503 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			503 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file    smallExample.cpp
 | |
|  * @brief   Create small example with two poses and one landmark
 | |
|  * @brief   smallExample
 | |
|  * @author  Carlos Nieto
 | |
|  * @author  Frank dellaert
 | |
|  */
 | |
| 
 | |
| #include <gtsam/nonlinear/Symbol.h>
 | |
| #include <gtsam/nonlinear/Ordering.h>
 | |
| #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | |
| #include <gtsam/nonlinear/NonlinearFactor.h>
 | |
| #include <gtsam/inference/FactorGraph.h>
 | |
| #include <gtsam/base/Matrix.h>
 | |
| 
 | |
| #include <tests/smallExample.h>
 | |
| 
 | |
| #include <boost/optional.hpp>
 | |
| #include <boost/shared_ptr.hpp>
 | |
| 
 | |
| #include <iostream>
 | |
| #include <string>
 | |
| 
 | |
| using namespace std;
 | |
| 
 | |
| namespace gtsam {
 | |
| namespace example {
 | |
| 
 | |
|   using namespace gtsam::noiseModel;
 | |
| 
 | |
|   typedef boost::shared_ptr<NonlinearFactor> shared;
 | |
| 
 | |
|   static SharedDiagonal sigma1_0 = noiseModel::Isotropic::Sigma(2,1.0);
 | |
|   static SharedDiagonal sigma0_1 = noiseModel::Isotropic::Sigma(2,0.1);
 | |
|   static SharedDiagonal sigma0_2 = noiseModel::Isotropic::Sigma(2,0.2);
 | |
|   static SharedDiagonal constraintModel = noiseModel::Constrained::All(2);
 | |
| 
 | |
|   static const Index _l1_=0, _x1_=1, _x2_=2;
 | |
|   static const Index _x_=0, _y_=1, _z_=2;
 | |
| 
 | |
|   // Convenience for named keys
 | |
|   using symbol_shorthand::X;
 | |
|   using symbol_shorthand::L;
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   boost::shared_ptr<const Graph> sharedNonlinearFactorGraph() {
 | |
|     // Create
 | |
|     boost::shared_ptr<Graph> nlfg(
 | |
|         new Graph);
 | |
| 
 | |
|     // prior on x1
 | |
|     Point2 mu;
 | |
|     shared f1(new simulated2D::Prior(mu, sigma0_1, X(1)));
 | |
|     nlfg->push_back(f1);
 | |
| 
 | |
|     // odometry between x1 and x2
 | |
|     Point2 z2(1.5, 0);
 | |
|     shared f2(new simulated2D::Odometry(z2, sigma0_1, X(1), X(2)));
 | |
|     nlfg->push_back(f2);
 | |
| 
 | |
|     // measurement between x1 and l1
 | |
|     Point2 z3(0, -1);
 | |
|     shared f3(new simulated2D::Measurement(z3, sigma0_2, X(1), L(1)));
 | |
|     nlfg->push_back(f3);
 | |
| 
 | |
|     // measurement between x2 and l1
 | |
|     Point2 z4(-1.5, -1.);
 | |
|     shared f4(new simulated2D::Measurement(z4, sigma0_2, X(2), L(1)));
 | |
|     nlfg->push_back(f4);
 | |
| 
 | |
|     return nlfg;
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Graph createNonlinearFactorGraph() {
 | |
|     return *sharedNonlinearFactorGraph();
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Values createValues() {
 | |
|     Values c;
 | |
|     c.insert(X(1), Point2(0.0, 0.0));
 | |
|     c.insert(X(2), Point2(1.5, 0.0));
 | |
|     c.insert(L(1), Point2(0.0, -1.0));
 | |
|     return c;
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   VectorValues createVectorValues() {
 | |
|     VectorValues c(vector<size_t>(3, 2));
 | |
|     c[_l1_] = Vector_(2, 0.0, -1.0);
 | |
|     c[_x1_] = Vector_(2, 0.0, 0.0);
 | |
|     c[_x2_] = Vector_(2, 1.5, 0.0);
 | |
|     return c;
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   boost::shared_ptr<const Values> sharedNoisyValues() {
 | |
|     boost::shared_ptr<Values> c(new Values);
 | |
|     c->insert(X(1), Point2(0.1, 0.1));
 | |
|     c->insert(X(2), Point2(1.4, 0.2));
 | |
|     c->insert(L(1), Point2(0.1, -1.1));
 | |
|     return c;
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Values createNoisyValues() {
 | |
|     return *sharedNoisyValues();
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   VectorValues createCorrectDelta(const Ordering& ordering) {
 | |
|     VectorValues c(vector<size_t>(3,2));
 | |
|     c[ordering[L(1)]] = Vector_(2, -0.1, 0.1);
 | |
|     c[ordering[X(1)]] = Vector_(2, -0.1, -0.1);
 | |
|     c[ordering[X(2)]] = Vector_(2, 0.1, -0.2);
 | |
|     return c;
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   VectorValues createZeroDelta(const Ordering& ordering) {
 | |
|     VectorValues c(vector<size_t>(3,2));
 | |
|     c[ordering[L(1)]] = zero(2);
 | |
|     c[ordering[X(1)]] = zero(2);
 | |
|     c[ordering[X(2)]] = zero(2);
 | |
|     return c;
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   GaussianFactorGraph createGaussianFactorGraph(const Ordering& ordering) {
 | |
|     // Create empty graph
 | |
|     GaussianFactorGraph fg;
 | |
| 
 | |
|     SharedDiagonal unit2 = noiseModel::Unit::Create(2);
 | |
| 
 | |
|     // linearized prior on x1: c[_x1_]+x1=0 i.e. x1=-c[_x1_]
 | |
|     fg.push_back(boost::make_shared<JacobianFactor>(ordering[X(1)], 10*eye(2), -1.0*ones(2), unit2));
 | |
| 
 | |
|     // odometry between x1 and x2: x2-x1=[0.2;-0.1]
 | |
|     fg.push_back(boost::make_shared<JacobianFactor>(ordering[X(1)], -10*eye(2),ordering[X(2)], 10*eye(2), Vector_(2, 2.0, -1.0), unit2));
 | |
| 
 | |
|     // measurement between x1 and l1: l1-x1=[0.0;0.2]
 | |
|     fg.push_back(boost::make_shared<JacobianFactor>(ordering[X(1)], -5*eye(2), ordering[L(1)], 5*eye(2), Vector_(2, 0.0, 1.0), unit2));
 | |
| 
 | |
|     // measurement between x2 and l1: l1-x2=[-0.2;0.3]
 | |
|     fg.push_back(boost::make_shared<JacobianFactor>(ordering[X(2)], -5*eye(2), ordering[L(1)], 5*eye(2), Vector_(2, -1.0, 1.5), unit2));
 | |
| 
 | |
|     return fg;
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   /** create small Chordal Bayes Net x <- y
 | |
|    * x y d
 | |
|    * 1 1 9
 | |
|    *   1 5
 | |
|    */
 | |
|   GaussianBayesNet createSmallGaussianBayesNet() {
 | |
|     Matrix R11 = Matrix_(1, 1, 1.0), S12 = Matrix_(1, 1, 1.0);
 | |
|     Matrix R22 = Matrix_(1, 1, 1.0);
 | |
|     Vector d1(1), d2(1);
 | |
|     d1(0) = 9;
 | |
|     d2(0) = 5;
 | |
|     Vector tau(1);
 | |
|     tau(0) = 1.0;
 | |
| 
 | |
|     // define nodes and specify in reverse topological sort (i.e. parents last)
 | |
|     GaussianConditional::shared_ptr Px_y(new GaussianConditional(_x_, d1, R11, _y_, S12, tau));
 | |
|     GaussianConditional::shared_ptr Py(new GaussianConditional(_y_, d2, R22, tau));
 | |
|     GaussianBayesNet cbn;
 | |
|     cbn.push_back(Px_y);
 | |
|     cbn.push_back(Py);
 | |
| 
 | |
|     return cbn;
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   // Some nonlinear functions to optimize
 | |
|   /* ************************************************************************* */
 | |
|   namespace smallOptimize {
 | |
| 
 | |
|     Point2 h(const Point2& v) {
 | |
|       return Point2(cos(v.x()), sin(v.y()));
 | |
|     }
 | |
| 
 | |
|     Matrix H(const Point2& v) {
 | |
|       return Matrix_(2, 2,
 | |
|           -sin(v.x()), 0.0,
 | |
|            0.0, cos(v.y()));
 | |
|     }
 | |
| 
 | |
|     struct UnaryFactor: public gtsam::NoiseModelFactor1<Point2> {
 | |
| 
 | |
|       Point2 z_;
 | |
| 
 | |
|       UnaryFactor(const Point2& z, const SharedNoiseModel& model, Key key) :
 | |
|         gtsam::NoiseModelFactor1<Point2>(model, key), z_(z) {
 | |
|       }
 | |
| 
 | |
|       Vector evaluateError(const Point2& x, boost::optional<Matrix&> A = boost::none) const {
 | |
|         if (A) *A = H(x);
 | |
|         return (h(x) - z_).vector();
 | |
|       }
 | |
| 
 | |
|     };
 | |
| 
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   boost::shared_ptr<const Graph> sharedReallyNonlinearFactorGraph() {
 | |
|     boost::shared_ptr<Graph> fg(new Graph);
 | |
|     Vector z = Vector_(2, 1.0, 0.0);
 | |
|     double sigma = 0.1;
 | |
|     boost::shared_ptr<smallOptimize::UnaryFactor> factor(
 | |
|         new smallOptimize::UnaryFactor(z, noiseModel::Isotropic::Sigma(2,sigma), X(1)));
 | |
|     fg->push_back(factor);
 | |
|     return fg;
 | |
|   }
 | |
| 
 | |
|   Graph createReallyNonlinearFactorGraph() {
 | |
|     return *sharedReallyNonlinearFactorGraph();
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   pair<Graph, Values> createNonlinearSmoother(int T) {
 | |
| 
 | |
|     // Create
 | |
|     Graph nlfg;
 | |
|     Values poses;
 | |
| 
 | |
|     // prior on x1
 | |
|     Point2 x1(1.0, 0.0);
 | |
|     shared prior(new simulated2D::Prior(x1, sigma1_0, X(1)));
 | |
|     nlfg.push_back(prior);
 | |
|     poses.insert(X(1), x1);
 | |
| 
 | |
|     for (int t = 2; t <= T; t++) {
 | |
|       // odometry between x_t and x_{t-1}
 | |
|       Point2 odo(1.0, 0.0);
 | |
|       shared odometry(new simulated2D::Odometry(odo, sigma1_0, X(t - 1), X(t)));
 | |
|       nlfg.push_back(odometry);
 | |
| 
 | |
|       // measurement on x_t is like perfect GPS
 | |
|       Point2 xt(t, 0);
 | |
|       shared measurement(new simulated2D::Prior(xt, sigma1_0, X(t)));
 | |
|       nlfg.push_back(measurement);
 | |
| 
 | |
|       // initial estimate
 | |
|       poses.insert(X(t), xt);
 | |
|     }
 | |
| 
 | |
|     return make_pair(nlfg, poses);
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   pair<FactorGraph<GaussianFactor>, Ordering> createSmoother(int T, boost::optional<Ordering> ordering) {
 | |
|     Graph nlfg;
 | |
|     Values poses;
 | |
|     boost::tie(nlfg, poses) = createNonlinearSmoother(T);
 | |
| 
 | |
|     if(!ordering) ordering = *poses.orderingArbitrary();
 | |
|     return make_pair(*nlfg.linearize(poses, *ordering), *ordering);
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   GaussianFactorGraph createSimpleConstraintGraph() {
 | |
|     // create unary factor
 | |
|     // prior on _x_, mean = [1,-1], sigma=0.1
 | |
|     Matrix Ax = eye(2);
 | |
|     Vector b1(2);
 | |
|     b1(0) = 1.0;
 | |
|     b1(1) = -1.0;
 | |
|     JacobianFactor::shared_ptr f1(new JacobianFactor(_x_, Ax, b1, sigma0_1));
 | |
| 
 | |
|     // create binary constraint factor
 | |
|     // between _x_ and _y_, that is going to be the only factor on _y_
 | |
|     // |1 0||x_1| + |-1  0||y_1| = |0|
 | |
|     // |0 1||x_2|   | 0 -1||y_2|   |0|
 | |
|     Matrix Ax1 = eye(2);
 | |
|     Matrix Ay1 = eye(2) * -1;
 | |
|     Vector b2 = Vector_(2, 0.0, 0.0);
 | |
|     JacobianFactor::shared_ptr f2(new JacobianFactor(_x_, Ax1, _y_, Ay1, b2,
 | |
|         constraintModel));
 | |
| 
 | |
|     // construct the graph
 | |
|     GaussianFactorGraph fg;
 | |
|     fg.push_back(f1);
 | |
|     fg.push_back(f2);
 | |
| 
 | |
|     return fg;
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   VectorValues createSimpleConstraintValues() {
 | |
|     VectorValues config(vector<size_t>(2,2));
 | |
|     Vector v = Vector_(2, 1.0, -1.0);
 | |
|     config[_x_] = v;
 | |
|     config[_y_] = v;
 | |
|     return config;
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   GaussianFactorGraph createSingleConstraintGraph() {
 | |
|     // create unary factor
 | |
|     // prior on _x_, mean = [1,-1], sigma=0.1
 | |
|     Matrix Ax = eye(2);
 | |
|     Vector b1(2);
 | |
|     b1(0) = 1.0;
 | |
|     b1(1) = -1.0;
 | |
|     //GaussianFactor::shared_ptr f1(new JacobianFactor(_x_, sigma0_1->Whiten(Ax), sigma0_1->whiten(b1), sigma0_1));
 | |
|     JacobianFactor::shared_ptr f1(new JacobianFactor(_x_, Ax, b1, sigma0_1));
 | |
| 
 | |
|     // create binary constraint factor
 | |
|     // between _x_ and _y_, that is going to be the only factor on _y_
 | |
|     // |1 2||x_1| + |10 0||y_1| = |1|
 | |
|     // |2 1||x_2|   |0 10||y_2|   |2|
 | |
|     Matrix Ax1(2, 2);
 | |
|     Ax1(0, 0) = 1.0;
 | |
|     Ax1(0, 1) = 2.0;
 | |
|     Ax1(1, 0) = 2.0;
 | |
|     Ax1(1, 1) = 1.0;
 | |
|     Matrix Ay1 = eye(2) * 10;
 | |
|     Vector b2 = Vector_(2, 1.0, 2.0);
 | |
|     JacobianFactor::shared_ptr f2(new JacobianFactor(_x_, Ax1, _y_, Ay1, b2,
 | |
|         constraintModel));
 | |
| 
 | |
|     // construct the graph
 | |
|     GaussianFactorGraph fg;
 | |
|     fg.push_back(f1);
 | |
|     fg.push_back(f2);
 | |
| 
 | |
|     return fg;
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   VectorValues createSingleConstraintValues() {
 | |
|     VectorValues config(vector<size_t>(2,2));
 | |
|     config[_x_] = Vector_(2, 1.0, -1.0);
 | |
|     config[_y_] = Vector_(2, 0.2, 0.1);
 | |
|     return config;
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   GaussianFactorGraph createMultiConstraintGraph() {
 | |
|     // unary factor 1
 | |
|     Matrix A = eye(2);
 | |
|     Vector b = Vector_(2, -2.0, 2.0);
 | |
|     JacobianFactor::shared_ptr lf1(new JacobianFactor(_x_, A, b, sigma0_1));
 | |
| 
 | |
|     // constraint 1
 | |
|     Matrix A11(2, 2);
 | |
|     A11(0, 0) = 1.0;
 | |
|     A11(0, 1) = 2.0;
 | |
|     A11(1, 0) = 2.0;
 | |
|     A11(1, 1) = 1.0;
 | |
| 
 | |
|     Matrix A12(2, 2);
 | |
|     A12(0, 0) = 10.0;
 | |
|     A12(0, 1) = 0.0;
 | |
|     A12(1, 0) = 0.0;
 | |
|     A12(1, 1) = 10.0;
 | |
| 
 | |
|     Vector b1(2);
 | |
|     b1(0) = 1.0;
 | |
|     b1(1) = 2.0;
 | |
|     JacobianFactor::shared_ptr lc1(new JacobianFactor(_x_, A11, _y_, A12, b1,
 | |
|         constraintModel));
 | |
| 
 | |
|     // constraint 2
 | |
|     Matrix A21(2, 2);
 | |
|     A21(0, 0) = 3.0;
 | |
|     A21(0, 1) = 4.0;
 | |
|     A21(1, 0) = -1.0;
 | |
|     A21(1, 1) = -2.0;
 | |
| 
 | |
|     Matrix A22(2, 2);
 | |
|     A22(0, 0) = 1.0;
 | |
|     A22(0, 1) = 1.0;
 | |
|     A22(1, 0) = 1.0;
 | |
|     A22(1, 1) = 2.0;
 | |
| 
 | |
|     Vector b2(2);
 | |
|     b2(0) = 3.0;
 | |
|     b2(1) = 4.0;
 | |
|     JacobianFactor::shared_ptr lc2(new JacobianFactor(_x_, A21, _z_, A22, b2,
 | |
|         constraintModel));
 | |
| 
 | |
|     // construct the graph
 | |
|     GaussianFactorGraph fg;
 | |
|     fg.push_back(lf1);
 | |
|     fg.push_back(lc1);
 | |
|     fg.push_back(lc2);
 | |
| 
 | |
|     return fg;
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   VectorValues createMultiConstraintValues() {
 | |
|     VectorValues config(vector<size_t>(3,2));
 | |
|     config[_x_] = Vector_(2, -2.0, 2.0);
 | |
|     config[_y_] = Vector_(2, -0.1, 0.4);
 | |
|     config[_z_] = Vector_(2, -4.0, 5.0);
 | |
|     return config;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   // Create key for simulated planar graph
 | |
|   Symbol key(int x, int y) {
 | |
|     return X(1000*x+y);
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   boost::tuple<GaussianFactorGraph, VectorValues> planarGraph(size_t N) {
 | |
| 
 | |
|     // create empty graph
 | |
|     NonlinearFactorGraph nlfg;
 | |
| 
 | |
|     // Create almost hard constraint on x11, sigma=0 will work for PCG not for normal
 | |
|     shared constraint(new simulated2D::Prior(Point2(1.0, 1.0), Isotropic::Sigma(2,1e-3), key(1,1)));
 | |
|     nlfg.push_back(constraint);
 | |
| 
 | |
|     // Create horizontal constraints, 1...N*(N-1)
 | |
|     Point2 z1(1.0, 0.0); // move right
 | |
|     for (size_t x = 1; x < N; x++)
 | |
|       for (size_t y = 1; y <= N; y++) {
 | |
|         shared f(new simulated2D::Odometry(z1, Isotropic::Sigma(2,0.01), key(x, y), key(x + 1, y)));
 | |
|         nlfg.push_back(f);
 | |
|       }
 | |
| 
 | |
|     // Create vertical constraints, N*(N-1)+1..2*N*(N-1)
 | |
|     Point2 z2(0.0, 1.0); // move up
 | |
|     for (size_t x = 1; x <= N; x++)
 | |
|       for (size_t y = 1; y < N; y++) {
 | |
|         shared f(new simulated2D::Odometry(z2, Isotropic::Sigma(2,0.01), key(x, y), key(x, y + 1)));
 | |
|         nlfg.push_back(f);
 | |
|       }
 | |
| 
 | |
|     // Create linearization and ground xtrue config
 | |
|     Values zeros;
 | |
|     for (size_t x = 1; x <= N; x++)
 | |
|       for (size_t y = 1; y <= N; y++)
 | |
|         zeros.insert(key(x, y), Point2());
 | |
|     Ordering ordering(planarOrdering(N));
 | |
|     VectorValues xtrue(zeros.dims(ordering));
 | |
|     for (size_t x = 1; x <= N; x++)
 | |
|       for (size_t y = 1; y <= N; y++)
 | |
|         xtrue[ordering[key(x, y)]] = Point2(x,y).vector();
 | |
| 
 | |
|     // linearize around zero
 | |
|     boost::shared_ptr<GaussianFactorGraph> gfg = nlfg.linearize(zeros, ordering);
 | |
|     return boost::make_tuple(*gfg, xtrue);
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Ordering planarOrdering(size_t N) {
 | |
|     Ordering ordering;
 | |
|     for (size_t y = N; y >= 1; y--)
 | |
|       for (size_t x = N; x >= 1; x--)
 | |
|         ordering.push_back(key(x, y));
 | |
|     return ordering;
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   pair<GaussianFactorGraph, GaussianFactorGraph > splitOffPlanarTree(size_t N,
 | |
|       const GaussianFactorGraph& original) {
 | |
|     GaussianFactorGraph T, C;
 | |
| 
 | |
|     // Add the x11 constraint to the tree
 | |
|     T.push_back(original[0]);
 | |
| 
 | |
|     // Add all horizontal constraints to the tree
 | |
|     size_t i = 1;
 | |
|     for (size_t x = 1; x < N; x++)
 | |
|       for (size_t y = 1; y <= N; y++, i++)
 | |
|         T.push_back(original[i]);
 | |
| 
 | |
|     // Add first vertical column of constraints to T, others to C
 | |
|     for (size_t x = 1; x <= N; x++)
 | |
|       for (size_t y = 1; y < N; y++, i++)
 | |
|         if (x == 1)
 | |
|           T.push_back(original[i]);
 | |
|         else
 | |
|           C.push_back(original[i]);
 | |
| 
 | |
|     return make_pair(T, C);
 | |
|   }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| 
 | |
| } // example
 | |
| } // namespace gtsam
 |