273 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			273 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * testTriangulation.cpp
 | 
						|
 *
 | 
						|
 *  Created on: July 30th, 2013
 | 
						|
 *      Author: cbeall3
 | 
						|
 */
 | 
						|
 | 
						|
#include <CppUnitLite/TestHarness.h>
 | 
						|
 | 
						|
#include <gtsam/base/Testable.h>
 | 
						|
#include <gtsam/geometry/SimpleCamera.h>
 | 
						|
#include <gtsam/geometry/PinholeCamera.h>
 | 
						|
#include <gtsam/geometry/Cal3Bundler.h>
 | 
						|
 | 
						|
#include <gtsam_unstable/geometry/InvDepthCamera3.h>
 | 
						|
#include <gtsam_unstable/geometry/triangulation.h>
 | 
						|
 | 
						|
#include <boost/assign.hpp>
 | 
						|
#include <boost/assign/std/vector.hpp>
 | 
						|
#include <boost/make_shared.hpp>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
using namespace boost::assign;
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
 | 
						|
TEST( triangulation, twoPosesBundler) {
 | 
						|
  boost::shared_ptr<Cal3Bundler> sharedCal = //
 | 
						|
      boost::make_shared<Cal3Bundler>(1500, 0, 0, 640, 480);
 | 
						|
  // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | 
						|
  Pose3 level_pose = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2),
 | 
						|
      gtsam::Point3(0, 0, 1));
 | 
						|
  PinholeCamera<Cal3Bundler> level_camera(level_pose, *sharedCal);
 | 
						|
 | 
						|
  // create second camera 1 meter to the right of first camera
 | 
						|
  Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1, 0, 0));
 | 
						|
  PinholeCamera<Cal3Bundler> level_camera_right(level_pose_right, *sharedCal);
 | 
						|
 | 
						|
  // landmark ~5 meters infront of camera
 | 
						|
  Point3 landmark(5, 0.5, 1.2);
 | 
						|
 | 
						|
  // 1. Project two landmarks into two cameras and triangulate
 | 
						|
  Point2 level_uv = level_camera.project(landmark);
 | 
						|
  Point2 level_uv_right = level_camera_right.project(landmark);
 | 
						|
 | 
						|
  vector < Pose3 > poses;
 | 
						|
  vector<Point2> measurements;
 | 
						|
 | 
						|
  poses += level_pose, level_pose_right;
 | 
						|
  measurements += level_uv, level_uv_right;
 | 
						|
 | 
						|
  bool optimize = true;
 | 
						|
  double rank_tol = 1e-9;
 | 
						|
 | 
						|
  boost::optional<Point3> triangulated_landmark = triangulatePoint3(poses,
 | 
						|
      sharedCal, measurements, rank_tol, optimize);
 | 
						|
  EXPECT(assert_equal(landmark, *triangulated_landmark, 1e-2));
 | 
						|
 | 
						|
  // 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
 | 
						|
  measurements.at(0) += Point2(0.1, 0.5);
 | 
						|
  measurements.at(1) += Point2(-0.2, 0.3);
 | 
						|
 | 
						|
  boost::optional<Point3> triangulated_landmark_noise = triangulatePoint3(poses,
 | 
						|
      sharedCal, measurements, rank_tol, optimize);
 | 
						|
  EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
 | 
						|
TEST( triangulation, fourPoses) {
 | 
						|
  boost::shared_ptr<Cal3_S2> sharedCal = //
 | 
						|
      boost::make_shared<Cal3_S2>(1500, 1200, 0, 640, 480);
 | 
						|
  // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | 
						|
  Pose3 level_pose = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2),
 | 
						|
      gtsam::Point3(0, 0, 1));
 | 
						|
  SimpleCamera level_camera(level_pose, *sharedCal);
 | 
						|
 | 
						|
  // create second camera 1 meter to the right of first camera
 | 
						|
  Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1, 0, 0));
 | 
						|
  SimpleCamera level_camera_right(level_pose_right, *sharedCal);
 | 
						|
 | 
						|
  // landmark ~5 meters infront of camera
 | 
						|
  Point3 landmark(5, 0.5, 1.2);
 | 
						|
 | 
						|
  // 1. Project two landmarks into two cameras and triangulate
 | 
						|
  Point2 level_uv = level_camera.project(landmark);
 | 
						|
  Point2 level_uv_right = level_camera_right.project(landmark);
 | 
						|
 | 
						|
  vector < Pose3 > poses;
 | 
						|
  vector<Point2> measurements;
 | 
						|
 | 
						|
  poses += level_pose, level_pose_right;
 | 
						|
  measurements += level_uv, level_uv_right;
 | 
						|
 | 
						|
  boost::optional<Point3> triangulated_landmark = triangulatePoint3(poses,
 | 
						|
      sharedCal, measurements);
 | 
						|
  EXPECT(assert_equal(landmark, *triangulated_landmark, 1e-2));
 | 
						|
 | 
						|
  // 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
 | 
						|
  measurements.at(0) += Point2(0.1, 0.5);
 | 
						|
  measurements.at(1) += Point2(-0.2, 0.3);
 | 
						|
 | 
						|
  boost::optional<Point3> triangulated_landmark_noise = triangulatePoint3(poses,
 | 
						|
      sharedCal, measurements);
 | 
						|
  EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2));
 | 
						|
 | 
						|
  // 3. Add a slightly rotated third camera above, again with measurement noise
 | 
						|
  Pose3 pose_top = level_pose
 | 
						|
      * Pose3(Rot3::ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
 | 
						|
  SimpleCamera camera_top(pose_top, *sharedCal);
 | 
						|
  Point2 top_uv = camera_top.project(landmark);
 | 
						|
 | 
						|
  poses += pose_top;
 | 
						|
  measurements += top_uv + Point2(0.1, -0.1);
 | 
						|
 | 
						|
  boost::optional<Point3> triangulated_3cameras = triangulatePoint3(poses,
 | 
						|
      sharedCal, measurements);
 | 
						|
  EXPECT(assert_equal(landmark, *triangulated_3cameras, 1e-2));
 | 
						|
 | 
						|
  // Again with nonlinear optimization
 | 
						|
  boost::optional<Point3> triangulated_3cameras_opt = triangulatePoint3(poses,
 | 
						|
      sharedCal, measurements, 1e-9, true);
 | 
						|
  EXPECT(assert_equal(landmark, *triangulated_3cameras_opt, 1e-2));
 | 
						|
 | 
						|
  // 4. Test failure: Add a 4th camera facing the wrong way
 | 
						|
  Pose3 level_pose180 = Pose3(Rot3::ypr(M_PI / 2, 0., -M_PI / 2),
 | 
						|
      Point3(0, 0, 1));
 | 
						|
  SimpleCamera camera_180(level_pose180, *sharedCal);
 | 
						|
 | 
						|
  CHECK_EXCEPTION(camera_180.project(landmark) ;, CheiralityException);
 | 
						|
 | 
						|
  poses += level_pose180;
 | 
						|
  measurements += Point2(400, 400);
 | 
						|
 | 
						|
  CHECK_EXCEPTION(triangulatePoint3(poses, sharedCal, measurements),
 | 
						|
      TriangulationCheiralityException);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
 | 
						|
TEST( triangulation, fourPoses_distinct_Ks) {
 | 
						|
  Cal3_S2 K1(1500, 1200, 0, 640, 480);
 | 
						|
  // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | 
						|
  Pose3 level_pose = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2),
 | 
						|
      gtsam::Point3(0, 0, 1));
 | 
						|
  SimpleCamera level_camera(level_pose, K1);
 | 
						|
 | 
						|
  // create second camera 1 meter to the right of first camera
 | 
						|
  Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1, 0, 0));
 | 
						|
  Cal3_S2 K2(1600, 1300, 0, 650, 440);
 | 
						|
  SimpleCamera level_camera_right(level_pose_right, K2);
 | 
						|
 | 
						|
  // landmark ~5 meters infront of camera
 | 
						|
  Point3 landmark(5, 0.5, 1.2);
 | 
						|
 | 
						|
  // 1. Project two landmarks into two cameras and triangulate
 | 
						|
  Point2 level_uv = level_camera.project(landmark);
 | 
						|
  Point2 level_uv_right = level_camera_right.project(landmark);
 | 
						|
 | 
						|
  vector<SimpleCamera> cameras;
 | 
						|
  vector<Point2> measurements;
 | 
						|
 | 
						|
  cameras += level_camera, level_camera_right;
 | 
						|
  measurements += level_uv, level_uv_right;
 | 
						|
 | 
						|
  boost::optional<Point3> triangulated_landmark = triangulatePoint3(cameras,
 | 
						|
      measurements);
 | 
						|
  EXPECT(assert_equal(landmark, *triangulated_landmark, 1e-2));
 | 
						|
 | 
						|
  // 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
 | 
						|
  measurements.at(0) += Point2(0.1, 0.5);
 | 
						|
  measurements.at(1) += Point2(-0.2, 0.3);
 | 
						|
 | 
						|
  boost::optional<Point3> triangulated_landmark_noise = //
 | 
						|
      triangulatePoint3(cameras, measurements);
 | 
						|
  EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2));
 | 
						|
 | 
						|
  // 3. Add a slightly rotated third camera above, again with measurement noise
 | 
						|
  Pose3 pose_top = level_pose
 | 
						|
      * Pose3(Rot3::ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
 | 
						|
  Cal3_S2 K3(700, 500, 0, 640, 480);
 | 
						|
  SimpleCamera camera_top(pose_top, K3);
 | 
						|
  Point2 top_uv = camera_top.project(landmark);
 | 
						|
 | 
						|
  cameras += camera_top;
 | 
						|
  measurements += top_uv + Point2(0.1, -0.1);
 | 
						|
 | 
						|
  boost::optional<Point3> triangulated_3cameras = triangulatePoint3(cameras,
 | 
						|
      measurements);
 | 
						|
  EXPECT(assert_equal(landmark, *triangulated_3cameras, 1e-2));
 | 
						|
 | 
						|
  // Again with nonlinear optimization
 | 
						|
  boost::optional<Point3> triangulated_3cameras_opt = triangulatePoint3(cameras,
 | 
						|
      measurements, 1e-9, true);
 | 
						|
  EXPECT(assert_equal(landmark, *triangulated_3cameras_opt, 1e-2));
 | 
						|
 | 
						|
  // 4. Test failure: Add a 4th camera facing the wrong way
 | 
						|
  Pose3 level_pose180 = Pose3(Rot3::ypr(M_PI / 2, 0., -M_PI / 2),
 | 
						|
      Point3(0, 0, 1));
 | 
						|
  Cal3_S2 K4(700, 500, 0, 640, 480);
 | 
						|
  SimpleCamera camera_180(level_pose180, K4);
 | 
						|
 | 
						|
  CHECK_EXCEPTION(camera_180.project(landmark) ;, CheiralityException);
 | 
						|
 | 
						|
  cameras += camera_180;
 | 
						|
  measurements += Point2(400, 400);
 | 
						|
  CHECK_EXCEPTION(triangulatePoint3(cameras, measurements),
 | 
						|
      TriangulationCheiralityException);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
 | 
						|
TEST( triangulation, twoIdenticalPoses) {
 | 
						|
  boost::shared_ptr<Cal3_S2> sharedCal = //
 | 
						|
      boost::make_shared<Cal3_S2>(1500, 1200, 0, 640, 480);
 | 
						|
  // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | 
						|
  Pose3 level_pose = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2),
 | 
						|
      gtsam::Point3(0, 0, 1));
 | 
						|
  SimpleCamera level_camera(level_pose, *sharedCal);
 | 
						|
 | 
						|
  // landmark ~5 meters infront of camera
 | 
						|
  Point3 landmark(5, 0.5, 1.2);
 | 
						|
 | 
						|
  // 1. Project two landmarks into two cameras and triangulate
 | 
						|
  Point2 level_uv = level_camera.project(landmark);
 | 
						|
 | 
						|
  vector < Pose3 > poses;
 | 
						|
  vector<Point2> measurements;
 | 
						|
 | 
						|
  poses += level_pose, level_pose;
 | 
						|
  measurements += level_uv, level_uv;
 | 
						|
 | 
						|
  CHECK_EXCEPTION(triangulatePoint3(poses, sharedCal, measurements),
 | 
						|
      TriangulationUnderconstrainedException);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* *
 | 
						|
 | 
						|
 TEST( triangulation, onePose) {
 | 
						|
 // we expect this test to fail with a TriangulationUnderconstrainedException
 | 
						|
 // because there's only one camera observation
 | 
						|
 | 
						|
 Cal3_S2 *sharedCal(1500, 1200, 0, 640, 480);
 | 
						|
 | 
						|
 vector<Pose3> poses;
 | 
						|
 vector<Point2> measurements;
 | 
						|
 | 
						|
 poses += Pose3();
 | 
						|
 measurements += Point2();
 | 
						|
 | 
						|
 CHECK_EXCEPTION(triangulatePoint3(poses, measurements, *sharedCal),
 | 
						|
 TriangulationUnderconstrainedException);
 | 
						|
 }
 | 
						|
 | 
						|
 /* ************************************************************************* */
 | 
						|
int main() {
 | 
						|
  TestResult tr;
 | 
						|
  return TestRegistry::runAllTests(tr);
 | 
						|
}
 | 
						|
/* ************************************************************************* */
 |