205 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			205 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			C++
		
	
	
| /**
 | |
|  * @file     LPSolver.cpp
 | |
|  * @brief    
 | |
|  * @author   Duy Nguyen Ta
 | |
|  * @author   Ivan Dario Jimenez
 | |
|  * @date     1/26/16
 | |
|  */
 | |
| 
 | |
| #include <gtsam_unstable/linear/LPSolver.h>
 | |
| #include <gtsam_unstable/linear/InfeasibleInitialValues.h>
 | |
| #include <gtsam/linear/GaussianFactorGraph.h>
 | |
| #include <gtsam_unstable/linear/LPInitSolver.h>
 | |
| 
 | |
| namespace gtsam {
 | |
| //******************************************************************************
 | |
| LPSolver::LPSolver(const LP &lp) :
 | |
|     lp_(lp) {
 | |
|   // Variable index
 | |
|   equalityVariableIndex_ = VariableIndex(lp_.equalities);
 | |
|   inequalityVariableIndex_ = VariableIndex(lp_.inequalities);
 | |
|   constrainedKeys_ = lp_.equalities.keys();
 | |
|   constrainedKeys_.merge(lp_.inequalities.keys());
 | |
| }
 | |
| 
 | |
| //******************************************************************************
 | |
| GaussianFactorGraph LPSolver::buildCostFunction(const VectorValues &xk) const {
 | |
|   GaussianFactorGraph graph;
 | |
|   for (LinearCost::const_iterator it = lp_.cost.begin(); it != lp_.cost.end();
 | |
|        ++it) {
 | |
|     size_t dim = lp_.cost.getDim(it);
 | |
|     Vector b = xk.at(*it) - lp_.cost.getA(it).transpose();  // b = xk-g
 | |
|     graph.push_back(JacobianFactor(*it, Matrix::Identity(dim, dim), b));
 | |
|   }
 | |
| 
 | |
|   KeySet allKeys = lp_.inequalities.keys();
 | |
|   allKeys.merge(lp_.equalities.keys());
 | |
|   allKeys.merge(KeySet(lp_.cost.keys()));
 | |
|   // Add corresponding factors for all variables that are not explicitly in the
 | |
|   // cost function. Gradients of the cost function wrt to these variables are 
 | |
|   // zero (g=0), so b=xk
 | |
|   if (lp_.cost.keys().size() != allKeys.size()) {
 | |
|     KeySet difference;
 | |
|     std::set_difference(allKeys.begin(), allKeys.end(), lp_.cost.begin(),
 | |
|         lp_.cost.end(), std::inserter(difference, difference.end()));
 | |
|     for (Key k : difference) {
 | |
|       size_t dim = lp_.constrainedKeyDimMap().at(k);
 | |
|       graph.push_back(JacobianFactor(k, Matrix::Identity(dim, dim), xk.at(k)));
 | |
|     }
 | |
|   }
 | |
|   return graph;
 | |
| }
 | |
| 
 | |
| //******************************************************************************
 | |
| GaussianFactorGraph LPSolver::buildWorkingGraph(
 | |
|     const InequalityFactorGraph &workingSet, const VectorValues &xk) const {
 | |
|   GaussianFactorGraph workingGraph;
 | |
|   // || X - Xk + g ||^2
 | |
|   workingGraph.push_back(buildCostFunction(xk));
 | |
|   workingGraph.push_back(lp_.equalities);
 | |
|   for (const LinearInequality::shared_ptr &factor : workingSet) {
 | |
|     if (factor->active()) workingGraph.push_back(factor);
 | |
|   }
 | |
|   return workingGraph;
 | |
| }
 | |
| 
 | |
| //******************************************************************************
 | |
| LPState LPSolver::iterate(const LPState &state) const {
 | |
|   // Solve with the current working set
 | |
|   // LP: project the objective neg. gradient to the constraint's null space
 | |
|   // to find the direction to move
 | |
|   GaussianFactorGraph workingGraph =
 | |
|       buildWorkingGraph(state.workingSet, state.values);
 | |
|   VectorValues newValues = workingGraph.optimize();
 | |
| 
 | |
|   // If we CAN'T move further
 | |
|   // LP: projection on the constraints' nullspace is zero: we are at a vertex
 | |
|   if (newValues.equals(state.values, 1e-7)) {
 | |
|     // Find and remove the bad inequality constraint by computing its lambda
 | |
|     // Compute lambda from the dual graph
 | |
|     // LP: project the objective's gradient onto each constraint gradient to
 | |
|     // obtain the dual scaling factors
 | |
|     //  is it true??
 | |
|     GaussianFactorGraph::shared_ptr dualGraph = buildDualGraph(state.workingSet,
 | |
|         newValues);
 | |
|     VectorValues duals = dualGraph->optimize();
 | |
|     // LP: see which inequality constraint has wrong pulling direction, i.e., dual < 0
 | |
|     int leavingFactor = identifyLeavingConstraint(state.workingSet, duals);
 | |
|     // If all inequality constraints are satisfied: We have the solution!!
 | |
|     if (leavingFactor < 0) {
 | |
|       // TODO If we still have infeasible equality constraints: the problem is
 | |
|       // over-constrained. No solution!
 | |
|       // ...
 | |
|       return LPState(newValues, duals, state.workingSet, true,
 | |
|           state.iterations + 1);
 | |
|     } else {
 | |
|       // Inactivate the leaving constraint
 | |
|       // LP: remove the bad ineq constraint out of the working set
 | |
|       InequalityFactorGraph newWorkingSet = state.workingSet;
 | |
|       newWorkingSet.at(leavingFactor)->inactivate();
 | |
|       return LPState(newValues, duals, newWorkingSet, false,
 | |
|           state.iterations + 1);
 | |
|     }
 | |
|   } else {
 | |
|     // If we CAN make some progress, i.e. p_k != 0
 | |
|     // Adapt stepsize if some inactive constraints complain about this move
 | |
|     // LP: projection on nullspace is NOT zero:
 | |
|     //    find and put a blocking inactive constraint to the working set,
 | |
|     //    otherwise the problem is unbounded!!!
 | |
|     double alpha;
 | |
|     int factorIx;
 | |
|     VectorValues p = newValues - state.values;
 | |
| //    GTSAM_PRINT(p);
 | |
|     boost::tie(alpha, factorIx) = // using 16.41
 | |
|         computeStepSize(state.workingSet, state.values, p);
 | |
|     // also add to the working set the one that complains the most
 | |
|     InequalityFactorGraph newWorkingSet = state.workingSet;
 | |
|     if (factorIx >= 0)
 | |
|       newWorkingSet.at(factorIx)->activate();
 | |
|     // step!
 | |
|     newValues = state.values + alpha * p;
 | |
|     return LPState(newValues, state.duals, newWorkingSet, false,
 | |
|         state.iterations + 1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| //******************************************************************************
 | |
| boost::shared_ptr<JacobianFactor> LPSolver::createDualFactor(
 | |
|     Key key, const InequalityFactorGraph &workingSet,
 | |
|     const VectorValues &delta) const {
 | |
|   // Transpose the A matrix of constrained factors to have the jacobian of the
 | |
|   // dual key
 | |
|   TermsContainer Aterms = collectDualJacobians<LinearEquality>(
 | |
|       key, lp_.equalities, equalityVariableIndex_);
 | |
|   TermsContainer AtermsInequalities = collectDualJacobians<LinearInequality>(
 | |
|       key, workingSet, inequalityVariableIndex_);
 | |
|   Aterms.insert(Aterms.end(), AtermsInequalities.begin(),
 | |
|                 AtermsInequalities.end());
 | |
| 
 | |
|   // Collect the gradients of unconstrained cost factors to the b vector
 | |
|   if (Aterms.size() > 0) {
 | |
|     Vector b = lp_.costGradient(key, delta);
 | |
|     // to compute the least-square approximation of dual variables
 | |
|     return boost::make_shared<JacobianFactor>(Aterms, b);
 | |
|   } else {
 | |
|     return boost::make_shared<JacobianFactor>();
 | |
|   }
 | |
| }
 | |
| 
 | |
| //******************************************************************************
 | |
| InequalityFactorGraph LPSolver::identifyActiveConstraints(
 | |
|     const InequalityFactorGraph &inequalities,
 | |
|     const VectorValues &initialValues, const VectorValues &duals) const {
 | |
|   InequalityFactorGraph workingSet;
 | |
|   for (const LinearInequality::shared_ptr &factor : inequalities) {
 | |
|     LinearInequality::shared_ptr workingFactor(new LinearInequality(*factor));
 | |
|     double error = workingFactor->error(initialValues);
 | |
|     // TODO: find a feasible initial point for LPSolver.
 | |
|     // For now, we just throw an exception
 | |
|     if (error > 0)
 | |
|       throw InfeasibleInitialValues();
 | |
| 
 | |
|     if (fabs(error) < 1e-7) {
 | |
|       workingFactor->activate();
 | |
|     } else {
 | |
|       workingFactor->inactivate();
 | |
|     }
 | |
|     workingSet.push_back(workingFactor);
 | |
|   }
 | |
|   return workingSet;
 | |
| }
 | |
| 
 | |
| //******************************************************************************
 | |
| std::pair<VectorValues, VectorValues> LPSolver::optimize(
 | |
|     const VectorValues &initialValues, const VectorValues &duals) const {
 | |
|   {
 | |
|     // Initialize workingSet from the feasible initialValues
 | |
|     InequalityFactorGraph workingSet = identifyActiveConstraints(
 | |
|         lp_.inequalities, initialValues, duals);
 | |
|     LPState state(initialValues, duals, workingSet, false, 0);
 | |
| 
 | |
|     /// main loop of the solver
 | |
|     while (!state.converged) {
 | |
|       state = iterate(state);
 | |
|     }
 | |
|     return make_pair(state.values, state.duals);
 | |
|   }
 | |
| }
 | |
| 
 | |
| //******************************************************************************
 | |
| boost::tuples::tuple<double, int> LPSolver::computeStepSize(
 | |
|     const InequalityFactorGraph &workingSet, const VectorValues &xk,
 | |
|     const VectorValues &p) const {
 | |
|   return ActiveSetSolver::computeStepSize(workingSet, xk, p,
 | |
|       std::numeric_limits<double>::infinity());
 | |
| }
 | |
| 
 | |
| //******************************************************************************
 | |
| pair<VectorValues, VectorValues> LPSolver::optimize() const {
 | |
|   LPInitSolver initSolver(lp_);
 | |
|   VectorValues initValues = initSolver.solve();
 | |
|   return optimize(initValues);
 | |
| }
 | |
| }
 | |
| 
 |