315 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			315 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
| // Ceres Solver - A fast non-linear least squares minimizer
 | |
| // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
 | |
| // http://code.google.com/p/ceres-solver/
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted provided that the following conditions are met:
 | |
| //
 | |
| // * Redistributions of source code must retain the above copyright notice,
 | |
| //   this list of conditions and the following disclaimer.
 | |
| // * Redistributions in binary form must reproduce the above copyright notice,
 | |
| //   this list of conditions and the following disclaimer in the documentation
 | |
| //   and/or other materials provided with the distribution.
 | |
| // * Neither the name of Google Inc. nor the names of its contributors may be
 | |
| //   used to endorse or promote products derived from this software without
 | |
| //   specific prior written permission.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 | |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 | |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | |
| // POSSIBILITY OF SUCH DAMAGE.
 | |
| //
 | |
| // Author: keir@google.com (Keir Mierle)
 | |
| //
 | |
| // Computation of the Jacobian matrix for vector-valued functions of multiple
 | |
| // variables, using automatic differentiation based on the implementation of
 | |
| // dual numbers in jet.h. Before reading the rest of this file, it is adivsable
 | |
| // to read jet.h's header comment in detail.
 | |
| //
 | |
| // The helper wrapper AutoDiff::Differentiate() computes the jacobian of
 | |
| // functors with templated operator() taking this form:
 | |
| //
 | |
| //   struct F {
 | |
| //     template<typename T>
 | |
| //     bool operator()(const T *x, const T *y, ..., T *z) {
 | |
| //       // Compute z[] based on x[], y[], ...
 | |
| //       // return true if computation succeeded, false otherwise.
 | |
| //     }
 | |
| //   };
 | |
| //
 | |
| // All inputs and outputs may be vector-valued.
 | |
| //
 | |
| // To understand how jets are used to compute the jacobian, a
 | |
| // picture may help. Consider a vector-valued function, F, returning 3
 | |
| // dimensions and taking a vector-valued parameter of 4 dimensions:
 | |
| //
 | |
| //     y            x
 | |
| //   [ * ]    F   [ * ]
 | |
| //   [ * ]  <---  [ * ]
 | |
| //   [ * ]        [ * ]
 | |
| //                [ * ]
 | |
| //
 | |
| // Similar to the 2-parameter example for f described in jet.h, computing the
 | |
| // jacobian dy/dx is done by substutiting a suitable jet object for x and all
 | |
| // intermediate steps of the computation of F. Since x is has 4 dimensions, use
 | |
| // a Jet<double, 4>.
 | |
| //
 | |
| // Before substituting a jet object for x, the dual components are set
 | |
| // appropriately for each dimension of x:
 | |
| //
 | |
| //          y                       x
 | |
| //   [ * | * * * * ]    f   [ * | 1 0 0 0 ]   x0
 | |
| //   [ * | * * * * ]  <---  [ * | 0 1 0 0 ]   x1
 | |
| //   [ * | * * * * ]        [ * | 0 0 1 0 ]   x2
 | |
| //         ---+---          [ * | 0 0 0 1 ]   x3
 | |
| //            |                   ^ ^ ^ ^
 | |
| //          dy/dx                 | | | +----- infinitesimal for x3
 | |
| //                                | | +------- infinitesimal for x2
 | |
| //                                | +--------- infinitesimal for x1
 | |
| //                                +----------- infinitesimal for x0
 | |
| //
 | |
| // The reason to set the internal 4x4 submatrix to the identity is that we wish
 | |
| // to take the derivative of y separately with respect to each dimension of x.
 | |
| // Each column of the 4x4 identity is therefore for a single component of the
 | |
| // independent variable x.
 | |
| //
 | |
| // Then the jacobian of the mapping, dy/dx, is the 3x4 sub-matrix of the
 | |
| // extended y vector, indicated in the above diagram.
 | |
| //
 | |
| // Functors with multiple parameters
 | |
| // ---------------------------------
 | |
| // In practice, it is often convenient to use a function f of two or more
 | |
| // vector-valued parameters, for example, x[3] and z[6]. Unfortunately, the jet
 | |
| // framework is designed for a single-parameter vector-valued input. The wrapper
 | |
| // in this file addresses this issue adding support for functions with one or
 | |
| // more parameter vectors.
 | |
| //
 | |
| // To support multiple parameters, all the parameter vectors are concatenated
 | |
| // into one and treated as a single parameter vector, except that since the
 | |
| // functor expects different inputs, we need to construct the jets as if they
 | |
| // were part of a single parameter vector. The extended jets are passed
 | |
| // separately for each parameter.
 | |
| //
 | |
| // For example, consider a functor F taking two vector parameters, p[2] and
 | |
| // q[3], and producing an output y[4]:
 | |
| //
 | |
| //   struct F {
 | |
| //     template<typename T>
 | |
| //     bool operator()(const T *p, const T *q, T *z) {
 | |
| //       // ...
 | |
| //     }
 | |
| //   };
 | |
| //
 | |
| // In this case, the necessary jet type is Jet<double, 5>. Here is a
 | |
| // visualization of the jet objects in this case:
 | |
| //
 | |
| //          Dual components for p ----+
 | |
| //                                    |
 | |
| //                                   -+-
 | |
| //           y                 [ * | 1 0 | 0 0 0 ]    --- p[0]
 | |
| //                             [ * | 0 1 | 0 0 0 ]    --- p[1]
 | |
| //   [ * | . . | + + + ]         |
 | |
| //   [ * | . . | + + + ]         v
 | |
| //   [ * | . . | + + + ]  <--- F(p, q)
 | |
| //   [ * | . . | + + + ]            ^
 | |
| //         ^^^   ^^^^^              |
 | |
| //        dy/dp  dy/dq            [ * | 0 0 | 1 0 0 ] --- q[0]
 | |
| //                                [ * | 0 0 | 0 1 0 ] --- q[1]
 | |
| //                                [ * | 0 0 | 0 0 1 ] --- q[2]
 | |
| //                                            --+--
 | |
| //                                              |
 | |
| //          Dual components for q --------------+
 | |
| //
 | |
| // where the 4x2 submatrix (marked with ".") and 4x3 submatrix (marked with "+"
 | |
| // of y in the above diagram are the derivatives of y with respect to p and q
 | |
| // respectively. This is how autodiff works for functors taking multiple vector
 | |
| // valued arguments (up to 6).
 | |
| //
 | |
| // Jacobian NULL pointers
 | |
| // ----------------------
 | |
| // In general, the functions below will accept NULL pointers for all or some of
 | |
| // the Jacobian parameters, meaning that those Jacobians will not be computed.
 | |
| 
 | |
| #ifndef CERES_PUBLIC_INTERNAL_AUTODIFF_H_
 | |
| #define CERES_PUBLIC_INTERNAL_AUTODIFF_H_
 | |
| 
 | |
| #include <stddef.h>
 | |
| 
 | |
| #include <gtsam_unstable/nonlinear/ceres_jet.h>
 | |
| #include <gtsam_unstable/nonlinear/ceres_eigen.h>
 | |
| #include <gtsam_unstable/nonlinear/ceres_fixed_array.h>
 | |
| #include <gtsam_unstable/nonlinear/ceres_variadic_evaluate.h>
 | |
| #define DCHECK assert
 | |
| #define DCHECK_GT(a,b) assert((a)>(b))
 | |
| 
 | |
| namespace ceres {
 | |
| namespace internal {
 | |
| 
 | |
| // Extends src by a 1st order pertubation for every dimension and puts it in
 | |
| // dst. The size of src is N. Since this is also used for perturbations in
 | |
| // blocked arrays, offset is used to shift which part of the jet the
 | |
| // perturbation occurs. This is used to set up the extended x augmented by an
 | |
| // identity matrix. The JetT type should be a Jet type, and T should be a
 | |
| // numeric type (e.g. double). For example,
 | |
| //
 | |
| //             0   1 2   3 4 5   6 7 8
 | |
| //   dst[0]  [ * | . . | 1 0 0 | . . . ]
 | |
| //   dst[1]  [ * | . . | 0 1 0 | . . . ]
 | |
| //   dst[2]  [ * | . . | 0 0 1 | . . . ]
 | |
| //
 | |
| // is what would get put in dst if N was 3, offset was 3, and the jet type JetT
 | |
| // was 8-dimensional.
 | |
| template <typename JetT, typename T, int N>
 | |
| inline void Make1stOrderPerturbation(int offset, const T* src, JetT* dst) {
 | |
|   DCHECK(src);
 | |
|   DCHECK(dst);
 | |
|   for (int j = 0; j < N; ++j) {
 | |
|     dst[j].a = src[j];
 | |
|     dst[j].v.setZero();
 | |
|     dst[j].v[offset + j] = T(1.0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Takes the 0th order part of src, assumed to be a Jet type, and puts it in
 | |
| // dst. This is used to pick out the "vector" part of the extended y.
 | |
| template <typename JetT, typename T>
 | |
| inline void Take0thOrderPart(int M, const JetT *src, T dst) {
 | |
|   DCHECK(src);
 | |
|   for (int i = 0; i < M; ++i) {
 | |
|     dst[i] = src[i].a;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Takes N 1st order parts, starting at index N0, and puts them in the M x N
 | |
| // matrix 'dst'. This is used to pick out the "matrix" parts of the extended y.
 | |
| template <typename JetT, typename T, int N0, int N>
 | |
| inline void Take1stOrderPart(const int M, const JetT *src, T *dst) {
 | |
|   DCHECK(src);
 | |
|   DCHECK(dst);
 | |
|   for (int i = 0; i < M; ++i) {
 | |
|     Eigen::Map<Eigen::Matrix<T, N, 1> >(dst + N * i, N) =
 | |
|         src[i].v.template segment<N>(N0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // This is in a struct because default template parameters on a
 | |
| // function are not supported in C++03 (though it is available in
 | |
| // C++0x). N0 through N5 are the dimension of the input arguments to
 | |
| // the user supplied functor.
 | |
| template <typename Functor, typename T,
 | |
|           int N0 = 0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0,
 | |
|           int N5 = 0, int N6 = 0, int N7 = 0, int N8 = 0, int N9 = 0>
 | |
| struct AutoDiff {
 | |
|   static bool Differentiate(const Functor& functor,
 | |
|                             T const *const *parameters,
 | |
|                             int num_outputs,
 | |
|                             T *function_value,
 | |
|                             T **jacobians) {
 | |
|     // This block breaks the 80 column rule to keep it somewhat readable.
 | |
|     DCHECK_GT(num_outputs, 0);
 | |
|     DCHECK((!N1 && !N2 && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) ||
 | |
|           ((N1 > 0) && !N2 && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) ||
 | |
|           ((N1 > 0) && (N2 > 0) && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) ||
 | |
|           ((N1 > 0) && (N2 > 0) && (N3 > 0) && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) ||
 | |
|           ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && !N5 && !N6 && !N7 && !N8 && !N9) ||
 | |
|           ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && !N6 && !N7 && !N8 && !N9) ||
 | |
|           ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && !N7 && !N8 && !N9) ||
 | |
|           ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && !N8 && !N9) ||
 | |
|           ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && (N8 > 0) && !N9) ||
 | |
|           ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && (N8 > 0) && (N9 > 0)));
 | |
| 
 | |
|     typedef Jet<T, N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9> JetT;
 | |
|     FixedArray<JetT, (256 * 7) / sizeof(JetT)> x(
 | |
|         N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9 + num_outputs);
 | |
| 
 | |
|     // These are the positions of the respective jets in the fixed array x.
 | |
|     const int jet0  = 0;
 | |
|     const int jet1  = N0;
 | |
|     const int jet2  = N0 + N1;
 | |
|     const int jet3  = N0 + N1 + N2;
 | |
|     const int jet4  = N0 + N1 + N2 + N3;
 | |
|     const int jet5  = N0 + N1 + N2 + N3 + N4;
 | |
|     const int jet6  = N0 + N1 + N2 + N3 + N4 + N5;
 | |
|     const int jet7  = N0 + N1 + N2 + N3 + N4 + N5 + N6;
 | |
|     const int jet8  = N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7;
 | |
|     const int jet9  = N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8;
 | |
| 
 | |
|     const JetT *unpacked_parameters[10] = {
 | |
|         x.get() + jet0,
 | |
|         x.get() + jet1,
 | |
|         x.get() + jet2,
 | |
|         x.get() + jet3,
 | |
|         x.get() + jet4,
 | |
|         x.get() + jet5,
 | |
|         x.get() + jet6,
 | |
|         x.get() + jet7,
 | |
|         x.get() + jet8,
 | |
|         x.get() + jet9,
 | |
|     };
 | |
| 
 | |
|     JetT* output = x.get() + N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9;
 | |
| 
 | |
| #define CERES_MAKE_1ST_ORDER_PERTURBATION(i)                            \
 | |
|     if (N ## i) {                                                       \
 | |
|       internal::Make1stOrderPerturbation<JetT, T, N ## i>(              \
 | |
|           jet ## i,                                                     \
 | |
|           parameters[i],                                                \
 | |
|           x.get() + jet ## i);                                          \
 | |
|     }
 | |
|     CERES_MAKE_1ST_ORDER_PERTURBATION(0);
 | |
|     CERES_MAKE_1ST_ORDER_PERTURBATION(1);
 | |
|     CERES_MAKE_1ST_ORDER_PERTURBATION(2);
 | |
|     CERES_MAKE_1ST_ORDER_PERTURBATION(3);
 | |
|     CERES_MAKE_1ST_ORDER_PERTURBATION(4);
 | |
|     CERES_MAKE_1ST_ORDER_PERTURBATION(5);
 | |
|     CERES_MAKE_1ST_ORDER_PERTURBATION(6);
 | |
|     CERES_MAKE_1ST_ORDER_PERTURBATION(7);
 | |
|     CERES_MAKE_1ST_ORDER_PERTURBATION(8);
 | |
|     CERES_MAKE_1ST_ORDER_PERTURBATION(9);
 | |
| #undef CERES_MAKE_1ST_ORDER_PERTURBATION
 | |
| 
 | |
|     if (!VariadicEvaluate<Functor, JetT,
 | |
|                           N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>::Call(
 | |
|         functor, unpacked_parameters, output)) {
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     internal::Take0thOrderPart(num_outputs, output, function_value);
 | |
| 
 | |
| #define CERES_TAKE_1ST_ORDER_PERTURBATION(i) \
 | |
|     if (N ## i) { \
 | |
|       if (jacobians[i]) { \
 | |
|         internal::Take1stOrderPart<JetT, T, \
 | |
|                                    jet ## i, \
 | |
|                                    N ## i>(num_outputs, \
 | |
|                                            output, \
 | |
|                                            jacobians[i]); \
 | |
|       } \
 | |
|     }
 | |
|     CERES_TAKE_1ST_ORDER_PERTURBATION(0);
 | |
|     CERES_TAKE_1ST_ORDER_PERTURBATION(1);
 | |
|     CERES_TAKE_1ST_ORDER_PERTURBATION(2);
 | |
|     CERES_TAKE_1ST_ORDER_PERTURBATION(3);
 | |
|     CERES_TAKE_1ST_ORDER_PERTURBATION(4);
 | |
|     CERES_TAKE_1ST_ORDER_PERTURBATION(5);
 | |
|     CERES_TAKE_1ST_ORDER_PERTURBATION(6);
 | |
|     CERES_TAKE_1ST_ORDER_PERTURBATION(7);
 | |
|     CERES_TAKE_1ST_ORDER_PERTURBATION(8);
 | |
|     CERES_TAKE_1ST_ORDER_PERTURBATION(9);
 | |
| #undef CERES_TAKE_1ST_ORDER_PERTURBATION
 | |
|     return true;
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace internal
 | |
| }  // namespace ceres
 | |
| 
 | |
| #endif  // CERES_PUBLIC_INTERNAL_AUTODIFF_H_
 |