203 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			203 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file    QPSolver.cpp
 | |
|  * @brief
 | |
|  * @date    Apr 15, 2014
 | |
|  * @author  Duy-Nguyen Ta
 | |
|  */
 | |
| 
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| #include <gtsam/inference/FactorGraph-inst.h>
 | |
| #include <gtsam_unstable/linear/QPSolver.h>
 | |
| #include <gtsam_unstable/linear/LPSolver.h>
 | |
| #include <gtsam_unstable/linear/InfeasibleInitialValues.h>
 | |
| #include <boost/range/adaptor/map.hpp>
 | |
| #include <gtsam_unstable/linear/LPInitSolverMatlab.h>
 | |
| 
 | |
| using namespace std;
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
| //******************************************************************************
 | |
| QPSolver::QPSolver(const QP& qp) :
 | |
|     qp_(qp) {
 | |
|   baseGraph_ = qp_.cost;
 | |
|   baseGraph_.push_back(qp_.equalities.begin(), qp_.equalities.end());
 | |
|   costVariableIndex_ = VariableIndex(qp_.cost);
 | |
|   equalityVariableIndex_ = VariableIndex(qp_.equalities);
 | |
|   inequalityVariableIndex_ = VariableIndex(qp_.inequalities);
 | |
|   constrainedKeys_ = qp_.equalities.keys();
 | |
|   constrainedKeys_.merge(qp_.inequalities.keys());
 | |
| }
 | |
| 
 | |
| //***************************************************cc***************************
 | |
| VectorValues QPSolver::solveWithCurrentWorkingSet(
 | |
|     const InequalityFactorGraph& workingSet) const {
 | |
|   GaussianFactorGraph workingGraph = baseGraph_;
 | |
|   for (const LinearInequality::shared_ptr& factor : workingSet) {
 | |
|     if (factor->active())
 | |
|       workingGraph.push_back(factor);
 | |
|   }
 | |
|   return workingGraph.optimize();
 | |
| }
 | |
| 
 | |
| //******************************************************************************
 | |
| JacobianFactor::shared_ptr QPSolver::createDualFactor(Key key,
 | |
|     const InequalityFactorGraph& workingSet, const VectorValues& delta) const {
 | |
|   // Transpose the A matrix of constrained factors to have the jacobian of the
 | |
|   // dual key
 | |
|   std::vector < std::pair<Key, Matrix> > Aterms = collectDualJacobians
 | |
|       < LinearEquality > (key, qp_.equalities, equalityVariableIndex_);
 | |
|   std::vector < std::pair<Key, Matrix> > AtermsInequalities =
 | |
|       collectDualJacobians < LinearInequality
 | |
|           > (key, workingSet, inequalityVariableIndex_);
 | |
|   Aterms.insert(Aterms.end(), AtermsInequalities.begin(),
 | |
|       AtermsInequalities.end());
 | |
| 
 | |
|   // Collect the gradients of unconstrained cost factors to the b vector
 | |
|   if (Aterms.size() > 0) {
 | |
|     Vector b = zero(delta.at(key).size());
 | |
|     if (costVariableIndex_.find(key) != costVariableIndex_.end()) {
 | |
|       for (size_t factorIx : costVariableIndex_[key]) {
 | |
|         GaussianFactor::shared_ptr factor = qp_.cost.at(factorIx);
 | |
|         b += factor->gradient(key, delta);
 | |
|       }
 | |
|     }
 | |
|     return boost::make_shared < JacobianFactor > (Aterms, b); // compute the least-square approximation of dual variables
 | |
|   } else {
 | |
|     return boost::make_shared<JacobianFactor>();
 | |
|   }
 | |
| }
 | |
| 
 | |
| //******************************************************************************
 | |
| boost::tuple<double, int> QPSolver::computeStepSize(
 | |
|     const InequalityFactorGraph& workingSet, const VectorValues& xk,
 | |
|     const VectorValues& p) const {
 | |
|   return ActiveSetSolver::computeStepSize(workingSet, xk, p, 1);
 | |
| }
 | |
| 
 | |
| //******************************************************************************
 | |
| QPState QPSolver::iterate(const QPState& state) const {
 | |
|   // Algorithm 16.3 from Nocedal06book.
 | |
|   // Solve with the current working set eqn 16.39, but instead of solving for p
 | |
|   // solve for x
 | |
|   VectorValues newValues = solveWithCurrentWorkingSet(state.workingSet);
 | |
|   // If we CAN'T move further
 | |
|   // if p_k = 0 is the original condition, modified by Duy to say that the state
 | |
|   // update is zero.
 | |
|   if (newValues.equals(state.values, 1e-7)) {
 | |
|     // Compute lambda from the dual graph
 | |
|     GaussianFactorGraph::shared_ptr dualGraph = buildDualGraph(state.workingSet,
 | |
|         newValues);
 | |
|     VectorValues duals = dualGraph->optimize();
 | |
|     int leavingFactor = identifyLeavingConstraint(state.workingSet, duals);
 | |
|     // If all inequality constraints are satisfied: We have the solution!!
 | |
|     if (leavingFactor < 0) {
 | |
|       return QPState(newValues, duals, state.workingSet, true,
 | |
|           state.iterations + 1);
 | |
|     } else {
 | |
|       // Inactivate the leaving constraint
 | |
|       InequalityFactorGraph newWorkingSet = state.workingSet;
 | |
|       newWorkingSet.at(leavingFactor)->inactivate();
 | |
|       return QPState(newValues, duals, newWorkingSet, false,
 | |
|           state.iterations + 1);
 | |
|     }
 | |
|   } else {
 | |
|     // If we CAN make some progress, i.e. p_k != 0
 | |
|     // Adapt stepsize if some inactive constraints complain about this move
 | |
|     double alpha;
 | |
|     int factorIx;
 | |
|     VectorValues p = newValues - state.values;
 | |
|     boost::tie(alpha, factorIx) = // using 16.41
 | |
|         computeStepSize(state.workingSet, state.values, p);
 | |
|     // also add to the working set the one that complains the most
 | |
|     InequalityFactorGraph newWorkingSet = state.workingSet;
 | |
|     if (factorIx >= 0)
 | |
|       newWorkingSet.at(factorIx)->activate();
 | |
|     // step!
 | |
|     newValues = state.values + alpha * p;
 | |
|     return QPState(newValues, state.duals, newWorkingSet, false,
 | |
|         state.iterations + 1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| //******************************************************************************
 | |
| InequalityFactorGraph QPSolver::identifyActiveConstraints(
 | |
|     const InequalityFactorGraph& inequalities,
 | |
|     const VectorValues& initialValues, const VectorValues& duals,
 | |
|     bool useWarmStart) const {
 | |
|   InequalityFactorGraph workingSet;
 | |
|   for (const LinearInequality::shared_ptr& factor : inequalities) {
 | |
|     LinearInequality::shared_ptr workingFactor(new LinearInequality(*factor));
 | |
|     if (useWarmStart == true && duals.exists(workingFactor->dualKey())) {
 | |
|       workingFactor->activate();
 | |
|     } else {
 | |
|       if (useWarmStart == true && duals.size() > 0) {
 | |
|         workingFactor->inactivate();
 | |
|       } else {
 | |
|         double error = workingFactor->error(initialValues);
 | |
|         // TODO: find a feasible initial point for QPSolver.
 | |
|         // For now, we just throw an exception, since we don't have an LPSolver
 | |
|         // to do this yet
 | |
|         if (error > 0)
 | |
|           throw InfeasibleInitialValues();
 | |
| 
 | |
|         if (fabs(error) < 1e-7) {
 | |
|           workingFactor->activate();
 | |
|         } else {
 | |
|           workingFactor->inactivate();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     workingSet.push_back(workingFactor);
 | |
|   }
 | |
|   return workingSet;
 | |
| }
 | |
| 
 | |
| //******************************************************************************
 | |
| pair<VectorValues, VectorValues> QPSolver::optimize(
 | |
|     const VectorValues& initialValues, const VectorValues& duals,
 | |
|     bool useWarmStart) const {
 | |
|   // Initialize workingSet from the feasible initialValues
 | |
|   InequalityFactorGraph workingSet = identifyActiveConstraints(qp_.inequalities,
 | |
|       initialValues, duals, useWarmStart);
 | |
|   QPState state(initialValues, duals, workingSet, false, 0);
 | |
| 
 | |
|   /// main loop of the solver
 | |
|   while (!state.converged)
 | |
|     state = iterate(state);
 | |
| 
 | |
|   return make_pair(state.values, state.duals);
 | |
| }
 | |
| 
 | |
| pair<VectorValues, VectorValues> QPSolver::optimize() const {
 | |
|   //Make an LP with any linear cost function. It doesn't matter for initialization.
 | |
|   LP initProblem;
 | |
|   Key newKey = 0; // make an unrelated key for a random variable cost
 | |
|   BOOST_FOREACH(Key key, qp_.cost.getKeyDimMap() | boost::adaptors::map_keys)
 | |
|   if(newKey < key)
 | |
|   newKey = key;
 | |
|   newKey++;
 | |
|   initProblem.cost = LinearCost(newKey, ones(1));
 | |
|   initProblem.equalities = qp_.equalities;
 | |
|   initProblem.inequalities = qp_.inequalities;
 | |
|   LPSolver solver(initProblem);
 | |
|   LPInitSolverMatlab initSolver(solver);
 | |
|   VectorValues initValues = initSolver.solve();
 | |
| 
 | |
|   return optimize(initValues);
 | |
| }
 | |
| ;
 | |
| 
 | |
| } /* namespace gtsam */
 |