81 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Matlab
		
	
	
			
		
		
	
	
			81 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Matlab
		
	
	
| % /* ----------------------------------------------------------------------------
 | |
| %
 | |
| %  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
| %  * Atlanta, Georgia 30332-0415
 | |
| %  * All Rights Reserved
 | |
| %  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| %
 | |
| %  * See LICENSE for the license information
 | |
| %
 | |
| %  * -------------------------------------------------------------------------- */
 | |
| %
 | |
| % /**
 | |
| %  * @file testKalmanFilter.cpp
 | |
| %  * @brief Test simple linear Kalman filter on a moving 2D point
 | |
| %  * @date Sep 3, 2011
 | |
| %  * @author Stephen Williams
 | |
| %  * @author Frank Dellaert
 | |
| %  * @author Richard Roberts
 | |
| %  */
 | |
| 
 | |
| %% Create the controls and measurement properties for our example
 | |
| F = eye(2,2);
 | |
| B = eye(2,2);
 | |
| u = [1.0; 0.0];
 | |
| modelQ = gtsamnoiseModelDiagonal_Sigmas([0.1;0.1]);
 | |
| Q = 0.01*eye(2,2);
 | |
| H = eye(2,2);
 | |
| z1 = [1.0, 0.0]';
 | |
| z2 = [2.0, 0.0]';
 | |
| z3 = [3.0, 0.0]';
 | |
| modelR = gtsamnoiseModelDiagonal_Sigmas([0.1;0.1]);
 | |
| R = 0.01*eye(2,2);
 | |
| 
 | |
| %% Create the set of expected output TestValues
 | |
| expected0 = [0.0, 0.0]';
 | |
| P00 = 0.01*eye(2,2);
 | |
| 
 | |
| expected1 = [1.0, 0.0]';
 | |
| P01 = P00 + Q;
 | |
| I11 = inv(P01) + inv(R);
 | |
| 
 | |
| expected2 = [2.0, 0.0]';
 | |
| P12 = inv(I11) + Q;
 | |
| I22 = inv(P12) + inv(R);
 | |
| 
 | |
| expected3 = [3.0, 0.0]';
 | |
| P23 = inv(I22) + Q;
 | |
| I33 = inv(P23) + inv(R);
 | |
| 
 | |
| %% Create an KalmanFilter object
 | |
| KF = gtsamKalmanFilter(2);
 | |
| 
 | |
| %% Create the Kalman Filter initialization point
 | |
| x_initial = [0.0;0.0];
 | |
| P_initial = 0.01*eye(2);
 | |
| 
 | |
| %% Create an KF object
 | |
| state = KF.init(x_initial, P_initial);
 | |
| EQUALITY('expected0,state.mean', expected0,state.mean);
 | |
| EQUALITY('expected0,state.mean', P00,state.covariance);
 | |
| 
 | |
| %% Run iteration 1
 | |
| state = KF.predict(state,F, B, u, modelQ);
 | |
| EQUALITY('expected1,state.mean', expected1,state.mean);
 | |
| EQUALITY('P01,state.covariance', P01,state.covariance);
 | |
| state = KF.update(state,H,z1,modelR);
 | |
| EQUALITY('expected1,state.mean', expected1,state.mean);
 | |
| EQUALITY('I11,state.information', I11,state.information);
 | |
| 
 | |
| %% Run iteration 2
 | |
| state = KF.predict(state,F, B, u, modelQ);
 | |
| EQUALITY('expected2,state.mean', expected2,state.mean);
 | |
| state = KF.update(state,H,z2,modelR);
 | |
| EQUALITY('expected2,state.mean', expected2,state.mean);
 | |
| 
 | |
| %% Run iteration 3
 | |
| state = KF.predict(state,F, B, u, modelQ);
 | |
| EQUALITY('expected3,state.mean', expected3,state.mean);
 | |
| state = KF.update(state,H,z3,modelR);
 | |
| EQUALITY('expected3,state.mean', expected3,state.mean);
 |