gtsam/gtsam/base/Manifold.h

231 lines
7.3 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Manifold.h
* @brief Base class and basic functions for Manifold types
* @author Alex Cunningham
* @author Frank Dellaert
* @author Mike Bosse
*/
#pragma once
#include <gtsam/base/Matrix.h>
#include <gtsam/base/Testable.h>
#include <gtsam/base/OptionalJacobian.h>
#include <boost/concept_check.hpp>
#include <boost/concept/requires.hpp>
#include <boost/type_traits/is_base_of.hpp>
namespace gtsam {
/// tag to assert a type is a manifold
struct manifold_tag {};
/**
* A manifold defines a space in which there is a notion of a linear tangent space
* that can be centered around a given point on the manifold. These nonlinear
* spaces may have such properties as wrapping around (as is the case with rotations),
* which might make linear operations on parameters not return a viable element of
* the manifold.
*
* We perform optimization by computing a linear delta in the tangent space of the
* current estimate, and then apply this change using a retraction operation, which
* maps the change in tangent space back to the manifold itself.
*
* There may be multiple possible retractions for a given manifold, which can be chosen
* between depending on the computational complexity. The important criteria for
* the creation for the retract and localCoordinates functions is that they be
* inverse operations.
*
*/
template <typename T> struct traits;
namespace internal {
/// Requirements on type to pass it to Manifold template below
template<class Class>
struct HasManifoldPrereqs {
enum { dim = Class::dimension };
Class p, q;
Eigen::Matrix<double, dim, 1> v;
OptionalJacobian<dim, dim> Hp, Hq, Hv;
BOOST_CONCEPT_USAGE(HasManifoldPrereqs) {
v = p.localCoordinates(q);
q = p.retract(v);
}
};
/// Extra manifold traits for fixed-dimension types
template<class Class, int N>
struct ManifoldImpl {
// Compile-time dimensionality
static int GetDimension(const Class&) {
return N;
}
};
/// Extra manifold traits for variable-dimension types
template<class Class>
struct ManifoldImpl<Class, Eigen::Dynamic> {
// Run-time dimensionality
static int GetDimension(const Class& m) {
return m.dim();
}
};
/// A helper that implements the traits interface for GTSAM manifolds.
/// To use this for your class type, define:
/// template<> struct traits<Class> : public internal::ManifoldTraits<Class> { };
template<class Class>
struct ManifoldTraits: ManifoldImpl<Class, Class::dimension> {
// Check that Class has the necessary machinery
BOOST_CONCEPT_ASSERT((HasManifoldPrereqs<Class>));
// Dimension of the manifold
enum { dimension = Class::dimension };
// Typedefs required by all manifold types.
typedef Class ManifoldType;
typedef manifold_tag structure_category;
typedef Eigen::Matrix<double, dimension, 1> TangentVector;
// Local coordinates
static TangentVector Local(const Class& origin, const Class& other) {
return origin.localCoordinates(other);
}
// Retraction back to manifold
static Class Retract(const Class& origin, const TangentVector& v) {
return origin.retract(v);
}
};
/// Both ManifoldTraits and Testable
template<class Class> struct Manifold: ManifoldTraits<Class>, Testable<Class> {};
} // \ namespace internal
/// Check invariants for Manifold type
template<typename T>
BOOST_CONCEPT_REQUIRES(((IsTestable<T>)),(bool)) //
check_manifold_invariants(const T& a, const T& b, double tol=1e-9) {
typename traits<T>::TangentVector v0 = traits<T>::Local(a,a);
typename traits<T>::TangentVector v = traits<T>::Local(a,b);
T c = traits<T>::Retract(a,v);
return v0.norm() < tol && traits<T>::Equals(b,c,tol);
}
/// Manifold concept
template<typename T>
class IsManifold {
public:
typedef typename traits<T>::structure_category structure_category_tag;
static const int dim = traits<T>::dimension;
typedef typename traits<T>::ManifoldType ManifoldType;
typedef typename traits<T>::TangentVector TangentVector;
BOOST_CONCEPT_USAGE(IsManifold) {
BOOST_STATIC_ASSERT_MSG(
(boost::is_base_of<manifold_tag, structure_category_tag>::value),
"This type's structure_category trait does not assert it as a manifold (or derived)");
BOOST_STATIC_ASSERT(TangentVector::SizeAtCompileTime == dim);
// make sure Chart methods are defined
v = traits<T>::Local(p, q);
q = traits<T>::Retract(p, v);
}
private:
TangentVector v;
ManifoldType p, q;
};
/// Give fixed size dimension of a type, fails at compile time if dynamic
template<typename T>
struct FixedDimension {
typedef const int value_type;
static const int value = traits<T>::dimension;
BOOST_STATIC_ASSERT_MSG(value != Eigen::Dynamic,
"FixedDimension instantiated for dymanically-sized type.");
};
/// Helper class to construct the product manifold of two other manifolds, M1 and M2
/// Assumes nothing except manifold structure for M1 and M2, and the existence
/// of default constructor for those types
template<typename M1, typename M2>
class ProductManifold: public std::pair<M1, M2> {
BOOST_CONCEPT_ASSERT((IsManifold<M1>));
BOOST_CONCEPT_ASSERT((IsManifold<M2>));
protected:
enum { dimension1 = traits<M1>::dimension };
enum { dimension2 = traits<M2>::dimension };
public:
enum { dimension = dimension1 + dimension2 };
inline static size_t Dim() { return dimension;}
inline size_t dim() const { return dimension;}
typedef Eigen::Matrix<double, dimension, 1> TangentVector;
typedef OptionalJacobian<dimension, dimension> ChartJacobian;
/// Default constructor needs default constructors to be defined
ProductManifold():std::pair<M1,M2>(M1(),M2()) {}
// Construct from two original manifold values
ProductManifold(const M1& m1, const M2& m2):std::pair<M1,M2>(m1,m2) {}
/// Retract delta to manifold
ProductManifold retract(const TangentVector& xi) const {
M1 m1 = traits<M1>::Retract(this->first, xi.template head<dimension1>());
M2 m2 = traits<M2>::Retract(this->second, xi.template tail<dimension2>());
return ProductManifold(m1,m2);
}
/// Compute the coordinates in the tangent space
TangentVector localCoordinates(const ProductManifold& other) const {
typename traits<M1>::TangentVector v1 = traits<M1>::Local(this->first, other.first);
typename traits<M2>::TangentVector v2 = traits<M2>::Local(this->second, other.second);
TangentVector v;
v << v1, v2;
return v;
}
};
// Define any direct product group to be a model of the multiplicative Group concept
template<typename M1, typename M2>
struct traits<ProductManifold<M1, M2> > : internal::Manifold<ProductManifold<M1, M2> > {
};
} // \ namespace gtsam
///**
// * Macros for using the ManifoldConcept
// * - An instantiation for use inside unit tests
// * - A typedef for use inside generic algorithms
// *
// * NOTE: intentionally not in the gtsam namespace to allow for classes not in
// * the gtsam namespace to be more easily enforced as testable
// */
#define GTSAM_CONCEPT_MANIFOLD_INST(T) template class gtsam::IsManifold<T>;
#define GTSAM_CONCEPT_MANIFOLD_TYPE(T) typedef gtsam::IsManifold<T> _gtsam_IsManifold_##T;