gtsam/gtsam/3rdparty/Spectra/GenEigsComplexShiftSolver.h

158 lines
7.0 KiB
C++

// Copyright (C) 2016-2019 Yixuan Qiu <yixuan.qiu@cos.name>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at https://mozilla.org/MPL/2.0/.
#ifndef GEN_EIGS_COMPLEX_SHIFT_SOLVER_H
#define GEN_EIGS_COMPLEX_SHIFT_SOLVER_H
#include <Eigen/Core>
#include "GenEigsBase.h"
#include "Util/SelectionRule.h"
#include "MatOp/DenseGenComplexShiftSolve.h"
namespace Spectra {
///
/// \ingroup EigenSolver
///
/// This class implements the eigen solver for general real matrices with
/// a complex shift value in the **shift-and-invert mode**. The background
/// knowledge of the shift-and-invert mode can be found in the documentation
/// of the SymEigsShiftSolver class.
///
/// \tparam Scalar The element type of the matrix.
/// Currently supported types are `float`, `double` and `long double`.
/// \tparam SelectionRule An enumeration value indicating the selection rule of
/// the shifted-and-inverted eigenvalues.
/// The full list of enumeration values can be found in
/// \ref Enumerations.
/// \tparam OpType The name of the matrix operation class. Users could either
/// use the DenseGenComplexShiftSolve wrapper class, or define their
/// own that implements all the public member functions as in
/// DenseGenComplexShiftSolve.
///
template <typename Scalar = double,
int SelectionRule = LARGEST_MAGN,
typename OpType = DenseGenComplexShiftSolve<double> >
class GenEigsComplexShiftSolver : public GenEigsBase<Scalar, SelectionRule, OpType, IdentityBOp>
{
private:
typedef Eigen::Index Index;
typedef std::complex<Scalar> Complex;
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1> Vector;
typedef Eigen::Matrix<Complex, Eigen::Dynamic, 1> ComplexVector;
const Scalar m_sigmar;
const Scalar m_sigmai;
// First transform back the Ritz values, and then sort
void sort_ritzpair(int sort_rule)
{
using std::abs;
using std::sqrt;
using std::norm;
// The eigenvalues we get from the iteration is
// nu = 0.5 * (1 / (lambda - sigma) + 1 / (lambda - conj(sigma)))
// So the eigenvalues of the original problem is
// 1 \pm sqrt(1 - 4 * nu^2 * sigmai^2)
// lambda = sigmar + -----------------------------------
// 2 * nu
// We need to pick the correct root
// Let (lambdaj, vj) be the j-th eigen pair, then A * vj = lambdaj * vj
// and inv(A - r * I) * vj = 1 / (lambdaj - r) * vj
// where r is any shift value.
// We can use this identity to determine lambdaj
//
// op(v) computes Re(inv(A - r * I) * v) for any real v
// If r is real, then op(v) is also real. Let a = Re(vj), b = Im(vj),
// then op(vj) = op(a) + op(b) * i
// By comparing op(vj) and [1 / (lambdaj - r) * vj], we can determine
// which one is the correct root
// Select a random shift value
SimpleRandom<Scalar> rng(0);
const Scalar shiftr = rng.random() * m_sigmar + rng.random();
const Complex shift = Complex(shiftr, Scalar(0));
this->m_op->set_shift(shiftr, Scalar(0));
// Calculate inv(A - r * I) * vj
Vector v_real(this->m_n), v_imag(this->m_n), OPv_real(this->m_n), OPv_imag(this->m_n);
const Scalar eps = Eigen::NumTraits<Scalar>::epsilon();
for (Index i = 0; i < this->m_nev; i++)
{
v_real.noalias() = this->m_fac.matrix_V() * this->m_ritz_vec.col(i).real();
v_imag.noalias() = this->m_fac.matrix_V() * this->m_ritz_vec.col(i).imag();
this->m_op->perform_op(v_real.data(), OPv_real.data());
this->m_op->perform_op(v_imag.data(), OPv_imag.data());
// Two roots computed from the quadratic equation
const Complex nu = this->m_ritz_val[i];
const Complex root_part1 = m_sigmar + Scalar(0.5) / nu;
const Complex root_part2 = Scalar(0.5) * sqrt(Scalar(1) - Scalar(4) * m_sigmai * m_sigmai * (nu * nu)) / nu;
const Complex root1 = root_part1 + root_part2;
const Complex root2 = root_part1 - root_part2;
// Test roots
Scalar err1 = Scalar(0), err2 = Scalar(0);
for (int k = 0; k < this->m_n; k++)
{
const Complex rhs1 = Complex(v_real[k], v_imag[k]) / (root1 - shift);
const Complex rhs2 = Complex(v_real[k], v_imag[k]) / (root2 - shift);
const Complex OPv = Complex(OPv_real[k], OPv_imag[k]);
err1 += norm(OPv - rhs1);
err2 += norm(OPv - rhs2);
}
const Complex lambdaj = (err1 < err2) ? root1 : root2;
this->m_ritz_val[i] = lambdaj;
if (abs(Eigen::numext::imag(lambdaj)) > eps)
{
this->m_ritz_val[i + 1] = Eigen::numext::conj(lambdaj);
i++;
}
else
{
this->m_ritz_val[i] = Complex(Eigen::numext::real(lambdaj), Scalar(0));
}
}
GenEigsBase<Scalar, SelectionRule, OpType, IdentityBOp>::sort_ritzpair(sort_rule);
}
public:
///
/// Constructor to create a eigen solver object using the shift-and-invert mode.
///
/// \param op Pointer to the matrix operation object. This class should implement
/// the complex shift-solve operation of \f$A\f$: calculating
/// \f$\mathrm{Re}\{(A-\sigma I)^{-1}v\}\f$ for any vector \f$v\f$. Users could either
/// create the object from the DenseGenComplexShiftSolve wrapper class, or
/// define their own that implements all the public member functions
/// as in DenseGenComplexShiftSolve.
/// \param nev Number of eigenvalues requested. This should satisfy \f$1\le nev \le n-2\f$,
/// where \f$n\f$ is the size of matrix.
/// \param ncv Parameter that controls the convergence speed of the algorithm.
/// Typically a larger `ncv` means faster convergence, but it may
/// also result in greater memory use and more matrix operations
/// in each iteration. This parameter must satisfy \f$nev+2 \le ncv \le n\f$,
/// and is advised to take \f$ncv \ge 2\cdot nev + 1\f$.
/// \param sigmar The real part of the shift.
/// \param sigmai The imaginary part of the shift.
///
GenEigsComplexShiftSolver(OpType* op, Index nev, Index ncv, const Scalar& sigmar, const Scalar& sigmai) :
GenEigsBase<Scalar, SelectionRule, OpType, IdentityBOp>(op, NULL, nev, ncv),
m_sigmar(sigmar), m_sigmai(sigmai)
{
this->m_op->set_shift(m_sigmar, m_sigmai);
}
};
} // namespace Spectra
#endif // GEN_EIGS_COMPLEX_SHIFT_SOLVER_H