1115 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			1115 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
| /*
 | |
|  * @file testSQP.cpp
 | |
|  * @brief demos of SQP using existing gtsam components
 | |
|  * @author Alex Cunningham
 | |
|  */
 | |
| 
 | |
| #include <iostream>
 | |
| #include <cmath>
 | |
| #include <boost/assign/std/list.hpp> // for operator +=
 | |
| #include <boost/assign/std/map.hpp> // for insert
 | |
| #include <boost/foreach.hpp>
 | |
| #include <boost/shared_ptr.hpp>
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| 
 | |
| #define GTSAM_MAGIC_KEY
 | |
| 
 | |
| #include <Point2.h>
 | |
| #include <Pose3.h>
 | |
| #include <GaussianFactorGraph.h>
 | |
| #include <NonlinearOptimizer.h>
 | |
| #include <simulated2D.h>
 | |
| #include <Ordering.h>
 | |
| #include <visualSLAM.h>
 | |
| 
 | |
| // templated implementations
 | |
| #include <NonlinearFactorGraph-inl.h>
 | |
| #include <NonlinearConstraint-inl.h>
 | |
| #include <NonlinearOptimizer-inl.h>
 | |
| #include <TupleConfig-inl.h>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| using namespace boost;
 | |
| using namespace boost::assign;
 | |
| 
 | |
| // Models to use
 | |
| SharedDiagonal probModel1 = sharedSigma(1,1.0);
 | |
| SharedDiagonal probModel2 = sharedSigma(2,1.0);
 | |
| SharedDiagonal constraintModel1 = noiseModel::Constrained::All(1);
 | |
| 
 | |
| // trick from some reading group
 | |
| #define FOREACH_PAIR( KEY, VAL, COL) BOOST_FOREACH (boost::tie(KEY,VAL),COL)
 | |
| 
 | |
| /* *********************************************************************
 | |
|  * This example uses a nonlinear objective function and
 | |
|  * nonlinear equality constraint.  The formulation is actually
 | |
|  * the Cholesky form that creates the full Hessian explicitly,
 | |
|  * which should really be avoided with our QR-based machinery.
 | |
|  *
 | |
|  * Note: the update equation used here has a fixed step size
 | |
|  * and gain that is rather arbitrarily chosen, and as such,
 | |
|  * will take a silly number of iterations.
 | |
|  */
 | |
| TEST (SQP, problem1_cholesky ) {
 | |
| 	bool verbose = false;
 | |
| 	// use a nonlinear function of f(x) = x^2+y^2
 | |
| 	// nonlinear equality constraint: g(x) = x^2-5-y=0
 | |
| 	// Lagrangian: f(x) + \lambda*g(x)
 | |
| 
 | |
| 	// Symbols
 | |
| 	Symbol x1("x1"), y1("y1"), L1("L1");
 | |
| 
 | |
| 	// state structure: [x y \lambda]
 | |
| 	VectorConfig init, state;
 | |
| 	init.insert(x1, Vector_(1, 1.0));
 | |
| 	init.insert(y1, Vector_(1, 1.0));
 | |
| 	init.insert(L1, Vector_(1, 1.0));
 | |
| 	state = init;
 | |
| 
 | |
| 	if (verbose) init.print("Initial State");
 | |
| 
 | |
| 	// loop until convergence
 | |
| 	int maxIt = 10;
 | |
| 	for (int i = 0; i<maxIt; ++i) {
 | |
| 		if (verbose) cout << "\n******************************\nIteration: " << i+1 << endl;
 | |
| 
 | |
| 		// extract the states
 | |
| 		double x, y, lambda;
 | |
| 		x = state[x1](0);
 | |
| 		y = state[y1](0);
 | |
| 		lambda = state[L1](0);
 | |
| 
 | |
| 		// calculate the components
 | |
| 		Matrix H1, H2, gradG;
 | |
| 		Vector gradL, gx;
 | |
| 
 | |
| 		// hessian of lagrangian function, in two columns:
 | |
| 		H1 = Matrix_(2,1,
 | |
| 				2.0+2.0*lambda,
 | |
| 				0.0);
 | |
| 		H2 = Matrix_(2,1,
 | |
| 				0.0,
 | |
| 				2.0);
 | |
| 
 | |
| 		// deriviative of lagrangian function
 | |
| 		gradL = Vector_(2,
 | |
| 				2.0*x*(1+lambda),
 | |
| 				2.0*y-lambda);
 | |
| 
 | |
| 		// constraint derivatives
 | |
| 		gradG = Matrix_(2,1,
 | |
| 				2.0*x,
 | |
| 				0.0);
 | |
| 
 | |
| 		// constraint value
 | |
| 		gx = Vector_(1,
 | |
| 				x*x-5-y);
 | |
| 
 | |
| 		// create a factor for the states
 | |
| 		GaussianFactor::shared_ptr f1(new
 | |
| 				GaussianFactor(x1, H1, y1, H2, L1, gradG, gradL, probModel2));
 | |
| 
 | |
| 		// create a factor for the lagrange multiplier
 | |
| 		GaussianFactor::shared_ptr f2(new
 | |
| 				GaussianFactor(x1, -sub(gradG, 0, 1, 0, 1),
 | |
| 							   y1, -sub(gradG, 1, 2, 0, 1), -gx, constraintModel1));
 | |
| 
 | |
| 		// construct graph
 | |
| 		GaussianFactorGraph fg;
 | |
| 		fg.push_back(f1);
 | |
| 		fg.push_back(f2);
 | |
| 		if (verbose) fg.print("Graph");
 | |
| 
 | |
| 		// solve
 | |
| 		Ordering ord;
 | |
| 		ord += x1, y1, L1;
 | |
| 		VectorConfig delta = fg.optimize(ord).scale(-1.0);
 | |
| 		if (verbose) delta.print("Delta");
 | |
| 
 | |
| 		// update initial estimate
 | |
| 		VectorConfig newState = expmap(state, delta);
 | |
| 		state = newState;
 | |
| 
 | |
| 		if (verbose) state.print("Updated State");
 | |
| 	}
 | |
| 
 | |
| 	// verify that it converges to the nearest optimal point
 | |
| 	VectorConfig expected;
 | |
| 	expected.insert(L1, Vector_(1, -1.0));
 | |
| 	expected.insert(x1, Vector_(1, 2.12));
 | |
| 	expected.insert(y1, Vector_(1, -0.5));
 | |
| 	CHECK(assert_equal(expected,state, 1e-2));
 | |
| }
 | |
| 
 | |
| /* *********************************************************************
 | |
|  * This example uses a nonlinear objective function and
 | |
|  * nonlinear equality constraint.  This formulation splits
 | |
|  * the constraint into a factor and a linear constraint.
 | |
|  *
 | |
|  * This example uses the same silly number of iterations as the
 | |
|  * previous example.
 | |
|  */
 | |
| TEST (SQP, problem1_sqp ) {
 | |
| 	bool verbose = false;
 | |
| 	// use a nonlinear function of f(x) = x^2+y^2
 | |
| 	// nonlinear equality constraint: g(x) = x^2-5-y=0
 | |
| 	// Lagrangian: f(x) + \lambda*g(x)
 | |
| 
 | |
| 	// Symbols
 | |
| 	Symbol x1("x1"), y1("y1"), L1("L1");
 | |
| 
 | |
| 	// state structure: [x y \lambda]
 | |
| 	VectorConfig init, state;
 | |
| 	init.insert(x1, Vector_(1, 1.0));
 | |
| 	init.insert(y1, Vector_(1, 1.0));
 | |
| 	init.insert(L1, Vector_(1, 1.0));
 | |
| 	state = init;
 | |
| 
 | |
| 	if (verbose) init.print("Initial State");
 | |
| 
 | |
| 	// loop until convergence
 | |
| 	int maxIt = 5;
 | |
| 	for (int i = 0; i<maxIt; ++i) {
 | |
| 		if (verbose) cout << "\n******************************\nIteration: " << i+1 << endl;
 | |
| 
 | |
| 		// extract the states
 | |
| 		double x, y, lambda;
 | |
| 		x = state[x1](0);
 | |
| 		y = state[y1](0);
 | |
| 		lambda = state[L1](0);
 | |
| 
 | |
| 		/** create the linear factor
 | |
| 		 * ||h(x)-z||^2 => ||Ax-b||^2
 | |
| 		 *  where:
 | |
| 		 *		h(x) simply returns the inputs
 | |
| 		 *		z    zeros(2)
 | |
| 		 *		A 	 identity
 | |
| 		 *		b	 linearization point
 | |
| 		 */
 | |
| 		Matrix A = eye(2);
 | |
| 		Vector b = Vector_(2, x, y);
 | |
| 		GaussianFactor::shared_ptr f1(
 | |
| 						new GaussianFactor(x1, sub(A, 0,2, 0,1), // A(:,1)
 | |
| 										   y1, sub(A, 0,2, 1,2), // A(:,2)
 | |
| 										   b,                     // rhs of f(x)
 | |
| 										   probModel2));          // arbitrary sigma
 | |
| 
 | |
| 		/** create the constraint-linear factor
 | |
| 		 * Provides a mechanism to use variable gain to force the constraint
 | |
| 		 * \lambda*gradG*dx + d\lambda = zero
 | |
| 		 * formulated in matrix form as:
 | |
| 		 * [\lambda*gradG eye(1)] [dx; d\lambda] = zero
 | |
| 		 */
 | |
| 		Matrix gradG = Matrix_(1, 2,2*x, -1.0);
 | |
| 		GaussianFactor::shared_ptr f2(
 | |
| 				new GaussianFactor(x1, lambda*sub(gradG, 0,1, 0,1), // scaled gradG(:,1)
 | |
| 								   y1, lambda*sub(gradG, 0,1, 1,2), // scaled gradG(:,2)
 | |
| 								   L1, eye(1),                      // dlambda term
 | |
| 								   Vector_(1, 0.0),                  // rhs is zero
 | |
| 								   probModel1));                     // arbitrary sigma
 | |
| 
 | |
| 		// create the actual constraint
 | |
| 		// [gradG] [x; y] - g = 0
 | |
| 		Vector g = Vector_(1,x*x-y-5);
 | |
| 		GaussianFactor::shared_ptr c1(
 | |
| 				new GaussianFactor(x1, sub(gradG, 0,1, 0,1),   // slice first part of gradG
 | |
| 								   y1, sub(gradG, 0,1, 1,2),   // slice second part of gradG
 | |
| 								   g,                           // value of constraint function
 | |
| 								   constraintModel1));          // force to constraint
 | |
| 
 | |
| 		// construct graph
 | |
| 		GaussianFactorGraph fg;
 | |
| 		fg.push_back(f1);
 | |
| 		fg.push_back(f2);
 | |
| 		fg.push_back(c1);
 | |
| 		if (verbose) fg.print("Graph");
 | |
| 
 | |
| 		// solve
 | |
| 		Ordering ord;
 | |
| 		ord += x1, y1, L1;
 | |
| 		VectorConfig delta = fg.optimize(ord);
 | |
| 		if (verbose) delta.print("Delta");
 | |
| 
 | |
| 		// update initial estimate
 | |
| 		VectorConfig newState = expmap(state, delta.scale(-1.0));
 | |
| 
 | |
| 		// set the state to the updated state
 | |
| 		state = newState;
 | |
| 
 | |
| 		if (verbose) state.print("Updated State");
 | |
| 	}
 | |
| 
 | |
| 	// verify that it converges to the nearest optimal point
 | |
| 	VectorConfig expected;
 | |
| 	expected.insert(x1, Vector_(1, 2.12));
 | |
| 	expected.insert(y1, Vector_(1, -0.5));
 | |
| 	CHECK(assert_equal(state[x1], expected[x1], 1e-2));
 | |
| 	CHECK(assert_equal(state[y1], expected[y1], 1e-2));
 | |
| }
 | |
| 
 | |
| /* ********************************************************************* */
 | |
| 
 | |
| // Basic configs
 | |
| typedef LieConfig<LagrangeKey, Vector> LagrangeConfig;
 | |
| 
 | |
| // full components
 | |
| typedef TupleConfig3<LieConfig<simulated2D::PoseKey, Point2>,
 | |
| 					 LieConfig<simulated2D::PointKey, Point2>,
 | |
| 					 LieConfig<LagrangeKey, Vector> > Config2D;
 | |
| //typedef TupleConfig<LagrangeConfig, TupleConfigEnd<simulated2D::Config> > Config2D;
 | |
| typedef NonlinearFactorGraph<Config2D> Graph2D;
 | |
| typedef NonlinearEquality<Config2D, simulated2D::PoseKey, Point2> NLE;
 | |
| typedef boost::shared_ptr<simulated2D::GenericMeasurement<Config2D> > shared;
 | |
| typedef NonlinearOptimizer<Graph2D, Config2D> Optimizer;
 | |
| 
 | |
| /*
 | |
|  * Determining a ground truth linear system
 | |
|  * with two poses seeing one landmark, with each pose
 | |
|  * constrained to a particular value
 | |
|  */
 | |
| TEST (SQP, two_pose_truth ) {
 | |
| 	bool verbose = false;
 | |
| 
 | |
| 	// create a graph
 | |
| 	shared_ptr<Graph2D> graph(new Graph2D);
 | |
| 
 | |
| 	// add the constraints on the ends
 | |
| 	// position (1, 1) constraint for x1
 | |
| 	// position (5, 6) constraint for x2
 | |
| 	simulated2D::PoseKey x1(1), x2(2);
 | |
| 	simulated2D::PointKey l1(1);
 | |
| 	Point2 pt_x1(1.0, 1.0),
 | |
| 		   pt_x2(5.0, 6.0);
 | |
| 	shared_ptr<NLE> ef1(new NLE(x1, pt_x1)),
 | |
| 			        ef2(new NLE(x2, pt_x2));
 | |
| 	graph->push_back(ef1);
 | |
| 	graph->push_back(ef2);
 | |
| 
 | |
| 	// measurement from x1 to l1
 | |
| 	Point2 z1(0.0, 5.0);
 | |
| 	SharedGaussian sigma(noiseModel::Isotropic::Sigma(2, 0.1));
 | |
| 	shared f1(new simulated2D::GenericMeasurement<Config2D>(z1, sigma, x1,l1));
 | |
| 	graph->push_back(f1);
 | |
| 
 | |
| 	// measurement from x2 to l1
 | |
| 	Point2 z2(-4.0, 0.0);
 | |
| 	shared f2(new simulated2D::GenericMeasurement<Config2D>(z2, sigma, x2,l1));
 | |
| 	graph->push_back(f2);
 | |
| 
 | |
| 	// create an initial estimate
 | |
| 	Point2 pt_l1(
 | |
| 			1.0, 6.0 // ground truth
 | |
| 		  //1.2, 5.6 // small error
 | |
| 			);
 | |
| 	shared_ptr<Config2D> initialEstimate(new Config2D);
 | |
| 	initialEstimate->insert(l1, pt_l1);
 | |
| 	initialEstimate->insert(x1, pt_x1);
 | |
| 	initialEstimate->insert(x2, pt_x2);
 | |
| 
 | |
| 	// optimize the graph
 | |
| 	shared_ptr<Ordering> ordering(new Ordering());
 | |
| 	*ordering += "x1", "x2", "l1";
 | |
| 	Optimizer::shared_solver solver(new Optimizer::solver(ordering));
 | |
| 	Optimizer optimizer(graph, initialEstimate, solver);
 | |
| 
 | |
| 	// display solution
 | |
| 	double relativeThreshold = 1e-5;
 | |
| 	double absoluteThreshold = 1e-5;
 | |
| 	Optimizer act_opt = optimizer.gaussNewton(relativeThreshold, absoluteThreshold);
 | |
| 	boost::shared_ptr<const Config2D> actual = act_opt.config();
 | |
| 	if (verbose) actual->print("Configuration after optimization");
 | |
| 
 | |
| 	// verify
 | |
| 	Config2D expected;
 | |
| 	expected.insert(x1, pt_x1);
 | |
| 	expected.insert(x2, pt_x2);
 | |
| 	expected.insert(l1, Point2(1.0, 6.0));
 | |
| 	CHECK(assert_equal(expected, *actual, 1e-5));
 | |
| }
 | |
| 
 | |
| /* ********************************************************************* */
 | |
| namespace sqp_test1 {
 | |
| 
 | |
| 	// binary constraint between landmarks
 | |
| 	/** g(x) = x-y = 0 */
 | |
| 	Vector g(const Config2D& config, const list<simulated2D::PointKey>& keys) {
 | |
| 		Point2 pt1, pt2;
 | |
| 		pt1 = config[simulated2D::PointKey(keys.front().index())];
 | |
| 		pt2 = config[simulated2D::PointKey(keys.back().index())];
 | |
| 		return Vector_(2, pt1.x() - pt2.x(), pt1.y() - pt2.y());
 | |
| 	}
 | |
| 
 | |
| 	/** jacobian at l1 */
 | |
| 	Matrix G1(const Config2D& config, const list<simulated2D::PointKey>& keys) {
 | |
| 		return eye(2);
 | |
| 	}
 | |
| 
 | |
| 	/** jacobian at l2 */
 | |
| 	Matrix G2(const Config2D& config, const list<simulated2D::PointKey>& keys) {
 | |
| 		return -1 * eye(2);
 | |
| 	}
 | |
| 
 | |
| } // \namespace sqp_test1
 | |
| 
 | |
| namespace sqp_test2 {
 | |
| 
 | |
| 	// Unary Constraint on x1
 | |
| 	/** g(x) = x -[1;1] = 0 */
 | |
| 	Vector g(const Config2D& config, const list<simulated2D::PoseKey>& keys) {
 | |
| 		Point2 x = config[keys.front()];
 | |
| 		return Vector_(2, x.x() - 1.0, x.y() - 1.0);
 | |
| 	}
 | |
| 
 | |
| 	/** jacobian at x1 */
 | |
| 	Matrix G(const Config2D& config, const list<simulated2D::PoseKey>& keys) {
 | |
| 		return eye(2);
 | |
| 	}
 | |
| 
 | |
| } // \namespace sqp_test2
 | |
| 
 | |
| 
 | |
| typedef NonlinearConstraint2<
 | |
| 	Config2D, simulated2D::PointKey, Point2, simulated2D::PointKey, Point2> NLC2;
 | |
| 
 | |
| /* *********************************************************************
 | |
|  *  Version that actually uses nonlinear equality constraints
 | |
|  *  to to perform optimization.  Same as above, but no
 | |
|  *  equality constraint on x2, and two landmarks that
 | |
|  *  should be the same. Note that this is a linear system,
 | |
|  *  so it will converge in one step.
 | |
|  */
 | |
| TEST (SQP, two_pose ) {
 | |
| 	bool verbose = false;
 | |
| 
 | |
| 	// create the graph
 | |
| 	shared_ptr<Graph2D> graph(new Graph2D);
 | |
| 
 | |
| 	// add the constraints on the ends
 | |
| 	// position (1, 1) constraint for x1
 | |
| 	// position (5, 6) constraint for x2
 | |
| 	simulated2D::PoseKey x1(1), x2(2);
 | |
| 	simulated2D::PointKey l1(1), l2(2);
 | |
| 	Point2 pt_x1(1.0, 1.0),
 | |
| 		   pt_x2(5.0, 6.0);
 | |
| 	shared_ptr<NLE> ef1(new NLE(x1, pt_x1));
 | |
| 	graph->push_back(ef1);
 | |
| 
 | |
| 	// measurement from x1 to l1
 | |
| 	Point2 z1(0.0, 5.0);
 | |
| 	SharedGaussian sigma(noiseModel::Isotropic::Sigma(2, 0.1));
 | |
| 	shared f1(new simulated2D::GenericMeasurement<Config2D>(z1, sigma, x1,l1));
 | |
| 	graph->push_back(f1);
 | |
| 
 | |
| 	// measurement from x2 to l2
 | |
| 	Point2 z2(-4.0, 0.0);
 | |
| 	shared f2(new simulated2D::GenericMeasurement<Config2D>(z2, sigma, x2,l2));
 | |
| 	graph->push_back(f2);
 | |
| 
 | |
| 	// equality constraint between l1 and l2
 | |
| 	LagrangeKey L1(1);
 | |
| 	list<simulated2D::PointKey> keys2; keys2 += l1, l2;
 | |
| 	boost::shared_ptr<NLC2 > c2(new NLC2(
 | |
| 					boost::bind(sqp_test1::g, _1, keys2),
 | |
| 					l1, boost::bind(sqp_test1::G1, _1, keys2),
 | |
| 					l2, boost::bind(sqp_test1::G2, _1, keys2),
 | |
| 					2, L1));
 | |
| 	graph->push_back(c2);
 | |
| 
 | |
| 	if (verbose) graph->print("Initial nonlinear graph with constraints");
 | |
| 
 | |
| 	// create an initial estimate
 | |
| 	shared_ptr<Config2D> initialEstimate(new Config2D);
 | |
| 	initialEstimate->insert(x1, pt_x1);
 | |
| 	initialEstimate->insert(x2, Point2());
 | |
| 	initialEstimate->insert(l1, Point2(1.0, 6.0)); // ground truth
 | |
| 	initialEstimate->insert(l2, Point2(-4.0, 0.0)); // starting with a separate reference frame
 | |
| 	initialEstimate->insert(L1, Vector_(2, 1.0, 1.0)); // connect the landmarks
 | |
| 
 | |
| 	// create state config variables and initialize them
 | |
| 	Config2D state(*initialEstimate);
 | |
| 
 | |
| 	// linearize the graph
 | |
| 	boost::shared_ptr<GaussianFactorGraph> fg = graph->linearize(state);
 | |
| 
 | |
| 	if (verbose) fg->print("Linearized graph");
 | |
| 
 | |
| 	// create an ordering
 | |
| 	Ordering ordering;
 | |
| 	ordering += "x1", "x2", "l1", "l2", "L1";
 | |
| 
 | |
| 	// optimize linear graph to get full delta config
 | |
| 	GaussianBayesNet cbn = fg->eliminate(ordering);
 | |
| 	if (verbose) cbn.print("ChordalBayesNet");
 | |
| 
 | |
| 	VectorConfig delta = optimize(cbn); //fg.optimize(ordering);
 | |
| 	if (verbose) delta.print("Delta Config");
 | |
| 
 | |
| 	// update both state variables
 | |
| 	state = expmap(state, delta);
 | |
| 	if (verbose) state.print("newState");
 | |
| 
 | |
| 	// verify
 | |
| 	Config2D expected;
 | |
| 	expected.insert(x1, pt_x1);
 | |
| 	expected.insert(l1, Point2(1.0, 6.0));
 | |
| 	expected.insert(l2, Point2(1.0, 6.0));
 | |
| 	expected.insert(x2, Point2(5.0, 6.0));
 | |
| 	expected.insert(L1, Vector_(2, 6.0, 7.0));
 | |
| 	CHECK(assert_equal(expected, state, 1e-5));
 | |
| }
 | |
| 
 | |
| /* ********************************************************************* */
 | |
| // VSLAM Examples
 | |
| /* ********************************************************************* */
 | |
| // make a realistic calibration matrix
 | |
| double fov = 60; // degrees
 | |
| size_t w=640,h=480;
 | |
| Cal3_S2 K(fov,w,h);
 | |
| boost::shared_ptr<Cal3_S2> shK(new Cal3_S2(K));
 | |
| 
 | |
| using namespace gtsam::visualSLAM;
 | |
| using namespace boost;
 | |
| 
 | |
| // typedefs for visual SLAM example
 | |
| typedef TypedSymbol<Pose3, 'x'> Pose3Key;
 | |
| typedef TypedSymbol<Point3, 'l'> Point3Key;
 | |
| typedef TupleConfig3<LieConfig<LagrangeKey, Vector>,
 | |
| 					 LieConfig<Pose3Key, Pose3>,
 | |
| 					 LieConfig<Point3Key, Point3> > VConfig;
 | |
| typedef NonlinearFactorGraph<VConfig> VGraph;
 | |
| typedef boost::shared_ptr<GenericProjectionFactor<VConfig> > shared_vf;
 | |
| typedef NonlinearOptimizer<VGraph,VConfig> VOptimizer;
 | |
| typedef NonlinearConstraint2<
 | |
| 	VConfig, visualSLAM::PointKey, Pose3, visualSLAM::PointKey, Pose3> VNLC2;
 | |
| typedef NonlinearEquality<VConfig, Pose3Key, Pose3> Pose3Constraint;
 | |
| 
 | |
| /**
 | |
|  * Ground truth for a visual SLAM example with stereo vision
 | |
|  */
 | |
| TEST (SQP, stereo_truth ) {
 | |
| 	bool verbose = false;
 | |
| 
 | |
| 	// create initial estimates
 | |
| 	Rot3 faceDownY(Matrix_(3,3,
 | |
| 				1.0, 0.0, 0.0,
 | |
| 				0.0, 0.0, 1.0,
 | |
| 				0.0, 1.0, 0.0));
 | |
| 	Pose3 pose1(faceDownY, Point3()); // origin, left camera
 | |
| 	SimpleCamera camera1(K, pose1);
 | |
| 	Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
 | |
| 	SimpleCamera camera2(K, pose2);
 | |
| 	Point3 landmark(1.0, 5.0, 0.0); //centered between the cameras, 5 units away
 | |
| 	Point3 landmarkNoisy(1.0, 6.0, 0.0);
 | |
| 
 | |
| 	// create truth config
 | |
| 	boost::shared_ptr<VConfig> truthConfig(new VConfig);
 | |
| 	truthConfig->insert(Pose3Key(1), camera1.pose());
 | |
| 	truthConfig->insert(Pose3Key(2), camera2.pose());
 | |
| 	truthConfig->insert(Point3Key(1), landmark);
 | |
| 
 | |
| 	// create graph
 | |
| 	shared_ptr<VGraph> graph(new VGraph());
 | |
| 
 | |
| 	// create equality constraints for poses
 | |
| 	graph->push_back(shared_ptr<Pose3Constraint>(new Pose3Constraint(Pose3Key(1), camera1.pose())));
 | |
| 	graph->push_back(shared_ptr<Pose3Constraint>(new Pose3Constraint(Pose3Key(2), camera2.pose())));
 | |
| 
 | |
| 	// create VSLAM factors
 | |
| 	Point2 z1 = camera1.project(landmark);
 | |
| 	if (verbose) z1.print("z1");
 | |
| 	SharedDiagonal vmodel = noiseModel::Unit::Create(3);
 | |
| 	//ProjectionFactor test_vf(z1, vmodel, Pose3Key(1), Point3Key(1), shK);
 | |
| 	shared_vf vf1(new GenericProjectionFactor<VConfig>(
 | |
| 			z1, vmodel, Pose3Key(1), Point3Key(1), shK));
 | |
| 	graph->push_back(vf1);
 | |
| 	Point2 z2 = camera2.project(landmark);
 | |
| 	if (verbose) z2.print("z2");
 | |
| 	shared_vf vf2(new GenericProjectionFactor<VConfig>(
 | |
| 			z2, vmodel, Pose3Key(2), Point3Key(1), shK));
 | |
| 	graph->push_back(vf2);
 | |
| 
 | |
| 	if (verbose) graph->print("Graph after construction");
 | |
| 
 | |
| 	// create ordering
 | |
| 	shared_ptr<Ordering> ord(new Ordering());
 | |
| 	*ord += "x1", "x2", "l1";
 | |
| 
 | |
| 	// create optimizer
 | |
| 	VOptimizer::shared_solver solver(new VOptimizer::solver(ord));
 | |
| 	VOptimizer optimizer(graph, truthConfig, solver);
 | |
| 
 | |
| 	// optimize
 | |
| 	VOptimizer afterOneIteration = optimizer.iterate();
 | |
| 
 | |
| 	// verify
 | |
| 	DOUBLES_EQUAL(0.0, optimizer.error(), 1e-9);
 | |
| 
 | |
| 	// check if correct
 | |
| 	if (verbose) afterOneIteration.config()->print("After iteration");
 | |
| 	CHECK(assert_equal(*truthConfig,*(afterOneIteration.config())));
 | |
| }
 | |
| 
 | |
| 
 | |
| /* *********************************************************************
 | |
|  * Ground truth for a visual SLAM example with stereo vision
 | |
|  * with some noise injected into the initial config
 | |
|  */
 | |
| TEST (SQP, stereo_truth_noisy ) {
 | |
| 	bool verbose = false;
 | |
| 
 | |
| 	// setting to determine how far away the noisy landmark is,
 | |
| 	// given that the ground truth is 5m in front of the cameras
 | |
| 	double noisyDist = 7.6;
 | |
| 
 | |
| 	// create initial estimates
 | |
| 	Rot3 faceDownY(Matrix_(3,3,
 | |
| 			1.0, 0.0, 0.0,
 | |
| 			0.0, 0.0, 1.0,
 | |
| 			0.0, 1.0, 0.0));
 | |
| 	Pose3 pose1(faceDownY, Point3()); // origin, left camera
 | |
| 	SimpleCamera camera1(K, pose1);
 | |
| 	Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
 | |
| 	SimpleCamera camera2(K, pose2);
 | |
| 	Point3 landmark(1.0, 5.0, 0.0); //centered between the cameras, 5 units away
 | |
| 	Point3 landmarkNoisy(1.0, noisyDist, 0.0); // initial point is too far out
 | |
| 
 | |
| 	// create truth config
 | |
| 	boost::shared_ptr<VConfig> truthConfig(new VConfig);
 | |
| 	truthConfig->insert(Pose3Key(1), camera1.pose());
 | |
| 	truthConfig->insert(Pose3Key(2), camera2.pose());
 | |
| 	truthConfig->insert(Point3Key(1), landmark);
 | |
| 
 | |
| 	// create config
 | |
| 	boost::shared_ptr<VConfig> noisyConfig(new VConfig);
 | |
| 	noisyConfig->insert(Pose3Key(1), camera1.pose());
 | |
| 	noisyConfig->insert(Pose3Key(2), camera2.pose());
 | |
| 	noisyConfig->insert(Point3Key(1), landmarkNoisy);
 | |
| 
 | |
| 	// create graph
 | |
| 	shared_ptr<VGraph> graph(new VGraph());
 | |
| 
 | |
| 	// create equality constraints for poses
 | |
| 	graph->push_back(shared_ptr<Pose3Constraint>(new Pose3Constraint(Pose3Key(1), camera1.pose())));
 | |
| 	graph->push_back(shared_ptr<Pose3Constraint>(new Pose3Constraint(Pose3Key(2), camera2.pose())));
 | |
| 
 | |
| 	// create VSLAM factors
 | |
| 	Point2 z1 = camera1.project(landmark);
 | |
| 	if (verbose) z1.print("z1");
 | |
| 	SharedDiagonal vmodel = noiseModel::Unit::Create(3);
 | |
| 	shared_vf vf1(new GenericProjectionFactor<VConfig>(
 | |
| 				z1, vmodel, Pose3Key(1), Point3Key(1), shK));
 | |
| 	graph->push_back(vf1);
 | |
| 	Point2 z2 = camera2.project(landmark);
 | |
| 	if (verbose) z2.print("z2");
 | |
| 	shared_vf vf2(new GenericProjectionFactor<VConfig>(
 | |
| 				z2, vmodel, Pose3Key(2), Point3Key(1), shK));
 | |
| 	graph->push_back(vf2);
 | |
| 
 | |
| 	if (verbose)  {
 | |
| 		graph->print("Graph after construction");
 | |
| 		noisyConfig->print("Initial config");
 | |
| 	}
 | |
| 
 | |
| 	// create ordering
 | |
| 	shared_ptr<Ordering> ord(new Ordering());
 | |
| 	*ord += "x1", "x2", "l1";
 | |
| 
 | |
| 	// create optimizer
 | |
| 	VOptimizer::shared_solver solver(new VOptimizer::solver(ord));
 | |
| 	VOptimizer optimizer0(graph, noisyConfig, solver);
 | |
| 
 | |
| 	if (verbose)
 | |
| 		cout << "Initial Error: " << optimizer0.error() << endl;
 | |
| 
 | |
| 	// use Levenberg-Marquardt optimization
 | |
| 	double relThresh = 1e-5, absThresh = 1e-5;
 | |
| 	VOptimizer optimizer(optimizer0.levenbergMarquardt(relThresh, absThresh, VOptimizer::SILENT));
 | |
| 
 | |
| 	// verify
 | |
| 	DOUBLES_EQUAL(0.0, optimizer.error(), 1e-5);
 | |
| 
 | |
| 	// check if correct
 | |
| 	if (verbose) {
 | |
| 		optimizer.config()->print("After iteration");
 | |
| 		cout << "Final error: " << optimizer.error() << endl;
 | |
| 	}
 | |
| 	CHECK(assert_equal(*truthConfig,*(optimizer.config()), 1e-5));
 | |
| }
 | |
| 
 | |
| /* ********************************************************************* */
 | |
| namespace sqp_stereo {
 | |
| 
 | |
| 	// binary constraint between landmarks
 | |
| 	/** g(x) = x-y = 0 */
 | |
| 	Vector g(const VConfig& config, const list<Point3Key>& keys) {
 | |
| 		return config[keys.front()].vector()
 | |
| 				- config[keys.back()].vector();
 | |
| 	}
 | |
| 
 | |
| 	/** jacobian at l1 */
 | |
| 	Matrix G1(const VConfig& config, const list<Point3Key>& keys) {
 | |
| 		return eye(3);
 | |
| 	}
 | |
| 
 | |
| 	/** jacobian at l2 */
 | |
| 	Matrix G2(const VConfig& config, const list<Point3Key>& keys) {
 | |
| 		return -1.0 * eye(3);
 | |
| 	}
 | |
| 
 | |
| } // \namespace sqp_stereo
 | |
| 
 | |
| /* ********************************************************************* */
 | |
| boost::shared_ptr<VGraph> stereoExampleGraph() {
 | |
| 	// create initial estimates
 | |
| 	Rot3 faceDownY(Matrix_(3,3,
 | |
| 			1.0, 0.0, 0.0,
 | |
| 			0.0, 0.0, 1.0,
 | |
| 			0.0, 1.0, 0.0));
 | |
| 	Pose3 pose1(faceDownY, Point3()); // origin, left camera
 | |
| 	SimpleCamera camera1(K, pose1);
 | |
| 	Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
 | |
| 	SimpleCamera camera2(K, pose2);
 | |
| 	Point3 landmark1(1.0, 5.0, 0.0); //centered between the cameras, 5 units away
 | |
| 	Point3 landmark2(1.0, 5.0, 0.0);
 | |
| 
 | |
| 	// create graph
 | |
| 	shared_ptr<VGraph> graph(new VGraph);
 | |
| 
 | |
| 	// create equality constraints for poses
 | |
| 	graph->push_back(shared_ptr<Pose3Constraint>(new Pose3Constraint(Pose3Key(1), camera1.pose())));
 | |
| 	graph->push_back(shared_ptr<Pose3Constraint>(new Pose3Constraint(Pose3Key(2), camera2.pose())));
 | |
| 
 | |
| 	// create  factors
 | |
| 	Point2 z1 = camera1.project(landmark1);
 | |
| 	SharedDiagonal vmodel = noiseModel::Unit::Create(3);
 | |
| 	shared_vf vf1(new GenericProjectionFactor<VConfig>(
 | |
| 				z1, vmodel, Pose3Key(1), Point3Key(1), shK));
 | |
| 	graph->push_back(vf1);
 | |
| 	Point2 z2 = camera2.project(landmark2);
 | |
| 	shared_vf vf2(new GenericProjectionFactor<VConfig>(
 | |
| 				z2, vmodel, Pose3Key(2), Point3Key(2), shK));
 | |
| 	graph->push_back(vf2);
 | |
| 
 | |
| 	// create the binary equality constraint between the landmarks
 | |
| 	// NOTE: this is really just a linear constraint that is exactly the same
 | |
| 	// as the previous examples
 | |
| 	visualSLAM::PointKey l1(1), l2(2);
 | |
| 	list<Point3Key> keys; keys += l1, l2;
 | |
| 	LagrangeKey L12(12);
 | |
| 	shared_ptr<VNLC2> c2(
 | |
| 			new VNLC2(boost::bind(sqp_stereo::g, _1, keys),
 | |
| 					 l1, boost::bind(sqp_stereo::G1, _1, keys),
 | |
| 					 l2, boost::bind(sqp_stereo::G2, _1, keys),
 | |
| 					 3, L12));
 | |
| 	graph->push_back(c2);
 | |
| 
 | |
| 	return graph;
 | |
| }
 | |
| 
 | |
| /* ********************************************************************* */
 | |
| boost::shared_ptr<VConfig> stereoExampleTruthConfig() {
 | |
| 	// create initial estimates
 | |
| 	Rot3 faceDownY(Matrix_(3,3,
 | |
| 				1.0, 0.0, 0.0,
 | |
| 				0.0, 0.0, 1.0,
 | |
| 				0.0, 1.0, 0.0));
 | |
| 	Pose3 pose1(faceDownY, Point3()); // origin, left camera
 | |
| 	SimpleCamera camera1(K, pose1);
 | |
| 	Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
 | |
| 	SimpleCamera camera2(K, pose2);
 | |
| 	Point3 landmark1(1.0, 5.0, 0.0); //centered between the cameras, 5 units away
 | |
| 	Point3 landmark2(1.0, 5.0, 0.0);
 | |
| 
 | |
| 	// create config
 | |
| 	boost::shared_ptr<VConfig> truthConfig(new VConfig);
 | |
| 	truthConfig->insert(Pose3Key(1), camera1.pose());
 | |
| 	truthConfig->insert(Pose3Key(2), camera2.pose());
 | |
| 	truthConfig->insert(Point3Key(1), landmark1);
 | |
| 	truthConfig->insert(Point3Key(2), landmark2); // create two landmarks in same place
 | |
| 	//truthConfig->insert(LagrangeKey(12), Vector_(3, 1.0, 1.0, 1.0));
 | |
| 
 | |
| 	return truthConfig;
 | |
| }
 | |
| 
 | |
| /* *********************************************************************
 | |
|  * SQP version of the above stereo example,
 | |
|  * with the initial case as the ground truth
 | |
|  */
 | |
| TEST (SQP, stereo_sqp ) {
 | |
| 	bool verbose = false;
 | |
| 
 | |
| 	// get a graph
 | |
| 	boost::shared_ptr<VGraph> graph = stereoExampleGraph();
 | |
| 	if (verbose) graph->print("Graph after construction");
 | |
| 
 | |
| 	// get the truth config
 | |
| 	boost::shared_ptr<VConfig> truthConfig = stereoExampleTruthConfig();
 | |
| 	truthConfig->insert(LagrangeKey(12), Vector_(3, 1.0, 1.0, 1.0));
 | |
| 
 | |
| 	// create ordering
 | |
| 	shared_ptr<Ordering> ord(new Ordering());
 | |
| 	*ord += "x1", "x2", "l1", "l2", "L12";
 | |
| 	VOptimizer::shared_solver solver(new VOptimizer::solver(ord));
 | |
| 
 | |
| 	// create optimizer
 | |
| 	VOptimizer optimizer(graph, truthConfig, solver);
 | |
| 
 | |
| //	// optimize
 | |
| //	VOptimizer afterOneIteration = optimizer.iterate();
 | |
| //
 | |
| //	// check if correct
 | |
| //	CHECK(assert_equal(*truthConfig,*(afterOneIteration.config())));
 | |
| }
 | |
| 
 | |
| ///* *********************************************************************
 | |
| // * SQP version of the above stereo example,
 | |
| // * with noise in the initial estimate
 | |
| // */
 | |
| //TEST (SQP, stereo_sqp_noisy ) {
 | |
| //	bool verbose = false;
 | |
| //
 | |
| //	// get a graph
 | |
| //	boost::shared_ptr<VGraph> graph = stereoExampleGraph();
 | |
| //
 | |
| //	// create initial data
 | |
| //	Rot3 faceDownY(Matrix_(3,3,
 | |
| //			1.0, 0.0, 0.0,
 | |
| //			0.0, 0.0, 1.0,
 | |
| //			0.0, 1.0, 0.0));
 | |
| //	Pose3 pose1(faceDownY, Point3()); // origin, left camera
 | |
| //	Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
 | |
| //	Point3 landmark1(0.5, 5.0, 0.0); //centered between the cameras, 5 units away
 | |
| //	Point3 landmark2(1.5, 5.0, 0.0);
 | |
| //
 | |
| //	// noisy config
 | |
| //	boost::shared_ptr<VConfig> initConfig(new VConfig);
 | |
| //	initConfig->insert(Pose3Key(1), pose1);
 | |
| //	initConfig->insert(Pose3Key(2), pose2);
 | |
| //	initConfig->insert(Point3Key(1), landmark1);
 | |
| //	initConfig->insert(Point3Key(2), landmark2); // create two landmarks in same place
 | |
| //	initConfig->insert(LagrangeKey(12), Vector_(3, 1.0, 1.0, 1.0));
 | |
| //
 | |
| //	// create ordering
 | |
| //	shared_ptr<Ordering> ord(new Ordering());
 | |
| //	*ord += "x1", "x2", "l1", "l2", "L12";
 | |
| //	VOptimizer::shared_solver solver(new VOptimizer::solver(ord));
 | |
| //
 | |
| //	// create optimizer
 | |
| //	VOptimizer optimizer(graph, initConfig, solver);
 | |
| //
 | |
| //	// optimize
 | |
| //	VOptimizer *pointer = new VOptimizer(optimizer);
 | |
| //	for (int i=0;i<1;i++) {
 | |
| //		VOptimizer* newOptimizer = new VOptimizer(pointer->iterateLM());
 | |
| //		delete pointer;
 | |
| //		pointer = newOptimizer;
 | |
| //	}
 | |
| //	VOptimizer::shared_config actual = pointer->config();
 | |
| //	delete(pointer);
 | |
| //
 | |
| //	// get the truth config
 | |
| //	boost::shared_ptr<VConfig> truthConfig = stereoExampleTruthConfig();
 | |
| //	truthConfig->insert(LagrangeKey(12), Vector_(3, 0.0, 1.0, 1.0));
 | |
| //
 | |
| //	// check if correct
 | |
| //	CHECK(assert_equal(*truthConfig,*actual, 1e-5));
 | |
| //}
 | |
| //
 | |
| //static SharedGaussian sigma(noiseModel::Isotropic::Sigma(1,0.1));
 | |
| //
 | |
| //// typedefs
 | |
| ////typedef simulated2D::Config Config2D;
 | |
| ////typedef boost::shared_ptr<Config2D> shared_config;
 | |
| ////typedef NonlinearFactorGraph<Config2D> NLGraph;
 | |
| ////typedef boost::shared_ptr<NonlinearFactor<Config2D> > shared;
 | |
| //
 | |
| //namespace map_warp_example {
 | |
| //typedef NonlinearConstraint1<
 | |
| //	Config2D, simulated2D::PoseKey, Point2> NLC1;
 | |
| ////typedef NonlinearConstraint2<
 | |
| ////	Config2D, simulated2D::PointKey, Point2, simulated2D::PointKey, Point2> NLC2;
 | |
| //} // \namespace map_warp_example
 | |
| //
 | |
| ///* ********************************************************************* */
 | |
| //// Example that moves two separate maps into the same frame of reference
 | |
| //// Note that this is a linear example, so it should converge in one step
 | |
| ///* ********************************************************************* */
 | |
| //
 | |
| //namespace sqp_LinearMapWarp2 {
 | |
| //// binary constraint between landmarks
 | |
| ///** g(x) = x-y = 0 */
 | |
| //Vector g_func(const Config2D& config, const simulated2D::PointKey& key1, const simulated2D::PointKey& key2) {
 | |
| //	Point2 p = config[key1]-config[key2];
 | |
| //	return Vector_(2, p.x(), p.y());
 | |
| //}
 | |
| //
 | |
| ///** jacobian at l1 */
 | |
| //Matrix jac_g1(const Config2D& config) {
 | |
| //	return eye(2);
 | |
| //}
 | |
| //
 | |
| ///** jacobian at l2 */
 | |
| //Matrix jac_g2(const Config2D& config) {
 | |
| //	return -1*eye(2);
 | |
| //}
 | |
| //} // \namespace sqp_LinearMapWarp2
 | |
| //
 | |
| //namespace sqp_LinearMapWarp1 {
 | |
| //// Unary Constraint on x1
 | |
| ///** g(x) = x -[1;1] = 0 */
 | |
| //Vector g_func(const Config2D& config, const simulated2D::PoseKey& key) {
 | |
| //	Point2 p = config[key]-Point2(1.0, 1.0);
 | |
| //	return Vector_(2, p.x(), p.y());
 | |
| //}
 | |
| //
 | |
| ///** jacobian at x1 */
 | |
| //Matrix jac_g(const Config2D& config) {
 | |
| //	return eye(2);
 | |
| //}
 | |
| //} // \namespace sqp_LinearMapWarp12
 | |
| 
 | |
| //typedef NonlinearOptimizer<NLGraph, Config2D> Optimizer;
 | |
| 
 | |
| /**
 | |
|  * Creates the graph with each robot seeing the landmark, and it is
 | |
|  * known that it is the same landmark
 | |
|  */
 | |
| //boost::shared_ptr<Graph2D> linearMapWarpGraph() {
 | |
| //	using namespace map_warp_example;
 | |
| //	// keys
 | |
| //	simulated2D::PoseKey x1(1), x2(2);
 | |
| //	simulated2D::PointKey l1(1), l2(2);
 | |
| //
 | |
| //	// constant constraint on x1
 | |
| //	LagrangeKey L1(1);
 | |
| //	shared_ptr<NLC1> c1(new NLC1(boost::bind(sqp_LinearMapWarp1::g_func, _1, x1),
 | |
| //							x1, boost::bind(sqp_LinearMapWarp1::jac_g, _1),
 | |
| //							2, L1));
 | |
| //
 | |
| //	// measurement from x1 to l1
 | |
| //	Point2 z1(0.0, 5.0);
 | |
| //	shared f1(new simulated2D::GenericMeasurement<Config2D>(z1, sigma, x1,l1));
 | |
| //
 | |
| //	// measurement from x2 to l2
 | |
| //	Point2 z2(-4.0, 0.0);
 | |
| //	shared f2(new simulated2D::GenericMeasurement<Config2D>(z2, sigma, x2,l2));
 | |
| //
 | |
| //	// equality constraint between l1 and l2
 | |
| //	LagrangeKey L12(12);
 | |
| //	shared_ptr<NLC2> c2 (new NLC2(
 | |
| //			boost::bind(sqp_LinearMapWarp2::g_func, _1, l1, l2),
 | |
| //			l1, boost::bind(sqp_LinearMapWarp2::jac_g1, _1),
 | |
| //			l2, boost::bind(sqp_LinearMapWarp2::jac_g2, _1),
 | |
| //			2, L12));
 | |
| //
 | |
| //	// construct the graph
 | |
| //	boost::shared_ptr<Graph2D> graph(new Graph2D());
 | |
| //	graph->push_back(c1);
 | |
| //	graph->push_back(c2);
 | |
| //	graph->push_back(f1);
 | |
| //	graph->push_back(f2);
 | |
| //
 | |
| //	return graph;
 | |
| //}
 | |
| //
 | |
| ///* ********************************************************************* */
 | |
| //TEST ( SQPOptimizer, map_warp_initLam ) {
 | |
| //	bool verbose = false;
 | |
| //	// get a graph
 | |
| //	boost::shared_ptr<Graph2D> graph = linearMapWarpGraph();
 | |
| //
 | |
| //	// keys
 | |
| //	simulated2D::PoseKey x1(1), x2(2);
 | |
| //	simulated2D::PointKey l1(1), l2(2);
 | |
| //	LagrangeKey L1(1), L12(12);
 | |
| //
 | |
| //	// create an initial estimate
 | |
| //	shared_ptr<Config2D> initialEstimate(new Config2D);
 | |
| //	initialEstimate->insert(x1, Point2(1.0, 1.0));
 | |
| //	initialEstimate->insert(l1, Point2(1.0, 6.0));
 | |
| //	initialEstimate->insert(l2, Point2(-4.0, 0.0)); // starting with a separate reference frame
 | |
| //	initialEstimate->insert(x2, Point2(0.0, 0.0)); // other pose starts at origin
 | |
| //	initialEstimate->insert(L12, Vector_(2, 1.0, 1.0));
 | |
| //	initialEstimate->insert(L1, Vector_(2, 1.0, 1.0));
 | |
| //
 | |
| //	// create an ordering
 | |
| //	shared_ptr<Ordering> ordering(new Ordering());
 | |
| //	*ordering += "x1", "x2", "l1", "l2", "L12", "L1";
 | |
| //
 | |
| //	// create an optimizer
 | |
| //	Optimizer::shared_solver solver(new Optimizer::solver(ordering));
 | |
| //	Optimizer optimizer(graph, initialEstimate, solver);
 | |
| //
 | |
| //	// perform an iteration of optimization
 | |
| //	Optimizer oneIteration = optimizer.iterate(Optimizer::SILENT);
 | |
| //
 | |
| //	// get the config back out and verify
 | |
| //	Config2D actual = *(oneIteration.config());
 | |
| //	Config2D expected;
 | |
| //	expected.insert(x1, Point2(1.0, 1.0));
 | |
| //	expected.insert(l1, Point2(1.0, 6.0));
 | |
| //	expected.insert(l2, Point2(1.0, 6.0));
 | |
| //	expected.insert(x2, Point2(5.0, 6.0));
 | |
| //	expected.insert(L1, Vector_(2, 1.0, 1.0));
 | |
| //	expected.insert(L12, Vector_(2, 6.0, 7.0));
 | |
| //	CHECK(assert_equal(expected, actual));
 | |
| //}
 | |
| 
 | |
| ///* ********************************************************************* */
 | |
| //// This is an obstacle avoidance demo, where there is a trajectory of
 | |
| //// three points, where there is a circular obstacle in the middle.  There
 | |
| //// is a binary inequality constraint connecting the obstacle to the
 | |
| //// states, which enforces a minimum distance.
 | |
| ///* ********************************************************************* */
 | |
| //
 | |
| //typedef NonlinearConstraint2<Config2D, PoseKey, Point2, PointKey, Point2> AvoidConstraint;
 | |
| //typedef shared_ptr<AvoidConstraint> shared_a;
 | |
| //typedef NonlinearEquality<Config2D, simulated2D::PoseKey, Point2> PoseConstraint;
 | |
| //typedef shared_ptr<PoseConstraint> shared_pc;
 | |
| //typedef NonlinearEquality<Config2D, simulated2D::PointKey, Point2> ObstacleConstraint;
 | |
| //typedef shared_ptr<ObstacleConstraint> shared_oc;
 | |
| //
 | |
| //
 | |
| //namespace sqp_avoid1 {
 | |
| //// avoidance radius
 | |
| //double radius = 1.0;
 | |
| //
 | |
| //// binary avoidance constraint
 | |
| ///** g(x) = ||x2-obs||^2 - radius^2 > 0 */
 | |
| //Vector g_func(const Config2D& config, const PoseKey& x, const PointKey& obs) {
 | |
| //	double dist2 = config[x].dist(config[obs]);
 | |
| //	double thresh = radius*radius;
 | |
| //	return Vector_(1, dist2-thresh);
 | |
| //}
 | |
| //
 | |
| ///** jacobian at pose */
 | |
| //Matrix jac_g1(const Config2D& config, const PoseKey& x, const PointKey& obs) {
 | |
| //	Point2 p = config[x]-config[obs];
 | |
| //	return Matrix_(1,2, 2.0*p.x(), 2.0*p.y());
 | |
| //}
 | |
| //
 | |
| ///** jacobian at obstacle */
 | |
| //Matrix jac_g2(const Config2D& config, const PoseKey& x, const PointKey& obs) {
 | |
| //	Point2 p = config[x]-config[obs];
 | |
| //	return Matrix_(1,2, -2.0*p.x(), -2.0*p.y());
 | |
| //}
 | |
| //}
 | |
| //
 | |
| //pair<NLGraph, Config2D> obstacleAvoidGraph() {
 | |
| //	// Keys
 | |
| //	PoseKey x1(1), x2(2), x3(3);
 | |
| //	PointKey l1(1);
 | |
| //	LagrangeKey L20(20);
 | |
| //
 | |
| //	// Constrained Points
 | |
| //	Point2 pt_x1,
 | |
| //		   pt_x3(10.0, 0.0),
 | |
| //		   pt_l1(5.0, -0.5);
 | |
| //
 | |
| //	shared_pc e1(new PoseConstraint(x1, pt_x1));
 | |
| //	shared_pc e2(new PoseConstraint(x3, pt_x3));
 | |
| //	shared_oc e3(new ObstacleConstraint(l1, pt_l1));
 | |
| //
 | |
| //	// measurement from x1 to x2
 | |
| //	Point2 x1x2(5.0, 0.0);
 | |
| //	shared f1(new simulated2D::Odometry(x1x2, sigma, 1,2));
 | |
| //
 | |
| //	// measurement from x2 to x3
 | |
| //	Point2 x2x3(5.0, 0.0);
 | |
| //	shared f2(new simulated2D::Odometry(x2x3, sigma, 2,3));
 | |
| //
 | |
| //	// create a binary inequality constraint that forces the middle point away from
 | |
| //	//  the obstacle
 | |
| //	shared_a c1(new AvoidConstraint(boost::bind(sqp_avoid1::g_func, _1, x2, l1),
 | |
| //							x2, boost::bind(sqp_avoid1::jac_g1, _1, x2, l1),
 | |
| //						    l1,boost::bind(sqp_avoid1::jac_g2, _1, x2, l1),
 | |
| //						    1, L20, false));
 | |
| //
 | |
| //	// construct the graph
 | |
| //	NLGraph graph;
 | |
| //	graph.push_back(e1);
 | |
| //	graph.push_back(e2);
 | |
| //	graph.push_back(e3);
 | |
| //	graph.push_back(c1);
 | |
| //	graph.push_back(f1);
 | |
| //	graph.push_back(f2);
 | |
| //
 | |
| //	// make a config of the fixed values, for convenience
 | |
| //	Config2D config;
 | |
| //	config.insert(x1, pt_x1);
 | |
| //	config.insert(x3, pt_x3);
 | |
| //	config.insert(l1, pt_l1);
 | |
| //
 | |
| //	return make_pair(graph, config);
 | |
| //}
 | |
| //
 | |
| ///* ********************************************************************* */
 | |
| //TEST ( SQPOptimizer, inequality_avoid ) {
 | |
| //	// create the graph
 | |
| //	NLGraph graph; Config2D feasible;
 | |
| //	boost::tie(graph, feasible) = obstacleAvoidGraph();
 | |
| //
 | |
| //	// create the rest of the config
 | |
| //	shared_ptr<Config2D> init(new Config2D(feasible));
 | |
| //	PoseKey x2(2);
 | |
| //	init->insert(x2, Point2(5.0, 100.0));
 | |
| //
 | |
| //	// create an ordering
 | |
| //	Ordering ord;
 | |
| //	ord += "x1", "x2", "x3", "l1";
 | |
| //
 | |
| //	// create an optimizer
 | |
| //	Optimizer optimizer(graph, ord, init);
 | |
| //
 | |
| //	// perform an iteration of optimization
 | |
| //	// NOTE: the constraint will be inactive in the first iteration,
 | |
| //	// so it will violate the constraint after one iteration
 | |
| //	Optimizer afterOneIteration = optimizer.iterate(Optimizer::SILENT);
 | |
| //
 | |
| //	Config2D exp1(feasible);
 | |
| //	exp1.insert(x2, Point2(5.0, 0.0));
 | |
| //	CHECK(assert_equal(exp1, *(afterOneIteration.config())));
 | |
| //
 | |
| //	// the second iteration will activate the constraint and force the
 | |
| //	// config to a viable configuration.
 | |
| //	Optimizer after2ndIteration = afterOneIteration.iterate(Optimizer::SILENT);
 | |
| //
 | |
| //	Config2D exp2(feasible);
 | |
| //	exp2.insert(x2, Point2(5.0, 0.5));
 | |
| //	CHECK(assert_equal(exp2, *(after2ndIteration.config())));
 | |
| //}
 | |
| //
 | |
| ///* ********************************************************************* */
 | |
| //TEST ( SQPOptimizer, inequality_avoid_iterative ) {
 | |
| //	// create the graph
 | |
| //	NLGraph graph; Config2D feasible;
 | |
| //	boost::tie(graph, feasible) = obstacleAvoidGraph();
 | |
| //
 | |
| //	// create the rest of the config
 | |
| //	shared_ptr<Config2D> init(new Config2D(feasible));
 | |
| //	PoseKey x2(2);
 | |
| //	init->insert(x2, Point2(5.0, 100.0));
 | |
| //
 | |
| //	// create an ordering
 | |
| //	Ordering ord;
 | |
| //	ord += "x1", "x2", "x3", "l1";
 | |
| //
 | |
| //	// create an optimizer
 | |
| //	Optimizer optimizer(graph, ord, init);
 | |
| //
 | |
| //	double relThresh = 1e-5; // minimum change in error between iterations
 | |
| //	double absThresh = 1e-5; // minimum error necessary to converge
 | |
| //	double constraintThresh = 1e-9; // minimum constraint error to be feasible
 | |
| //	Optimizer final = optimizer.iterateSolve(relThresh, absThresh, constraintThresh);
 | |
| //
 | |
| //	// verify
 | |
| //	Config2D exp2(feasible);
 | |
| //	exp2.insert(x2, Point2(5.0, 0.5));
 | |
| //	CHECK(assert_equal(exp2, *(final.config())));
 | |
| //}
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
 | |
| /* ************************************************************************* */
 |