234 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			234 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  *  @file  TransformBtwRobotsUnaryFactor.h
 | |
|  *  @brief Unary factor for determining transformation between given trajectories of two robots
 | |
|  *  @author Vadim Indelman
 | |
|  **/
 | |
| #pragma once
 | |
| 
 | |
| #include <gtsam/slam/BetweenFactor.h>
 | |
| #include <gtsam/nonlinear/NonlinearFactor.h>
 | |
| #include <gtsam/linear/GaussianFactor.h>
 | |
| #include <gtsam/base/Testable.h>
 | |
| #include <gtsam/base/Lie.h>
 | |
| 
 | |
| #include <ostream>
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
|   /**
 | |
|    * A class for a measurement predicted by "between(config[key1],config[key2])"
 | |
|    * @tparam VALUE the Value type
 | |
|    * @addtogroup SLAM
 | |
|    */
 | |
|   template<class VALUE>
 | |
|   class TransformBtwRobotsUnaryFactor: public NonlinearFactor { // TODO why not NoiseModelFactor1 ?
 | |
| 
 | |
|   public:
 | |
| 
 | |
|     typedef VALUE T;
 | |
| 
 | |
|   private:
 | |
| 
 | |
|     typedef TransformBtwRobotsUnaryFactor<VALUE> This;
 | |
|     typedef gtsam::NonlinearFactor Base;
 | |
| 
 | |
|     gtsam::Key key_;
 | |
| 
 | |
|     VALUE measured_; /** The measurement */
 | |
| 
 | |
|     gtsam::Values valA_; // given values for robot A map\trajectory
 | |
|     gtsam::Values valB_; // given values for robot B map\trajectory
 | |
|     gtsam::Key keyA_;    // key of robot A to which the measurement refers
 | |
|     gtsam::Key keyB_;    // key of robot B to which the measurement refers
 | |
| 
 | |
|     SharedGaussian model_;
 | |
| 
 | |
|     /** concept check by type */
 | |
|     GTSAM_CONCEPT_LIE_TYPE(T)
 | |
|     GTSAM_CONCEPT_TESTABLE_TYPE(T)
 | |
| 
 | |
|   public:
 | |
| 
 | |
|     // shorthand for a smart pointer to a factor
 | |
|     typedef typename boost::shared_ptr<TransformBtwRobotsUnaryFactor> shared_ptr;
 | |
| 
 | |
|     /** default constructor - only use for serialization */
 | |
|     TransformBtwRobotsUnaryFactor() {}
 | |
| 
 | |
|     /** Constructor */
 | |
|     TransformBtwRobotsUnaryFactor(Key key, const VALUE& measured, Key keyA, Key keyB,
 | |
|         const gtsam::Values& valA, const gtsam::Values& valB,
 | |
|         const SharedGaussian& model) :
 | |
|           Base(cref_list_of<1>(key)), key_(key), measured_(measured), keyA_(keyA), keyB_(keyB),
 | |
|           model_(model){
 | |
| 
 | |
|       setValAValB(valA, valB);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     virtual ~TransformBtwRobotsUnaryFactor() {}
 | |
| 
 | |
| 
 | |
|     /** Clone */
 | |
|     virtual gtsam::NonlinearFactor::shared_ptr clone() const { return boost::make_shared<This>(*this); }
 | |
| 
 | |
| 
 | |
|     /** implement functions needed for Testable */
 | |
| 
 | |
|     /** print */
 | |
|     virtual void print(const std::string& s, const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
 | |
|       std::cout << s << "TransformBtwRobotsUnaryFactor("
 | |
|           << keyFormatter(key_) << ")\n";
 | |
|       std::cout << "MR between factor keys: "
 | |
|           << keyFormatter(keyA_) << ","
 | |
|           << keyFormatter(keyB_) << "\n";
 | |
|       measured_.print("  measured: ");
 | |
|       model_->print("  noise model: ");
 | |
|       //      Base::print(s, keyFormatter);
 | |
|     }
 | |
| 
 | |
|     /** equals */
 | |
|     virtual bool equals(const NonlinearFactor& f, double tol=1e-9) const {
 | |
|       const This *t =  dynamic_cast<const This*> (&f);
 | |
| 
 | |
|       if(t && Base::equals(f))
 | |
|         return key_ == t->key_ && measured_.equals(t->measured_);
 | |
|       else
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     /** implement functions needed to derive from Factor */
 | |
| 
 | |
|     /* ************************************************************************* */
 | |
|     void setValAValB(const gtsam::Values& valA, const gtsam::Values& valB){
 | |
|       if ( (!valA.exists(keyA_)) && (!valB.exists(keyA_)) && (!valA.exists(keyB_)) && (!valB.exists(keyB_)) )
 | |
|         throw("something is wrong!");
 | |
| 
 | |
|       // TODO: make sure the two keys belong to different robots
 | |
| 
 | |
|       if (valA.exists(keyA_)){
 | |
|         valA_ = valA;
 | |
|         valB_ = valB;
 | |
|       }
 | |
|       else {
 | |
|         valA_ = valB;
 | |
|         valB_ = valA;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* ************************************************************************* */
 | |
|     virtual double error(const gtsam::Values& x) const {
 | |
|       return whitenedError(x).squaredNorm();
 | |
|     }
 | |
| 
 | |
|     /* ************************************************************************* */
 | |
|     /**
 | |
|      * Linearize a non-linearFactorN to get a gtsam::GaussianFactor,
 | |
|      * \f$ Ax-b \approx h(x+\delta x)-z = h(x) + A \delta x - z \f$
 | |
|      * Hence \f$ b = z - h(x) = - \mathtt{error\_vector}(x) \f$
 | |
|      */
 | |
|     /* This version of linearize recalculates the noise model each time */
 | |
|     virtual boost::shared_ptr<gtsam::GaussianFactor> linearize(const gtsam::Values& x) const {
 | |
|       // Only linearize if the factor is active
 | |
|       if (!this->active(x))
 | |
|         return boost::shared_ptr<gtsam::JacobianFactor>();
 | |
| 
 | |
|       //std::cout<<"About to linearize"<<std::endl;
 | |
|       gtsam::Matrix A1;
 | |
|       std::vector<gtsam::Matrix> A(this->size());
 | |
|       gtsam::Vector b = -whitenedError(x, A);
 | |
|       A1 = A[0];
 | |
| 
 | |
|       return gtsam::GaussianFactor::shared_ptr(
 | |
|           new gtsam::JacobianFactor(key_, A1, b, gtsam::noiseModel::Unit::Create(b.size())));
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /* ************************************************************************* */
 | |
|     gtsam::Vector whitenedError(const gtsam::Values& x,
 | |
|         boost::optional<std::vector<gtsam::Matrix>&> H = boost::none) const {
 | |
| 
 | |
|       T orgA_T_currA = valA_.at<T>(keyA_);
 | |
|       T orgB_T_currB = valB_.at<T>(keyB_);
 | |
|       T orgA_T_orgB = x.at<T>(key_);
 | |
| 
 | |
|       T currA_T_currB_pred;
 | |
|       if (H) {
 | |
|         Matrix H_compose, H_between1;
 | |
|         T orgA_T_currB = orgA_T_orgB.compose(orgB_T_currB, H_compose, boost::none);
 | |
|         currA_T_currB_pred = orgA_T_currA.between(orgA_T_currB, boost::none, H_between1);
 | |
|         (*H)[0] = H_compose * H_between1;
 | |
|       }
 | |
|       else {
 | |
|         T orgA_T_currB = orgA_T_orgB.compose(orgB_T_currB);
 | |
|         currA_T_currB_pred = orgA_T_currA.between(orgA_T_currB);
 | |
|       }
 | |
| 
 | |
|       const T& currA_T_currB_msr  = measured_;
 | |
|       Vector error = currA_T_currB_msr.localCoordinates(currA_T_currB_pred);
 | |
| 
 | |
|       if (H)
 | |
|         model_->WhitenSystem(*H, error);
 | |
|       else
 | |
|         model_->whitenInPlace(error);
 | |
| 
 | |
|       return error;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /* ************************************************************************* */
 | |
|     gtsam::Vector unwhitenedError(const gtsam::Values& x) const {
 | |
| 
 | |
|       T orgA_T_currA = valA_.at<T>(keyA_);
 | |
|       T orgB_T_currB = valB_.at<T>(keyB_);
 | |
|       T orgA_T_orgB = x.at<T>(key_);
 | |
| 
 | |
|       T orgA_T_currB = orgA_T_orgB.compose(orgB_T_currB);
 | |
|       T currA_T_currB_pred = orgA_T_currA.between(orgA_T_currB);
 | |
| 
 | |
|       T currA_T_currB_msr  = measured_;
 | |
|       return currA_T_currB_msr.localCoordinates(currA_T_currB_pred);
 | |
|     }
 | |
| 
 | |
|     /* ************************************************************************* */
 | |
| 
 | |
|     /** number of variables attached to this factor */
 | |
|     std::size_t size() const {
 | |
|       return 1;
 | |
|     }
 | |
| 
 | |
|     virtual size_t dim() const {
 | |
|       return model_->R().rows() + model_->R().cols();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
| 
 | |
|     /** Serialization function */
 | |
|     friend class boost::serialization::access;
 | |
|     template<class ARCHIVE>
 | |
|     void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
 | |
|       ar & boost::serialization::make_nvp("NonlinearFactor",
 | |
|           boost::serialization::base_object<Base>(*this));
 | |
|       //ar & BOOST_SERIALIZATION_NVP(measured_);
 | |
|     }
 | |
|   }; // \class TransformBtwRobotsUnaryFactor
 | |
| 
 | |
|   /// traits
 | |
|   template<class VALUE>
 | |
|   struct traits<TransformBtwRobotsUnaryFactor<VALUE> > :
 | |
|       public Testable<TransformBtwRobotsUnaryFactor<VALUE> > {
 | |
|   };
 | |
| 
 | |
| } /// namespace gtsam
 |