418 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			418 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file SmartProjectionFactorTesting.cpp
 | |
|  * @brief Example usage of SmartProjectionFactor using real datasets
 | |
|  * @date August, 2013
 | |
|  * @author Luca Carlone
 | |
|  */
 | |
| 
 | |
| // Use a map to store landmark/smart factor pairs
 | |
| #include <gtsam/base/FastMap.h>
 | |
| 
 | |
| // Both relative poses and recovered trajectory poses will be stored as Pose3 objects
 | |
| #include <gtsam/geometry/Pose3.h>
 | |
| #include <gtsam/geometry/PinholeCamera.h>
 | |
| #include <gtsam/geometry/Cal3Bundler.h>
 | |
| 
 | |
| // Each variable in the system (poses and landmarks) must be identified with a unique key.
 | |
| // We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
 | |
| // Here we will use Symbols
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| 
 | |
| // We want to use iSAM2 to solve the range-SLAM problem incrementally
 | |
| #include <gtsam/nonlinear/ISAM2.h>
 | |
| 
 | |
| // iSAM2 requires as input a set set of new factors to be added stored in a factor graph,
 | |
| // and initial guesses for any new variables used in the added factors
 | |
| #include <gtsam/nonlinear/Values.h>
 | |
| 
 | |
| // We will use a non-linear solver to batch-initialize from the first 150 frames
 | |
| #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | |
| #include <gtsam/nonlinear/GaussNewtonOptimizer.h>
 | |
| 
 | |
| // In GTSAM, measurement functions are represented as 'factors'. Several common factors
 | |
| // have been provided with the library for solving robotics SLAM problems.
 | |
| #include <gtsam/slam/PriorFactor.h>
 | |
| #include <gtsam_unstable/slam/SmartProjectionFactorsCreator.h>
 | |
| #include <gtsam_unstable/slam/GenericProjectionFactorsCreator.h>
 | |
| 
 | |
| // Standard headers, added last, so we know headers above work on their own
 | |
| #include <boost/foreach.hpp>
 | |
| #include <boost/assign.hpp>
 | |
| #include <boost/assign/std/vector.hpp>
 | |
| #include <fstream>
 | |
| #include <iostream>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| using namespace boost::assign;
 | |
| namespace NM = gtsam::noiseModel;
 | |
| 
 | |
| using symbol_shorthand::X;
 | |
| using symbol_shorthand::L;
 | |
| 
 | |
| typedef PriorFactor<Pose3> Pose3Prior;
 | |
| //typedef SmartProjectionFactorsCreator<Pose3, Point3, Cal3Bundler> SmartFactorsCreator;
 | |
| //typedef GenericProjectionFactorsCreator<Pose3, Point3, Cal3Bundler> ProjectionFactorsCreator;
 | |
| typedef SmartProjectionFactorsCreator<Pose3, Point3, Cal3_S2> SmartFactorsCreator;
 | |
| typedef GenericProjectionFactorsCreator<Pose3, Point3, Cal3_S2> ProjectionFactorsCreator;
 | |
| typedef FastMap<Key, int> OrderingMap;
 | |
| 
 | |
| bool debug = false;
 | |
| 
 | |
| // Write key values to file
 | |
| void writeValues(string directory_, const Values& values){
 | |
|   string filename = directory_ + "out_camera_poses.txt";
 | |
|   ofstream fout;
 | |
|   fout.open(filename.c_str());
 | |
|   fout.precision(20);
 | |
| 
 | |
|   // write out camera poses
 | |
|   BOOST_FOREACH(Values::ConstFiltered<Pose3>::value_type key_value, values.filter<Pose3>()) {
 | |
|     fout << Symbol(key_value.key).index();
 | |
|     const gtsam::Matrix& matrix= key_value.value.matrix();
 | |
|     for (size_t row=0; row < 4; ++row) {
 | |
|       for (size_t col=0; col < 4; ++col) {
 | |
|         fout << " " << matrix(row, col);
 | |
|       }
 | |
|     }
 | |
|     fout << endl;
 | |
|   }
 | |
|   fout.close();
 | |
| 
 | |
|   if(values.filter<Point3>().size() > 0) {
 | |
|     // write landmarks
 | |
|     filename = directory_ + "landmarks.txt";
 | |
|     fout.open(filename.c_str());
 | |
| 
 | |
|     BOOST_FOREACH(Values::ConstFiltered<Point3>::value_type key_value, values.filter<Point3>()) {
 | |
|       fout << Symbol(key_value.key).index();
 | |
|       fout << " " << key_value.value.x();
 | |
|       fout << " " << key_value.value.y();
 | |
|       fout << " " << key_value.value.z();
 | |
|       fout << endl;
 | |
|     }
 | |
|     fout.close();
 | |
| 
 | |
|   }
 | |
| }
 | |
| 
 | |
| void optimizeGraphLM(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr graphValues, Values &result, boost::shared_ptr<Ordering> &ordering) {
 | |
|   // Optimization parameters
 | |
|   LevenbergMarquardtParams params;
 | |
|   params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
 | |
|   params.verbosity = NonlinearOptimizerParams::ERROR;
 | |
|   params.lambdaInitial = 1;
 | |
|   params.lambdaFactor = 10;
 | |
|   // Profile a single iteration
 | |
| //  params.maxIterations = 1;
 | |
|   params.maxIterations = 100;
 | |
|   std::cout << " LM max iterations: " << params.maxIterations << std::endl;
 | |
|   // // params.relativeErrorTol = 1e-5;
 | |
|   params.absoluteErrorTol = 1.0;
 | |
|   params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
 | |
|   params.verbosity = NonlinearOptimizerParams::ERROR;
 | |
|   params.linearSolverType = SuccessiveLinearizationParams::MULTIFRONTAL_CHOLESKY;
 | |
| 
 | |
|   cout << "Graph size: " << graph.size() << endl;
 | |
|   cout << "Number of variables: " << graphValues->size() << endl;
 | |
|   std::cout << " OPTIMIZATION " << std::endl;
 | |
| 
 | |
|   if (debug) {
 | |
|     std::cout << "\n\n=================================================\n\n";
 | |
|     graph.print("thegraph");
 | |
|   }
 | |
|   std::cout << "\n\n=================================================\n\n";
 | |
| 
 | |
|   if (ordering && ordering->size() > 0) {
 | |
|     if (debug) {
 | |
|       std::cout << "Have an ordering\n" << std::endl;
 | |
|       BOOST_FOREACH(const Key& key, *ordering) {
 | |
|         std::cout << key << " ";
 | |
|       }
 | |
|       std::cout << std::endl;
 | |
|     }
 | |
| 
 | |
|     params.ordering = *ordering;
 | |
| 
 | |
|     //for (int i = 0; i < 3; i++) {
 | |
|       LevenbergMarquardtOptimizer optimizer(graph, *graphValues, params);
 | |
|       gttic_(GenericProjectionFactorExample_kitti);
 | |
|       result = optimizer.optimize();
 | |
|       gttoc_(GenericProjectionFactorExample_kitti);
 | |
|       tictoc_finishedIteration_();
 | |
|     //}
 | |
|   } else {
 | |
|     std::cout << "Using COLAMD ordering\n" << std::endl;
 | |
|     //boost::shared_ptr<Ordering> ordering2(new Ordering()); ordering = ordering2;
 | |
| 
 | |
|     //for (int i = 0; i < 3; i++) {
 | |
|       LevenbergMarquardtOptimizer optimizer(graph, *graphValues, params);
 | |
|       params.ordering = Ordering::COLAMD(graph);
 | |
|       gttic_(SmartProjectionFactorExample_kitti);
 | |
|       result = optimizer.optimize();
 | |
|       gttoc_(SmartProjectionFactorExample_kitti);
 | |
|       tictoc_finishedIteration_();
 | |
| 
 | |
|       std::cout << "Total number of LM iterations: " << optimizer.state().iterations << std::endl;
 | |
|     //}
 | |
| 
 | |
|     //*ordering = params.ordering;
 | |
|     if (params.ordering) {
 | |
|         std::cout << "Graph size: " << graph.size() << " ORdering: " << params.ordering->size() << std::endl;
 | |
|         ordering = boost::make_shared<Ordering>(*(new Ordering()));
 | |
|         *ordering = *params.ordering;
 | |
|     } else {
 | |
|         std::cout << "WARNING: NULL ordering!" << std::endl;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void optimizeGraphGN(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr graphValues, Values &result) {
 | |
|   GaussNewtonParams params;
 | |
|   //params.maxIterations = 1;
 | |
|   params.verbosity = NonlinearOptimizerParams::DELTA;
 | |
| 
 | |
|   GaussNewtonOptimizer optimizer(graph, *graphValues, params);
 | |
|   gttic_(SmartProjectionFactorExample_kitti);
 | |
|   result = optimizer.optimize();
 | |
|   gttoc_(SmartProjectionFactorExample_kitti);
 | |
|   tictoc_finishedIteration_();
 | |
| 
 | |
| }
 | |
| 
 | |
| void optimizeGraphISAM2(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr graphValues, Values &result) {
 | |
|   ISAM2 isam;
 | |
|   gttic_(SmartProjectionFactorExample_kitti);
 | |
|   isam.update(graph, *graphValues);
 | |
|   result = isam.calculateEstimate();
 | |
|   gttoc_(SmartProjectionFactorExample_kitti);
 | |
|   tictoc_finishedIteration_();
 | |
| }
 | |
| 
 | |
| // main
 | |
| int main(int argc, char** argv) {
 | |
| 
 | |
|   // Set to true to use SmartProjectionFactor. Otherwise GenericProjectionFactor will be used
 | |
|   bool useSmartProjectionFactor = true;
 | |
|   bool doTriangulation = true; // we read points initial guess from file or we triangulate
 | |
| 
 | |
|   bool useLM = true; 
 | |
|   bool addNoise = false;
 | |
| 
 | |
|   // Smart factors settings
 | |
|   double linThreshold = -1.0; // negative is disabled
 | |
|   double rankTolerance = 1.0;
 | |
| 
 | |
|   // bool incrementalFlag = false;
 | |
|   // int optSkip = 200; // we optimize the graph every optSkip poses
 | |
| 
 | |
|   std::cout << "PARAM SmartFactor: " << useSmartProjectionFactor << std::endl;
 | |
|   std::cout << "PARAM LM: " << useLM << std::endl;
 | |
|   std::cout << "PARAM linThreshold (negative is disabled): " << linThreshold << std::endl;
 | |
|   if(addNoise)
 | |
|     std::cout << "PARAM Noise: " << addNoise << std::endl;
 | |
| 
 | |
|   // Get home directory and dataset
 | |
|   string HOME = getenv("HOME");
 | |
|   string datasetFile = HOME + "/data/SfM/BAL/Ladybug/problem-1031-110968-pre.txt";
 | |
|   //  string datasetFile = HOME + "/data/SfM/BAL/Ladybug/problem-1723-156502-pre.txt";
 | |
|   //  string datasetFile = HOME + "/data/SfM/BAL/Final/problem-961-187103-pre.txt";
 | |
|   //  string datasetFile = HOME + "/data/SfM/BAL/Final/problem-1936-649673-pre.txt";
 | |
| 
 | |
|   //  string datasetFile = HOME + "/data/SfM/BAL/Final/problem-3068-310854-pre.txt";
 | |
|   //  string datasetFile = HOME + "/data/SfM/BAL/Final/problem-4585-1324582-pre.txt";
 | |
|   //  13682    4456117     28987644   problem-13682-4456117-pre.txt.bz2
 | |
| 
 | |
|   static SharedNoiseModel pixel_sigma(noiseModel::Unit::Create(2));
 | |
|   NonlinearFactorGraph graphSmart, graphProjection;
 | |
| 
 | |
|   gtsam::Values::shared_ptr graphSmartValues(new gtsam::Values());
 | |
|   gtsam::Values::shared_ptr graphProjectionValues(new gtsam::Values());
 | |
|   gtsam::Values::shared_ptr loadedValues(new gtsam::Values()); // values we read from file
 | |
|   Values result;
 | |
| 
 | |
|   // Read in kitti dataset
 | |
|   ifstream fin;
 | |
|   fin.open((datasetFile).c_str());
 | |
|   if(!fin) {
 | |
|     cerr << "Could not open dataset" << endl;
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   // read all measurements
 | |
|   cout << "Reading dataset... " << endl;
 | |
|   unsigned int numLandmarks = 0, numPoses = 0;
 | |
|   Key r, l;
 | |
|   double u, v;
 | |
|   double x, y, z, rotx, roty, rotz, f, k1, k2;
 | |
|   std::vector<Key> landmarkKeys, cameraPoseKeys;
 | |
| 
 | |
|   bool optimized = false;
 | |
|   boost::shared_ptr<Ordering> ordering(new Ordering());
 | |
| 
 | |
| //   std::vector< boost::shared_ptr<Cal3Bundler> > K_cameras; // TODO: uncomment
 | |
| 
 | |
| //  boost::shared_ptr<Cal3Bundler> K(new Cal3Bundler()); // TODO: uncomment
 | |
|   Cal3_S2::shared_ptr K(new Cal3_S2());
 | |
| 
 | |
|   SmartFactorsCreator smartCreator(pixel_sigma, K, rankTolerance, linThreshold); // this initial K is not used
 | |
|   ProjectionFactorsCreator projectionCreator(pixel_sigma, K);  // this initial K is not used
 | |
| 
 | |
|   // main loop: reads measurements and adds factors (also performs optimization if desired)
 | |
|   // r >> pose id
 | |
|   // l >> landmark id
 | |
|   // (u >> u) >> measurement
 | |
|   unsigned int totNumLandmarks=0, totNumPoses=0, totNumMeasurements=0;
 | |
|   fin >> totNumPoses >> totNumLandmarks >> totNumMeasurements;
 | |
| 
 | |
|   cout << "Dataset: #poses: " << totNumPoses << " #points: " << totNumLandmarks << " #measurements: " << totNumMeasurements << " " << endl;
 | |
| 
 | |
|   std::vector<double> vector_u;
 | |
|   std::vector<double> vector_v;
 | |
|   std::vector<int> vector_r;
 | |
|   std::vector<int> vector_l;
 | |
| 
 | |
|   // read measurements
 | |
|   for(unsigned int i = 0; i < totNumMeasurements; i++){
 | |
|     fin >> r >> l >> u >> v;
 | |
|     vector_u.push_back(u);
 | |
|     vector_v.push_back(v);
 | |
|     vector_r.push_back(r);
 | |
|     vector_l.push_back(l);
 | |
|   }
 | |
| 
 | |
|   cout << "last measurement: " << r << " " << l << " " << u << " " << v << endl;
 | |
| 
 | |
|   std::vector< boost::shared_ptr<Cal3_S2> > K_cameras;
 | |
| 
 | |
|   // create values
 | |
|   for(unsigned int i = 0; i < totNumPoses; i++){
 | |
|     // R,t,f,k1 and k2.
 | |
|     fin >> rotx >> roty >> rotz  >> x >> y >> z >> f >> k1 >> k2;
 | |
| //    boost::shared_ptr<Cal3Bundler> Kbundler(new Cal3Bundler(f, k1, k2, 0.0, 0.0)); //TODO: uncomment
 | |
| //    K_cameras.push_back(Kbundler); //TODO: uncomment
 | |
|     boost::shared_ptr<Cal3_S2> K_S2(new Cal3_S2(f, f, 0.0, 0.0, 0.0));
 | |
|     // cout << "f "<< f << endl;
 | |
|     K_cameras.push_back(K_S2);
 | |
|     Vector3 rotVect(rotx,roty,rotz);
 | |
|     // FORMAT CONVERSION!! R -> R'
 | |
|     Rot3 R = Rot3::Expmap(rotVect);
 | |
|     Matrix3  R_bal_gtsam_mat = Matrix3::Zero(3,3);
 | |
|     R_bal_gtsam_mat(0,0) = 1.0;  R_bal_gtsam_mat(1,1) = -1.0; R_bal_gtsam_mat(2,2) = -1.0;
 | |
|     Rot3 R_bal_gtsam_ = Rot3(R_bal_gtsam_mat);
 | |
|     Pose3 CameraPose((R.inverse()).compose(R_bal_gtsam_), - R.unrotate(Point3(x,y,z)));
 | |
| 
 | |
|     if(addNoise){
 | |
|       Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.3,0.1,0.3));
 | |
|       CameraPose = CameraPose.compose(noise_pose);
 | |
|     }
 | |
|     loadedValues->insert(X(i), CameraPose );
 | |
|   }
 | |
| 
 | |
|   cout << "last pose: " << x << " " << y << " " << z << " " << rotx << " "
 | |
|       << roty << " " << rotz << " " << f << " " << k1 << " " << k2 << endl;
 | |
| 
 | |
|   // add landmarks in standard projection factors
 | |
|   if(!useSmartProjectionFactor){
 | |
|     for(unsigned int i = 0; i < totNumLandmarks; i++){
 | |
|       fin >> x >> y >> z;
 | |
|       // FORMAT CONVERSION!! XPOINT
 | |
|       loadedValues->insert(L(i), Point3(x,y,z) );
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   cout << "last point: " << x << " " << y << " " << z << endl;
 | |
| 
 | |
|   // 1: add values and factors to the graph
 | |
|   // 1.1: add factors
 | |
|   // SMART FACTORS ..
 | |
|   for(size_t i = 0; i < vector_u.size(); i++){
 | |
| 
 | |
|     l = vector_l.at(i);
 | |
|     r = vector_r.at(i);
 | |
|     // FORMAT CONVERSION!! XPOINT
 | |
|     u = vector_u.at(i);
 | |
|     // FORMAT CONVERSION!! XPOINT
 | |
|     v = - vector_v.at(i);
 | |
| 
 | |
|     if (useSmartProjectionFactor) {
 | |
| 
 | |
|       smartCreator.add(L(l), X(r), Point2(u,v), pixel_sigma, K_cameras.at(r), graphSmart);
 | |
|       numLandmarks = smartCreator.getNumLandmarks();
 | |
| 
 | |
|       // Add initial pose value if pose does not exist
 | |
|       if (!graphSmartValues->exists<Pose3>(X(r)) && loadedValues->exists<Pose3>(X(r))) {
 | |
|         graphSmartValues->insert(X(r), loadedValues->at<Pose3>(X(r)));
 | |
|         numPoses++;
 | |
|         optimized = false;
 | |
|       }
 | |
| 
 | |
|     } else {
 | |
|       // or STANDARD PROJECTION FACTORS
 | |
|       projectionCreator.add(L(l), X(r), Point2(u,v), pixel_sigma, K_cameras.at(r), graphProjection);
 | |
|       numLandmarks = projectionCreator.getNumLandmarks();
 | |
|       optimized = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   cout << "Before call to update: ------------------ " << endl;
 | |
|   cout << "Poses in SmartGraph values: "<< graphSmartValues->size() << endl;
 | |
|   Values valuesProjPoses = graphProjectionValues->filter<Pose3>();
 | |
|   cout << "Poses in ProjectionGraph values: "<< valuesProjPoses.size() << endl;
 | |
|   Values valuesProjPoints = graphProjectionValues->filter<Point3>();
 | |
|   cout << "Points in ProjectionGraph values: "<< valuesProjPoints.size() << endl;
 | |
|   cout << "---------------------------------------------------------- " << endl;
 | |
| 
 | |
|   if (!useSmartProjectionFactor) {
 | |
|     projectionCreator.update(graphProjection, loadedValues, graphProjectionValues, doTriangulation);
 | |
|     // graphProjectionValues = loadedValues;
 | |
|     ordering = projectionCreator.getOrdering();
 | |
|   }
 | |
| 
 | |
|   cout << "After call to update: ------------------ " << endl;
 | |
|   cout << "Poses in SmartGraph values: "<< graphSmartValues->size() << endl;
 | |
|   valuesProjPoses = graphProjectionValues->filter<Pose3>();
 | |
|   cout << "Poses in ProjectionGraph values: "<< valuesProjPoses.size() << endl;
 | |
|   valuesProjPoints = graphProjectionValues->filter<Point3>();
 | |
|   cout << "Points in ProjectionGraph values: "<< valuesProjPoints.size() << endl;
 | |
|   cout << "---------------------------------------------------------- " << endl;
 | |
| 
 | |
|   if (useSmartProjectionFactor) {
 | |
|     if (useLM)
 | |
|       optimizeGraphLM(graphSmart, graphSmartValues, result, ordering);
 | |
|     else
 | |
|       optimizeGraphISAM2(graphSmart, graphSmartValues, result);
 | |
| 
 | |
|     cout << "Final reprojection error (smart): " << graphSmart.error(result);
 | |
|   } else {
 | |
|     if (useLM)
 | |
|       optimizeGraphLM(graphProjection, graphProjectionValues, result, ordering);
 | |
|     else
 | |
|       optimizeGraphISAM2(graphProjection, graphProjectionValues, result); // ?
 | |
| 
 | |
|     cout << "Final reprojection error (standard): " << graphProjection.error(result);
 | |
|   }
 | |
| 
 | |
|   optimized = true;
 | |
| 
 | |
|   cout << "===================================================" << endl;
 | |
|   tictoc_print_();
 | |
|   cout << "===================================================" << endl;
 | |
|   writeValues("./", result);
 | |
| 
 | |
|   if (debug) cout << numLandmarks << " " <<  numPoses << " " << optimized << endl;
 | |
| 
 | |
|   exit(0);
 | |
| }
 |