:],wp[1,:],step=0.5)\n",
|
||
|
"\n",
|
||
|
"#vehicle state\n",
|
||
|
"state=[3.5,0.5,np.radians(30)]\n",
|
||
|
"\n",
|
||
|
"#given vehicle pos find lookahead waypoints\n",
|
||
|
"nn_idx=get_nn_idx(state,track)-1 #index ox closest wp, take the previous to have a straighter line\n",
|
||
|
"LOOKAHED=6\n",
|
||
|
"lk_wp=track[:,nn_idx:nn_idx+LOOKAHED]\n",
|
||
|
"\n",
|
||
|
"#trasform lookahead waypoints to vehicle ref frame\n",
|
||
|
"dx = lk_wp[0,:] - state[0]\n",
|
||
|
"dy = lk_wp[1,:] - state[1]\n",
|
||
|
"\n",
|
||
|
"wp_vehicle_frame = np.vstack(( dx * np.cos(-state[2]) - dy * np.sin(-state[2]),\n",
|
||
|
" dy * np.cos(-state[2]) + dx * np.sin(-state[2]) ))\n",
|
||
|
"\n",
|
||
|
"#fit poly\n",
|
||
|
"coeff=np.polyfit(wp_vehicle_frame[0,:], wp_vehicle_frame[1,:], 5, rcond=None, full=False, w=None, cov=False)\n",
|
||
|
"\n",
|
||
|
"#def f(x,coeff):\n",
|
||
|
"# return coeff[0]*x**3+coeff[1]*x**2+coeff[2]*x**1+coeff[3]*x**0\n",
|
||
|
"def f(x,coeff):\n",
|
||
|
" return coeff[0]*x**5+coeff[1]*x**4+coeff[2]*x**3+coeff[3]*x**2+coeff[4]*x**1+coeff[5]*x**0\n",
|
||
|
"\n",
|
||
|
"def f(x,coeff):\n",
|
||
|
" y=0\n",
|
||
|
" j=len(coeff)\n",
|
||
|
" for k in range(j):\n",
|
||
|
" y += coeff[k]*x**(j-k-1)\n",
|
||
|
" return y\n",
|
||
|
"\n",
|
||
|
"# def df(x,coeff):\n",
|
||
|
"# return round(3*coeff[0]*x**2 + 2*coeff[1]*x**1 + coeff[2]*x**0,6)\n",
|
||
|
"def df(x,coeff):\n",
|
||
|
" y=0\n",
|
||
|
" j=len(coeff)\n",
|
||
|
" for k in range(j-1):\n",
|
||
|
" y += (j-k-1)*coeff[k]*x**(j-k-2)\n",
|
||
|
" return y"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 12,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"array([ 0.10275887, 0.03660033, -0.21750601, 0.03551043, -0.53861442,\n",
|
||
|
" -0.58083993])"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 12,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"coeff"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 13,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAbIAAAEYCAYAAAA59HOUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deVxU5f4H8M+ZYV9kGwTBFTQXXElwFxXSNLup11wzzaVbetXUCpdU0ryR5pI3MytDRX+ZdjUtu5W43hQVQVwwURBXQARE2RSG8/39wWWuIwMMzMCZM3zfr1evnDPPec73PGdmvpznPM85AhERGGOMMZlSSB0AY4wxZghOZIwxxmSNExljjDFZ40TGGGNM1jiRMcYYkzVOZIwxxmSNExmrM4IgYPv27bW6jS1btsDCwqJWt2Eubty4AUEQ8Mcff1Rarnnz5vjoo4/0rre65Y3t0aNHGD58OBo0aABBEHDjxg2d5S5evIjAwEDY2NigefPmdRojMy7+xrMamzp1KpKSknD06FG9yqelpcHZ2bl2g2JGFxMTAzs7O6nD0NvGjRsRHR2NEydOwN3dHe7u7jrLvf/++2jQoAGuXLkCe3v7Oo6SGRMnMpkqKiqClZWV1GHopSxWT09PqUOpNXI6HtVVUSKoS0QEtVoNS0vLKsteu3YNfn5+6NChQ5XlJk6cWOnZmDkfV3PCXYu1rF+/fpg8eTLmz58PlUqFBg0aYOrUqSgsLNSUOXjwIPr16wdXV1c4OTkhKCgIZ86c0apHEASsX78e48aNg5OTE8aPHw8AWLRoEdq2bQs7Ozs0adIEb731Fh4+fKhZr6yr7ciRI+jQoQNsbW0RFBSE1NRUHD9+HF26dIG9vT1CQkJw9+5drW0ePHgQvXr1gq2tLby9vfHGG28gKysLABAWFobNmzfj2LFjEAQBgiBgy5Ytlcb6dNdiWFiYZr2n/5s0aZJe2wdKf9wWL16Mhg0bwsHBAWPGjMGDBw+qPCZqtRrLli2Dr68vrK2t4e3tjZkzZ2q19bNdoCEhIVqxNW/eHB988AGmT58ONzc39OrVC+PHj8fAgQPLbW/w4MEYM2aM3vtVlWvXrkEQBJw8eVJr+enTpyEIAq5cuQIAyMvLw+zZs+Ht7Q07Ozt06dIFe/bsKVdfamoqXn75ZdjZ2cHHxweRkZFa7z/bVVhV+z1LrVYjLCwMLVq0gI2NDfz8/LBp06ZK9/Hpz22XLl1gbW2N3377rcq6mjdvjs2bN+Pw4cMQBAH9+vUrV3dZl2pycjKWLFkCQRAQFhamWb5jxw4MGTIE9vb2WLhwIYgI06ZNg6+vL2xtbeHj44OFCxfiyZMnmjrDwsLQsmVL7Nq1C61atYKdnR2GDRuGR48eYc+ePWjdujUcHR0xcuRIre8nAOzcuROdO3fWdHHOnTsX+fn5lbYPewaxWhUUFESOjo40depUunz5Mu3fv5/c3d1p5syZmjJ79uyhXbt2UWJiIl26dImmTJlCLi4ulJmZqSkDgFxdXWn9+vWUlJREiYmJRES0fPlyOn78OKWkpFBUVBS1bt2aXn/9dc16ERERJAgCBQUF0alTpyg2NpZatmxJvXv3pqCgIIqOjqa4uDhq3bo1jRo1SrPeoUOHyNbWltavX09Xr16lM2fOUL9+/ahPnz4kiiLl5ubSuHHjqEePHpSWlkZpaWlUUFBQaawAKDIykoiIcnNzNeulpaXR/v37ycLCgiIiIvTaPhHRunXryM7OjrZs2UKJiYn0ySefkJOTEymVykqPyeuvv07u7u60bds2SkpKoujoaFqzZo1WW5fFWSY4OJgmTpyoed2sWTNydHSkpUuXUmJiIiUkJNCvv/5KCoWC7ty5oymXnp5OSqWSfvnlF733Sx/du3enN998U2vZjBkzKDAwkIiIRFGkfv36UVBQEP3nP/+h5ORk2rRpE1laWlJUVBQREaWkpBAAatGiBX3//fd07do1Cg0NJaVSSVevXtXa1+XLl+vdfs+WnzhxInXo0IF+++03un79Ou3cuZOcnJzom2++qXD/yj63Xbt2pUOHDlFycjJlZGRUWVdGRgaNGjWK+vTpQ2lpaZSVlVWubrVaTWlpadS4cWMKDQ2ltLQ0ys3N1bSHt7c3RUZGUnJyMl2/fp1KSkpo0aJFdOrUKUpJSaF9+/aRp6cnLVmyRFPn0qVLyc7OjoYMGULnz5+no0ePkkqlohdeeIEGDx5M8fHxdPz4cWrYsCG9//77Wvvp7OxM27Zto+TkZDp27Bh16NCBXnvttco/AEwLJ7JaFhQURM2aNSO1Wq1ZtmnTJrKysqK8vDyd65SUlJCzszNt375dswwATZ48ucrt7dmzh6ysrKikpISISr8oAOjcuXOaMitXriQAdPbsWc2yNWvWkJubm1bcoaGhWnXfvHlTq64pU6ZQUFBQuRgqilVXgiAiunXrFnl6etJ7771Xre17e3vTwoULtcr89a9/rTSRXbt2jQDQ7t27KyyjbyIbMGCAVpmSkhLy8vKi8PBwzbLVq1eTp6en5vjrs1/62LhxIzk7O9Pjx4+JiKioqIhUKhV9/vnnRER05MgRsra2ppycHK313njjDXrllVeI6H+JbPXq1Zr3i4uLyd7enr788kutfS1LTPq039Plr1+/ToIg0J9//qlV5sMPP6ROnTpVWEfZ5/b48eOaZfrWNXHiRAoODq6wbl1xEv2vPZYtW1blumvWrKGWLVtqXi9dupSUSiXdv39fs2z69OmkUCgoIyNDs2zWrFn0/PPPa8WwceNGrbqPHTtGACg7O7vKOFgpvkZWBwIDA6FUKjWve/XqhaKiIiQnJ6Njx45ISUnBkiVLEB0djYyMDIiiiIKCAty8ebNcPc/as2cP1q1bh6SkJDx69AiiKKKoqAjp6enw8vICUNpV9vT1grJrVR07dtRalpWVhZKSEiiVSsTExODUqVP4/PPPy23z2rVr6Ny5c5X7rI+8vDy8/PLL6NGjB8LDwzXLq9q+j48P7t69i549e2q917t3b/z4448Vbi8uLg4AdHYBVtez+6hQKDB+/HhERkYiNDQUABAZGYnx48drjr+h7Vpm9OjReOedd7B//368+uqr+OWXX/Do0SNNF2ZMTAyKiorg7e2ttV5RURFatWqltezpbVpYWMDDwwP37t3Tud3qtt/Zs2dBROjatavWcrVarfWdqEhAQIDR6tKXrs/u119/jW+++QY3btxAfn4+1Go1RFHUKuPt7Q2VSqV57enpCU9PT61rjJ6ensjIyAAA3L9/Hzdv3sTcuXPx7rvvasrQf+/jnpSUpLX/rGKcyCRAzzxwYOjQoVCpVNiwYQOaNGkCKysr9O7dG0VFRVrlnh1Zdfr0abz66qtYsGABVq1aBRcXF5w6dQoTJ07UWlehUGh90QVBAACtC+dly8piE0URoaGhmDBhQrn49Rm0oc8oMFEUMW7cOFhaWmL79u1QKBRa71W2/ZKSEq24jUkQhHLHqLi4uFw5Xfs4ceJErFq1CrGxsbC2tkZ8fDy2bt2qed/Qdi3j4uKCl19+Gdu2bcOrr76Kbdu24aWXXoKbm5tmO05OToiJiSm37rODF559LQhCuR/pmiqr5+TJk+VGPlZ17JRKJWxsbIxSV3U8e1x3796NGTNmIDw8HEFBQWjQoAF2796NRYsWaZV7diCKIAg6l5XtR9n/P/vsM/Tv379cHI0bNzZ4X+oLTmR1ICYmRnOmAwDR0dGwsrKCr68vsrKycPnyZfzyyy8YNGgQAODOnTuav9oq88cff0ClUmldiP/hhx+MEnPXrl2RkJCAli1bVljGyspKk1Bq4t1330V8fDzOnDlT7odJn+17e3vjxIkTGDJkiGbZiRMnKt2mv78/AOD333/HyJEjdZZp2LAhUlNTNa+fPHmCy5cvo0WLFlXuk5+fH/z9/bFt2zZYW1ujc+fOWme++uyXvl5//XWMGDECiYmJOHDgAL7//nut7eTk5ODx48do3769wdsqo0/7Pe35558HANy6dQtDhw41aNvGrKs6ygZFzZ07V7Osorlp1eHh4YEmTZo
|
||
|
"text/plain": [
|
||
|
"<Figure size 432x288 with 2 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"import matplotlib.pyplot as plt\n",
|
||
|
"plt.style.use(\"ggplot\")\n",
|
||
|
"\n",
|
||
|
"x=np.arange(-1,2,0.001) #interp range of curve \n",
|
||
|
"\n",
|
||
|
"# VEHICLE REF FRAME\n",
|
||
|
"plt.subplot(2,1,1)\n",
|
||
|
"plt.title('parametrized curve, vehicle ref frame')\n",
|
||
|
"plt.scatter(0,0)\n",
|
||
|
"plt.scatter(wp_vehicle_frame[0,:],wp_vehicle_frame[1,:])\n",
|
||
|
"plt.plot(x,[f(xs,coeff) for xs in x])\n",
|
||
|
"plt.axis('equal')\n",
|
||
|
"\n",
|
||
|
"# MAP REF FRAME\n",
|
||
|
"plt.subplot(2,1,2)\n",
|
||
|
"plt.title('waypoints, map ref frame')\n",
|
||
|
"plt.scatter(state[0],state[1])\n",
|
||
|
"plt.scatter(track[0,:],track[1,:])\n",
|
||
|
"plt.scatter(track[0,nn_idx:nn_idx+LOOKAHED],track[1,nn_idx:nn_idx+LOOKAHED])\n",
|
||
|
"plt.axis('equal')\n",
|
||
|
"\n",
|
||
|
"plt.tight_layout()\n",
|
||
|
"plt.show()\n",
|
||
|
"#plt.savefig(\"fitted_poly\")"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Error Formulation\n",
|
||
|
"\n",
|
||
|
"So, the track can be represented by fitting a curve trough its waypoints, using the vehicle position as reference!\n",
|
||
|
"\n",
|
||
|
"<!--  -->\n",
|
||
|
"\n",
|
||
|
"Recall A fitted cubic poly has the form:\n",
|
||
|
"\n",
|
||
|
"$\n",
|
||
|
"f = K_0 * x^3 + K_1 * x^2 + K_2 * x + K_3\n",
|
||
|
"$\n",
|
||
|
"\n",
|
||
|
"The derivative of a fitted cubic poly has the form:\n",
|
||
|
"\n",
|
||
|
"$\n",
|
||
|
"f' = 3.0 * K_0 * x^2 + 2.0 * K_1 * x + K_2\n",
|
||
|
"$\n",
|
||
|
"\n",
|
||
|
"Then we can formulate\n",
|
||
|
"\n",
|
||
|
"* **crosstrack error** cte: desired y-position - y-position of vehicle -> this is the value of the fitted polynomial\n",
|
||
|
"\n",
|
||
|
"* **heading error** epsi: desired heading - heading of vehicle -> is the inclination of tangent to the fitted polynomial\n",
|
||
|
"\n",
|
||
|
"Becouse the reference is centered on vehicle the eqation are simplified!\n",
|
||
|
"Then using the fitted polynomial representation in vehicle frame the errors can be easily computed as:\n",
|
||
|
"\n",
|
||
|
"$\n",
|
||
|
"cte = f(px) \\\\\n",
|
||
|
"\\psi = -atan(f`(px)) \\\\\n",
|
||
|
"$"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"### In Practice:\n",
|
||
|
"I use a **convex** mpc so non-linearities are not allowed (in Udacity they use a general-purpose nonlinear solver) -> so this solution does not really work well for my case..."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"### Extras"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"def spline_planning(qs, qf, ts, tf, dqs=0.0, dqf=0.0, ddqs=0.0, ddqf=0.0):\n",
|
||
|
" \n",
|
||
|
" bc = np.array([ys, dys, ddys, yf, dyf, ddyf]).T \n",
|
||
|
" \n",
|
||
|
" C = np.array([[1, xs, xs**2, xs**3, xs**4, xs**5], #f(xs)=ys\n",
|
||
|
" [0, 1, 2*xs**1, 3*xs**2, 4*xs**3, 5**xs^4], #df(xs)=dys\n",
|
||
|
" [0, 0, 1, 6*xs**1, 12*xs**2, 20**xs^3], #ddf(xs)=ddys\n",
|
||
|
" [1, xf, xf**2, xf**3, xf**4, xf**5], #f(xf)=yf\n",
|
||
|
" [0, 1, 2*xf**1, 3*xf**2, 4*xf**3, 5**xf^4], #df(xf)=dyf\n",
|
||
|
" [0, 0, 1, 6*xf**1, 12*xf**2, 20**xf^3]]) #ddf(xf)=ddyf\n",
|
||
|
" \n",
|
||
|
" #To compute the polynomial coefficients we solve:\n",
|
||
|
" #Ax = B. \n",
|
||
|
" #Matrices A and B must have the same number of rows\n",
|
||
|
" a = np.linalg.lstsq(C,bc)[0]\n",
|
||
|
" return a"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python [conda env:.conda-jupyter] *",
|
||
|
"language": "python",
|
||
|
"name": "conda-env-.conda-jupyter-py"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.8.5"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 4
|
||
|
}
|