626 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			626 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file SmartProjectionFactorExample_kitti.cpp
 | |
|  * @brief Example usage of SmartProjectionFactor using real dataset in a non-batch fashion
 | |
|  * @date August, 2013
 | |
|  * @author Zsolt Kira
 | |
|  */
 | |
| 
 | |
| // Use a map to store landmark/smart factor pairs
 | |
| #include <gtsam/base/FastMap.h>
 | |
| 
 | |
| // Both relative poses and recovered trajectory poses will be stored as Pose3 objects
 | |
| #include <gtsam/geometry/Pose3.h>
 | |
| 
 | |
| // Each variable in the system (poses and landmarks) must be identified with a unique key.
 | |
| // We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
 | |
| // Here we will use Symbols
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| 
 | |
| // We want to use iSAM2 to solve the range-SLAM problem incrementally
 | |
| #include <gtsam/nonlinear/ISAM2.h>
 | |
| 
 | |
| // iSAM2 requires as input a set set of new factors to be added stored in a factor graph,
 | |
| // and initial guesses for any new variables used in the added factors
 | |
| #include <gtsam/nonlinear/Values.h>
 | |
| 
 | |
| // We will use a non-linear solver to batch-initialize from the first 150 frames
 | |
| #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | |
| #include <gtsam/nonlinear/GaussNewtonOptimizer.h>
 | |
| 
 | |
| // In GTSAM, measurement functions are represented as 'factors'. Several common factors
 | |
| // have been provided with the library for solving robotics SLAM problems.
 | |
| #include <gtsam/slam/PriorFactor.h>
 | |
| #include <gtsam/slam/ProjectionFactor.h>
 | |
| #include <gtsam_unstable/slam/SmartProjectionFactor.h>
 | |
| #include <gtsam_unstable/slam/SmartProjectionFactorsCreator.h>
 | |
| 
 | |
| // Standard headers, added last, so we know headers above work on their own
 | |
| #include <boost/foreach.hpp>
 | |
| #include <boost/assign.hpp>
 | |
| #include <boost/assign/std/vector.hpp>
 | |
| #include <fstream>
 | |
| #include <iostream>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| using namespace boost::assign;
 | |
| namespace NM = gtsam::noiseModel;
 | |
| 
 | |
| using symbol_shorthand::X;
 | |
| using symbol_shorthand::L;
 | |
| 
 | |
| typedef PriorFactor<Pose3> Pose3Prior;
 | |
| typedef SmartProjectionFactor<Pose3, Point3, Cal3_S2> SmartFactor;
 | |
| typedef SmartProjectionFactorsCreator<Pose3, Point3, Cal3_S2> SmartFactorsCreator;
 | |
| typedef GenericProjectionFactor<Pose3, Point3, Cal3_S2> ProjectionFactor;
 | |
| typedef FastMap<Key, boost::shared_ptr<SmartProjectionFactorState> > SmartFactorToStateMap;
 | |
| typedef FastMap<Key, boost::shared_ptr<SmartFactor> > SmartFactorMap;
 | |
| typedef FastMap<Key, std::vector<boost::shared_ptr<ProjectionFactor> > > ProjectionFactorMap;
 | |
| typedef FastMap<Key, int> OrderingMap;
 | |
| 
 | |
| bool debug = false;
 | |
| 
 | |
| //// Helper functions taken from VO code
 | |
| // Loaded all pose values into list
 | |
| Values::shared_ptr loadPoseValues(const string& filename) {
 | |
| 
 | |
|   Values::shared_ptr values(new Values());
 | |
|   bool addNoise = false;
 | |
|   std::cout << "PARAM Noise: " << addNoise << std::endl; 
 | |
|   // Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3));
 | |
|   Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.3,0.1,0.3));
 | |
| 
 | |
|   // read in camera poses
 | |
|   string full_filename = filename;
 | |
|   ifstream fin;
 | |
|   fin.open(full_filename.c_str());
 | |
| 
 | |
|   int pose_id;
 | |
|   while (fin >> pose_id) {
 | |
|     double pose_matrix[16];
 | |
|     for (int i = 0; i < 16; i++) {
 | |
|       fin >> pose_matrix[i];
 | |
|     }
 | |
| 
 | |
|     if (addNoise) {
 | |
|       values->insert(Symbol('x',pose_id), Pose3(Matrix_(4, 4, pose_matrix)).compose(noise_pose));
 | |
|     } else {
 | |
|       values->insert(Symbol('x',pose_id), Pose3(Matrix_(4, 4, pose_matrix)));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   fin.close();
 | |
|   return values;
 | |
| }
 | |
| 
 | |
| // Load specific pose values that are in key list
 | |
| Values::shared_ptr loadPoseValues(const string& filename, list<Key> keys) {
 | |
|   Values::shared_ptr values(new Values());
 | |
|   std::list<Key>::iterator kit;
 | |
| 
 | |
|   // read in camera poses
 | |
|   string full_filename = filename;
 | |
|   ifstream fin;
 | |
|   fin.open(full_filename.c_str());
 | |
| 
 | |
|   int pose_id;
 | |
|   while (fin >> pose_id) {
 | |
|     double pose_matrix[16];
 | |
|     for (int i = 0; i < 16; i++) {
 | |
|       fin >> pose_matrix[i];
 | |
|     }
 | |
|     kit = find (keys.begin(), keys.end(), X(pose_id));
 | |
|     if (kit != keys.end()) {
 | |
|       //cout << " Adding " << X(pose_id) << endl;
 | |
|       values->insert(Symbol('x',pose_id), Pose3(Matrix_(4, 4, pose_matrix)));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   fin.close();
 | |
|   return values;
 | |
| }
 | |
| 
 | |
| // Load calibration info
 | |
| Cal3_S2::shared_ptr loadCalibration(const string& filename) {
 | |
|   string full_filename = filename;
 | |
|   ifstream fin;
 | |
|   fin.open(full_filename.c_str());
 | |
| 
 | |
|   // try loading from parent directory as backup
 | |
|   if(!fin) {
 | |
|     cerr << "Could not load " << full_filename;
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   double fx, fy, s, u, v, b;
 | |
|   fin >> fx >> fy >> s >> u >> v >> b;
 | |
|   fin.close();
 | |
| 
 | |
|   Cal3_S2::shared_ptr K(new Cal3_S2(fx, fy, s, u, v));
 | |
|   return K;
 | |
| }
 | |
| 
 | |
| void writeValues(string directory_, const Values& values){
 | |
|   string filename = directory_ + "out_camera_poses.txt";
 | |
|   ofstream fout;
 | |
|   fout.open(filename.c_str());
 | |
|   fout.precision(20);
 | |
| 
 | |
|   // write out camera poses
 | |
|   BOOST_FOREACH(Values::ConstFiltered<Pose3>::value_type key_value, values.filter<Pose3>()) {
 | |
|     fout << Symbol(key_value.key).index();
 | |
|     const gtsam::Matrix& matrix= key_value.value.matrix();
 | |
|     for (size_t row=0; row < 4; ++row) {
 | |
|       for (size_t col=0; col < 4; ++col) {
 | |
|         fout << " " << matrix(row, col);
 | |
|       }
 | |
|     }
 | |
|     fout << endl;
 | |
|   }
 | |
|   fout.close();
 | |
| 
 | |
|   if(values.filter<Point3>().size() > 0) {
 | |
|     // write landmarks
 | |
|     filename = directory_ + "landmarks.txt";
 | |
|     fout.open(filename.c_str());
 | |
| 
 | |
|     BOOST_FOREACH(Values::ConstFiltered<Point3>::value_type key_value, values.filter<Point3>()) {
 | |
|       fout << Symbol(key_value.key).index();
 | |
|       fout << " " << key_value.value.x();
 | |
|       fout << " " << key_value.value.y();
 | |
|       fout << " " << key_value.value.z();
 | |
|       fout << endl;
 | |
|     }
 | |
|     fout.close();
 | |
| 
 | |
|   }
 | |
| }
 | |
| 
 | |
| void addTriangulatedLandmarks(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr loadedValues,
 | |
|     gtsam::Values::shared_ptr graphValues, boost::shared_ptr<Cal3_S2> K, ProjectionFactorMap &projectionFactors,
 | |
|     vector<Key> &cameraPoseKeys, vector<Key> &landmarkKeys) {
 | |
|   std::vector<boost::shared_ptr<ProjectionFactor> > projectionFactorVector;
 | |
|   std::vector<boost::shared_ptr<ProjectionFactor> >::iterator vfit;
 | |
|   Point3 point;
 | |
|   Pose3 cameraPose;
 | |
| 
 | |
|   ProjectionFactorMap::iterator pfit;
 | |
| 
 | |
|   if (debug)  graphValues->print("graphValues \n");
 | |
|   if (debug) std::cout << " # END VALUES: " << std::endl;
 | |
| 
 | |
|   // Iterate through all landmarks
 | |
|   if (debug) std::cout << " PROJECTION FACTOR GROUPED: " << projectionFactors.size();
 | |
|   int numProjectionFactors = 0;
 | |
|   int numProjectionFactorsAdded = 0;
 | |
|   int numFailures = 0;
 | |
|   for (pfit = projectionFactors.begin(); pfit != projectionFactors.end(); pfit++) {
 | |
| 
 | |
|     projectionFactorVector = (*pfit).second;
 | |
| 
 | |
|     std::vector<Pose3> cameraPoses;
 | |
|     std::vector<Point2> measured;
 | |
| 
 | |
|     // Iterate through projection factors
 | |
|     for (vfit = projectionFactorVector.begin(); vfit != projectionFactorVector.end(); vfit++) {
 | |
|       numProjectionFactors++;
 | |
| 
 | |
|       if (debug) std::cout << "ProjectionFactor: " << std::endl;
 | |
|       if (debug) (*vfit)->print("ProjectionFactor");
 | |
| 
 | |
|       // Iterate through poses
 | |
|       cameraPoses.push_back( loadedValues->at<Pose3>((*vfit)->key1() ) );
 | |
|       measured.push_back( (*vfit)->measured() );
 | |
|     }
 | |
| 
 | |
|     // Triangulate landmark based on set of poses and measurements
 | |
|     if (debug) std::cout << "Triangulating: " << std::endl;
 | |
|     try {
 | |
|       point = triangulatePoint3(cameraPoses, measured, *K);
 | |
|       if (debug) std::cout << "Triangulation succeeded: " << point << std::endl;
 | |
|     } catch( TriangulationUnderconstrainedException& e) {
 | |
|       if (debug) std::cout << "Triangulation failed because of unconstrained exception" << std::endl;
 | |
|       if (debug) {
 | |
|         BOOST_FOREACH(const Pose3& pose, cameraPoses) {
 | |
|           std::cout << " Pose: " << pose << std::endl;
 | |
|         }
 | |
|       }
 | |
|       numFailures++;
 | |
|       continue;
 | |
|     } catch( TriangulationCheiralityException& e) {
 | |
|       if (debug) std::cout << "Triangulation failed because of unconstrained exception" << std::endl;
 | |
|       if (debug) {
 | |
|         std::cout << "Triangulation failed because of cheirality exception" << std::endl;
 | |
|         BOOST_FOREACH(const Pose3& pose, cameraPoses) {
 | |
|           std::cout << " Pose: " << pose << std::endl;
 | |
|         }
 | |
|       }
 | |
|       numFailures++;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Add projection factors and pose values
 | |
|     for (vfit = projectionFactorVector.begin(); vfit != projectionFactorVector.end(); vfit++) {
 | |
|       numProjectionFactorsAdded++;
 | |
|       if (debug) std::cout << "Adding factor " << std::endl;
 | |
|       if (debug) (*vfit)->print("Projection Factor");
 | |
|       graph.push_back( (*vfit) );
 | |
| 
 | |
|       if (!graphValues->exists<Pose3>( (*vfit)->key1()) && loadedValues->exists<Pose3>((*vfit)->key1())) {
 | |
|         graphValues->insert((*vfit)->key1(), loadedValues->at<Pose3>((*vfit)->key1()));
 | |
|         cameraPoseKeys.push_back( (*vfit)->key1() );
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Add landmark value
 | |
|     if (debug) std::cout << "Adding value " << std::endl;
 | |
|     graphValues->insert( projectionFactorVector[0]->key2(), point); // add point;
 | |
|     landmarkKeys.push_back( projectionFactorVector[0]->key2() );
 | |
| 
 | |
|   }
 | |
|   if (1||debug) std::cout << " # PROJECTION FACTORS CALCULATED: " << numProjectionFactors;
 | |
|   if (1||debug) std::cout << " # PROJECTION FACTORS ADDED: " << numProjectionFactorsAdded;
 | |
|   if (1||debug) std::cout << " # FAILURES: " << numFailures;
 | |
| }
 | |
| 
 | |
| void optimizeGraphLM(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr graphValues, Values &result, boost::shared_ptr<Ordering> &ordering) {
 | |
|   // Optimization parameters
 | |
|   LevenbergMarquardtParams params;
 | |
|   params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
 | |
|   params.verbosity = NonlinearOptimizerParams::ERROR;
 | |
|   params.lambdaInitial = 1;
 | |
|   params.lambdaFactor = 10;
 | |
|   // Profile a single iteration
 | |
| //  params.maxIterations = 1;
 | |
|   params.maxIterations = 100;
 | |
|   std::cout << " LM max iterations: " << params.maxIterations << std::endl;
 | |
|   // // params.relativeErrorTol = 1e-5;
 | |
|   params.absoluteErrorTol = 1.0;
 | |
|   params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
 | |
|   params.verbosity = NonlinearOptimizerParams::ERROR;
 | |
|   params.linearSolverType = SuccessiveLinearizationParams::MULTIFRONTAL_CHOLESKY;
 | |
| 
 | |
|   cout << "Graph size: " << graph.size() << endl;
 | |
|   cout << "Number of variables: " << graphValues->size() << endl;
 | |
|   std::cout << " OPTIMIZATION " << std::endl;
 | |
| 
 | |
|   std::cout << "\n\n=================================================\n\n";
 | |
|   if (debug) {
 | |
|     graph.print("thegraph");
 | |
|   }
 | |
|   std::cout << "\n\n=================================================\n\n";
 | |
| 
 | |
|   if (ordering && ordering->size() > 0) {
 | |
|     if (debug) {
 | |
|       std::cout << "Have an ordering\n" << std::endl;
 | |
|       BOOST_FOREACH(const Key& key, *ordering) {
 | |
|         std::cout << key << " ";
 | |
|       }
 | |
|       std::cout << std::endl;
 | |
|     }
 | |
| 
 | |
|     params.ordering = *ordering;
 | |
| 
 | |
|     //for (int i = 0; i < 3; i++) {
 | |
|       LevenbergMarquardtOptimizer optimizer(graph, *graphValues, params);
 | |
|       gttic_(GenericProjectionFactorExample_kitti);
 | |
|       result = optimizer.optimize();
 | |
|       gttoc_(GenericProjectionFactorExample_kitti);
 | |
|       tictoc_finishedIteration_();
 | |
|     //}
 | |
|   } else {
 | |
|     std::cout << "Using COLAMD ordering\n" << std::endl;
 | |
|     //boost::shared_ptr<Ordering> ordering2(new Ordering()); ordering = ordering2;
 | |
| 
 | |
|     //for (int i = 0; i < 3; i++) {
 | |
|       LevenbergMarquardtOptimizer optimizer(graph, *graphValues, params);
 | |
|       // params = optimizer.ensureHasOrdering(params, graph);
 | |
|       gttic_(SmartProjectionFactorExample_kitti);
 | |
|       result = optimizer.optimize();
 | |
|       gttoc_(SmartProjectionFactorExample_kitti);
 | |
|       tictoc_finishedIteration_();
 | |
|     //}
 | |
| 
 | |
|     //*ordering = params.ordering;
 | |
|     std::cout << "Graph size: " << graph.size() << " ORdering: " << params.ordering->size() << std::endl;
 | |
|     ordering = boost::make_shared<Ordering>(*(new Ordering()));
 | |
|     *ordering = *params.ordering;
 | |
| 
 | |
|   }
 | |
| }
 | |
| 
 | |
| void optimizeGraphGN(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr graphValues, Values &result) {
 | |
|   GaussNewtonParams params;
 | |
|   //params.maxIterations = 1;
 | |
|   params.verbosity = NonlinearOptimizerParams::DELTA;
 | |
| 
 | |
|   GaussNewtonOptimizer optimizer(graph, *graphValues, params);
 | |
|   gttic_(SmartProjectionFactorExample_kitti);
 | |
|   result = optimizer.optimize();
 | |
|   gttoc_(SmartProjectionFactorExample_kitti);
 | |
|   tictoc_finishedIteration_();
 | |
| 
 | |
| }
 | |
| 
 | |
| void optimizeGraphISAM2(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr graphValues, Values &result) {
 | |
|   ISAM2 isam;
 | |
|   gttic_(SmartProjectionFactorExample_kitti);
 | |
|   isam.update(graph, *graphValues);
 | |
|   result = isam.calculateEstimate();
 | |
|   gttoc_(SmartProjectionFactorExample_kitti);
 | |
|   tictoc_finishedIteration_();
 | |
| }
 | |
| 
 | |
| // main
 | |
| int main(int argc, char** argv) {
 | |
| 
 | |
|   unsigned int maxNumLandmarks = 389007; //100000000; // 309393 // (loop_closure_merged) //37106 //(reduced kitti);
 | |
|   unsigned int maxNumPoses = 1e+6;
 | |
| 
 | |
|   // Set to true to use SmartProjectionFactor. Otherwise GenericProjectionFactor will be used
 | |
|   bool useSmartProjectionFactor = true;
 | |
|   bool useTriangulation = true;
 | |
|   bool useLM = true; 
 | |
|   int landmarkFirstOrderingMethod = 1; // 0 - COLAMD, 1 - landmark first, then COLAMD on poses (constrained ordering)
 | |
| 
 | |
|   double KittiLinThreshold = -1.0; // 0.005; //
 | |
|   double KittiRankTolerance = 1.0;
 | |
| 
 | |
|   bool incrementalFlag = false;
 | |
|   int optSkip = 200; // we optimize the graph every optSkip poses
 | |
| 
 | |
|   std::cout << "PARAM SmartFactor: " << useSmartProjectionFactor << std::endl;
 | |
|   std::cout << "PARAM Triangulation: " << useTriangulation << std::endl;
 | |
|   std::cout << "PARAM LM: " << useLM << std::endl;
 | |
|   std::cout << "PARAM KittiLinThreshold (negative is disabled): " << KittiLinThreshold << std::endl;
 | |
| 
 | |
|   // Get home directory and dataset
 | |
|   string HOME = getenv("HOME");
 | |
|   //string input_dir = HOME + "/data/KITTI_00_200/";
 | |
|   string input_dir = HOME + "/data/kitti/loop_closures_merged/"; // 399997 landmarks, 4541 poses
 | |
|   //string input_dir = HOME + "/data/kitti_00_full_dirty/";
 | |
| 
 | |
|   static SharedNoiseModel pixel_sigma(noiseModel::Unit::Create(2));
 | |
|   static SharedNoiseModel prior_model(noiseModel::Diagonal::Sigmas(Vector_(6, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01)));
 | |
|   //static SharedNoiseModel prior_model(noiseModel::Diagonal::Sigmas(Vector_(6, 1e-9, 1e-9, 1e-9, 1e-9, 1e-9, 1e-9)));
 | |
|   NonlinearFactorGraph graphSmart, graphProjection;
 | |
| 
 | |
|   // Load calibration
 | |
|   //Cal3_S2::shared_ptr K(new Cal3_S2(718.856, 718.856, 0.0, 607.1928, 185.2157));
 | |
|   boost::shared_ptr<Cal3_S2> K = loadCalibration(input_dir+"calibration.txt");
 | |
|   K->print("Calibration");
 | |
| 
 | |
|   // Read in kitti dataset
 | |
|   ifstream fin;
 | |
|   fin.open((input_dir+"stereo_factors.txt").c_str());
 | |
|   if(!fin) {
 | |
|     cerr << "Could not open stereo_factors.txt" << endl;
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   // Load all values, add priors
 | |
|   gtsam::Values::shared_ptr graphSmartValues(new gtsam::Values());
 | |
|   gtsam::Values::shared_ptr graphProjectionValues(new gtsam::Values());
 | |
|   gtsam::Values::shared_ptr loadedValues = loadPoseValues(input_dir+"camera_poses.txt");
 | |
|   //graph.push_back(Pose3Prior(X(0),loadedValues->at<Pose3>(X(0)), prior_model));
 | |
|   //graph.push_back(Pose3Prior(X(1),loadedValues->at<Pose3>(X(1)), prior_model));
 | |
| 
 | |
|   // read all measurements tracked by VO stereo
 | |
|   cout << "Loading stereo_factors.txt" << endl;
 | |
|   unsigned int count = 0;
 | |
|   Key currentLandmark = 0;
 | |
|   unsigned int numLandmarks = 0, numPoses = 0;
 | |
|   Key r, l;
 | |
|   double uL, uR, v, x, y, z;
 | |
|   std::vector<Key> landmarkKeys, cameraPoseKeys;
 | |
|   std::vector<Key> views;
 | |
|   std::vector<Point2> measurements;
 | |
|   Values values;
 | |
|   ProjectionFactorMap projectionFactors;
 | |
|   Values result;
 | |
|   int totalNumMeasurements = 0;
 | |
|   bool optimized = false;
 | |
|   boost::shared_ptr<Ordering> ordering(new Ordering());
 | |
|   SmartFactorsCreator smartCreator(pixel_sigma, K, KittiRankTolerance, KittiLinThreshold);
 | |
| 
 | |
|   // main loop: reads measurements and adds factors (also performs optimization if desired)
 | |
|   // r >> pose id
 | |
|   // l >> landmark id
 | |
|   // (uL >> uR) >> measurement (xaxis pixel measurement in left and right camera - since we do monocular, we only use uL)
 | |
|   // v >> measurement (yaxis pixel measurement)
 | |
|   // (x >> y >> z) 3D initialization for the landmark (not used in this code)
 | |
|   while (fin >> r >> l >> uL >> uR >> v >> x >> y >> z) {
 | |
|     if (debug) fprintf(stderr,"Landmark %ld\n", l);
 | |
|     if (debug) fprintf(stderr,"Line %d: %d landmarks, (max landmarks %d), %d poses, max poses %d\n", count, numLandmarks, maxNumLandmarks, numPoses, maxNumPoses);
 | |
| 
 | |
|     // 1: add values and factors to the graph
 | |
|     // 1.1: add factors
 | |
|     // SMART FACTORS ..
 | |
|     if (useSmartProjectionFactor) {
 | |
| 
 | |
|       smartCreator.add(L(l), X(r), Point2(uL,v), graphSmart);
 | |
| 
 | |
|       // Add initial pose value if pose does not exist
 | |
|       if (!graphSmartValues->exists<Pose3>(X(r)) && loadedValues->exists<Pose3>(X(r))) {
 | |
|         graphSmartValues->insert(X(r), loadedValues->at<Pose3>(X(r)));
 | |
|         numPoses++;
 | |
|         optimized = false;
 | |
|       }
 | |
| 
 | |
|     } else {
 | |
|       // or STANDARD PROJECTION FACTORS
 | |
|       // Create projection factor
 | |
|       ProjectionFactor::shared_ptr projectionFactor(new ProjectionFactor(Point2(uL,v), pixel_sigma, X(r), L(l), K));
 | |
| 
 | |
|       // Check if landmark exists in mapping
 | |
|       ProjectionFactorMap::iterator pfit = projectionFactors.find(L(l));
 | |
|       if (pfit != projectionFactors.end()) {
 | |
|         if (debug) fprintf(stderr,"Adding measurement to existing landmark\n");
 | |
| 
 | |
|         // Add projection factor to list of projection factors associated with this landmark
 | |
|         (*pfit).second.push_back(projectionFactor);
 | |
| 
 | |
|       } else {
 | |
|         if (debug) fprintf(stderr,"New landmark (%d)\n", pfit != projectionFactors.end());
 | |
| 
 | |
|         // Create a new vector of projection factors
 | |
|         std::vector<ProjectionFactor::shared_ptr> projectionFactorVector;
 | |
|         projectionFactorVector.push_back(projectionFactor);
 | |
| 
 | |
|         // Insert projection factor to NEW list of projection factors associated with this landmark
 | |
|         projectionFactors.insert( make_pair(L(l), projectionFactorVector) );
 | |
| 
 | |
| 
 | |
|         optimized = false; // TODO
 | |
| 
 | |
| 
 | |
|         // Add projection factor to graph
 | |
|         //graphProjection.push_back(projectionFactor);
 | |
| 
 | |
|         // We have a new landmark
 | |
|         //numLandmarks++;
 | |
|         //landmarkKeys.push_back( L(l) );
 | |
|       }
 | |
| 
 | |
|       if (!useTriangulation) {
 | |
|         cerr << "Deprecated use of -useTriangulation- flag" << endl;
 | |
|       }
 | |
| //      // Add landmark if triangulation is not being used to initialize them
 | |
| //      if (!useTriangulation) {
 | |
| //        // For projection factor, landmarks positions are used, but have to be transformed to world coordinates
 | |
| //        if (graphProjectionValues->exists<Point3>(L(l)) == boost::none) {
 | |
| //          Pose3 camera = loadedValues->at<Pose3>(X(r));
 | |
| //          Point3 worldPoint = camera.transform_from(Point3(x, y, z));
 | |
| //          graphProjectionValues->insert(L(l), worldPoint); // add point;
 | |
| //        }
 | |
| //
 | |
| //        // Add initial pose value if pose does not exist
 | |
| //        // Only do this if triangulation is not used.  Otherwise, it depends what projection factors are added
 | |
| //        // based on triangulation success
 | |
| //        if (!graphProjectionValues->exists<Pose3>(X(r)) && loadedValues->exists<Pose3>(X(r))) {
 | |
| //          graphProjectionValues->insert(X(r), loadedValues->at<Pose3>(X(r)));
 | |
| //          cameraPoseKeys.push_back( X(r) );
 | |
| //          //numPoses++;
 | |
| //        }
 | |
| //
 | |
| //        // Add projection factor to graph
 | |
| //        graphProjection.push_back(projectionFactor);
 | |
| //
 | |
| //      }else {
 | |
| //        // Alternatively: Triangulate similar to how SmartProjectionFactor does it
 | |
| //        // We only do this at the end, when all of the camera poses are available
 | |
| //        // Note we do not add anything to the graph until then, since in some cases
 | |
| //        // of triangulation failure we cannot add the landmark to the graph
 | |
| //      }
 | |
| 
 | |
|     }
 | |
| 
 | |
|     // Optimize if have a certain number of poses/landmarks, or we want to do incremental inference
 | |
|     if (incrementalFlag && !optimized && ((numPoses+1) % optSkip)==0) {
 | |
| 
 | |
|       if (debug) fprintf(stderr,"%d: %d > %d, %d > %d\n", count, numLandmarks, maxNumLandmarks, numPoses, maxNumPoses);
 | |
|       if (debug) cout << "Adding triangulated landmarks, graph size: " << graphProjection.size() << endl;
 | |
| 
 | |
|       //if (useSmartProjectionFactor == false && useTriangulation) {
 | |
|       // addTriangulatedLandmarks(graphProjection, loadedValues, graphProjectionValues, K, projectionFactors, cameraPoseKeys, landmarkKeys);
 | |
|       //}
 | |
| 
 | |
|       if (debug) cout << "Adding triangulated landmarks, graph size after: " << graphProjection.size() << endl;
 | |
|       if (1||debug) fprintf(stderr,"%d: %d > %d, %d > %d\n", count, numLandmarks, maxNumLandmarks, numPoses, maxNumPoses);
 | |
| 
 | |
|       // Optimize every optSkip poses if we want to do incremental inference
 | |
|       if (incrementalFlag && !optimized && ((numPoses+1) % optSkip)==0 ){
 | |
|         if (useSmartProjectionFactor == false && useTriangulation) {
 | |
|           addTriangulatedLandmarks(graphSmart, loadedValues, graphSmartValues, K, projectionFactors, cameraPoseKeys, landmarkKeys);
 | |
|         }
 | |
|         if (useLM)
 | |
|           optimizeGraphLM(graphSmart, graphSmartValues, result, ordering);
 | |
|         else
 | |
|           optimizeGraphISAM2(graphSmart, graphSmartValues, result);
 | |
| 
 | |
|         if(incrementalFlag) *graphSmartValues = result; // we use optimized solution as initial guess for the next one
 | |
| 
 | |
|         optimized = true;
 | |
|         if (1||debug) std::cout << "Landmark Keys: " << landmarkKeys.size() << " Pose Keys: " << cameraPoseKeys.size() << std::endl;
 | |
|         if (1||debug) std::cout << "Pose ordering: " << ordering->size() << std::endl;
 | |
| 
 | |
|         if (landmarkFirstOrderingMethod == 1) {
 | |
|           OrderingMap orderingMap;
 | |
|           // Add landmark keys first for ordering
 | |
|           BOOST_FOREACH(const Key& key, landmarkKeys) {
 | |
|             orderingMap.insert( make_pair(key, 1) );
 | |
|           }
 | |
|           //Ordering::iterator oit;
 | |
|           BOOST_FOREACH(const Key& key, cameraPoseKeys) {
 | |
|             orderingMap.insert( make_pair(key, 2) );
 | |
|           }
 | |
|           *ordering = graphProjection.orderingCOLAMDConstrained(orderingMap);
 | |
|         }
 | |
| 
 | |
|         if (1||debug) std::cout << "Optimizing landmark first " << ordering->size() << std::endl;
 | |
|         optimizeGraphLM(graphSmart, graphSmartValues, result, ordering);
 | |
| 
 | |
|         // Only process first N measurements (for development/debugging)
 | |
|         if ( (numPoses > maxNumPoses || numLandmarks > maxNumLandmarks) ) {
 | |
|           if (debug) fprintf(stderr,"%d: BREAKING %d > %d, %d > %d\n", count, numLandmarks, maxNumLandmarks, numPoses, maxNumPoses);
 | |
|           break;
 | |
|         }
 | |
|         if(!incrementalFlag) break;
 | |
|       }
 | |
| 
 | |
| 
 | |
| 
 | |
|       if (debug) fprintf(stderr,"%d %d\n", count, maxNumLandmarks);
 | |
|       if (debug) cout << "CurrentLandmark " << currentLandmark << " Landmark " << l << std::endl;
 | |
| 
 | |
|       currentLandmark = l;
 | |
|       count++;
 | |
|       if(count==100000) {
 | |
|         cout << "Loading graph smart... " << graphSmart.size() << endl;
 | |
|         cout << "Loading graph projection... " << graphProjection.size() << endl;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if(currentLandmark != l && (numPoses > maxNumPoses || numLandmarks > maxNumLandmarks)){ // reached desired number of landmarks/poses
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   } // end of while
 | |
| 
 | |
|   if (1||debug) fprintf(stderr,"%d: %d > %d, %d > %d\n", count, numLandmarks, maxNumLandmarks, numPoses, maxNumPoses);
 | |
| 
 | |
|   // if we haven't optimized yet
 | |
|   if (!optimized) {
 | |
|     if (useSmartProjectionFactor == false && useTriangulation) {
 | |
|       addTriangulatedLandmarks(graphSmart, loadedValues, graphSmartValues, K, projectionFactors, cameraPoseKeys, landmarkKeys);
 | |
|     }
 | |
|     if (useLM)
 | |
|       optimizeGraphLM(graphSmart, graphSmartValues, result, ordering);
 | |
|     else
 | |
|       optimizeGraphISAM2(graphSmart, graphSmartValues, result);
 | |
|     optimized = true;
 | |
|   }
 | |
|   if (useSmartProjectionFactor||debug) std::cout << "TOTAL NUM MEASUREMENTS " << totalNumMeasurements;
 | |
| 
 | |
|   cout << "===================================================" << endl;
 | |
|   //graphSmartValues->print("before optimization ");
 | |
|   //result.print("results of kitti optimization ");
 | |
|   tictoc_print_();
 | |
|   cout << "===================================================" << endl;
 | |
|   writeValues("./", result);
 | |
| 
 | |
|   if (1||debug) fprintf(stderr,"%d: %d > %d, %d > %d\n", count, numLandmarks, maxNumLandmarks, numPoses, maxNumPoses);
 | |
|   exit(0);
 | |
| }
 |